1
|
Das M, Semple JI, Haemmerli A, Volodkina V, Scotton J, Gitchev T, Annan A, Campos J, Statzer C, Dakhovnik A, Ewald CY, Mozziconacci J, Meister P. Condensin I folds the Caenorhabditis elegans genome. Nat Genet 2024; 56:1737-1749. [PMID: 39039278 DOI: 10.1038/s41588-024-01832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
The structural maintenance of chromosome (SMC) complexes-cohesin and condensins-are crucial for chromosome separation and compaction during cell division. During the interphase, mammalian cohesins additionally fold the genome into loops and domains. Here we show that, in Caenorhabditis elegans, a species with holocentric chromosomes, condensin I is the primary, long-range loop extruder. The loss of condensin I and its X-specific variant, condensin IDC, leads to genome-wide decompaction, chromosome mixing and disappearance of X-specific topologically associating domains, while reinforcing fine-scale epigenomic compartments. In addition, condensin I/IDC inactivation led to the upregulation of X-linked genes and unveiled nuclear bodies grouping together binding sites for the X-targeting loading complex of condensin IDC. C. elegans condensin I/IDC thus uniquely organizes holocentric interphase chromosomes, akin to cohesin in mammals, as well as regulates X-chromosome gene expression.
Collapse
Affiliation(s)
- Moushumi Das
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jennifer I Semple
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Anja Haemmerli
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Valeriia Volodkina
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Janik Scotton
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Todor Gitchev
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ahrmad Annan
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julie Campos
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Cyril Statzer
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Alexander Dakhovnik
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach, Switzerland
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des Génomes UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Sakuno T, Hiraoka Y. Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 2022; 13:200. [PMID: 35205245 PMCID: PMC8871791 DOI: 10.3390/genes13020200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.
Collapse
Affiliation(s)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
3
|
Hwang G, Verver DE, Handel MA, Hamer G, Jordan PW. Depletion of SMC5/6 sensitizes male germ cells to DNA damage. Mol Biol Cell 2018; 29:3003-3016. [PMID: 30281394 PMCID: PMC6333175 DOI: 10.1091/mbc.e18-07-0459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The structural maintenance of chromosomes complex SMC5/6 is thought to be essential for DNA repair and chromosome segregation during mitosis and meiosis. To determine the requirements of the SMC5/6 complex during mouse spermatogenesis we combined a conditional knockout allele for Smc5, with four germ cell–specific Cre-recombinase transgenes, Ddx4-Cre, Stra8-Cre, Spo11-Cre, and Hspa2-Cre, to mutate Smc5 in spermatogonia, in spermatocytes before meiotic entry, during early meiotic stages, and during midmeiotic stages, respectively. Conditional mutation of Smc5 resulted in destabilization of the SMC5/6 complex. Despite this, we observed only mild defects in spermatogenesis. Mutation of Smc5 mediated by Ddx4-Cre and Stra8-Cre resulted in partial loss of preleptotene spermatocytes; however, spermatogenesis progresses and mice are fertile. Mutation of Smc5 via Spo11-Cre or Hspa2-Cre did not result in detectable defects of spermatogenesis. Upon exposure to gamma irradiation or etoposide treatment, each conditional Smc5 mutant demonstrated an increase in the number of enlarged round spermatids with multiple acrosomes and supernumerary chromosome content. We propose that the SMC5/6 complex is not acutely required for premeiotic DNA replication and meiotic progression during mouse spermatogenesis; however, when germ cells are challenged by exogenous DNA damage, the SMC5/6 complex ensures genome integrity, and thus, fertility.
Collapse
Affiliation(s)
- G Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - D E Verver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - M A Handel
- The Jackson Laboratory, Bar Harbor, ME 04609
| | - G Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - P W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
4
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
5
|
Kulkarni A, Lightfoot JW, Streit A. Germline organization in Strongyloides nematodes reveals alternative differentiation and regulation mechanisms. Chromosoma 2016; 125:725-45. [PMID: 26661737 PMCID: PMC5023735 DOI: 10.1007/s00412-015-0562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 11/14/2022]
Abstract
Nematodes of the genus Strongyloides are important parasites of vertebrates including man. Currently, little is known about their germline organization or reproductive biology and how this influences their parasitic life strategies. Here, we analyze the structure of the germline in several Strongyloides and closely related species and uncover striking differences in the development, germline organization, and fluid dynamics compared to the model organism Caenorhabditis elegans. With a focus on Strongyloides ratti, we reveal that the proliferation of germ cells is restricted to early and mid-larval development, thus limiting the number of progeny. In order to understand key germline events (specifically germ cell progression and the transcriptional status of the germline), we monitored conserved histone modifications, in particular H3Pser10 and H3K4me3. The evolutionary significance of these events is subsequently highlighted through comparisons with six other nematode species, revealing underlying complexities and variations in the development of the germline among nematodes.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - James W Lightfoot
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - Adrian Streit
- Department Evolutionary Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany.
| |
Collapse
|
6
|
Ward A, Hopkins J, Mckay M, Murray S, Jordan PW. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L. G3 (BETHESDA, MD.) 2016; 6:1713-24. [PMID: 27172213 PMCID: PMC4889667 DOI: 10.1534/g3.116.029462] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for axis formation.
Collapse
Affiliation(s)
- Ayobami Ward
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
7
|
Sakuno T, Watanabe Y. Phosphorylation of cohesin Rec11/SA3 by casein kinase 1 promotes homologous recombination by assembling the meiotic chromosome axis. Dev Cell 2015; 32:220-30. [PMID: 25579976 DOI: 10.1016/j.devcel.2014.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
Abstract
In meiosis, cohesin is required for sister chromatid cohesion, as well as meiotic chromosome axis assembly and recombination. However, mechanisms underlying the multifunctional nature of cohesin remain elusive. Here, we show that fission yeast casein kinase 1 (CK1) plays a crucial role in assembling the meiotic chromosome axis (so-called linear element: LinE) and promoting recombination. An in vitro phosphorylation screening assay identified meiotic cohesin subunit Rec11/SA3 as an excellent substrate of CK1. The phosphorylation of Rec11 by CK1 mediates the interaction with the Rec10/Red1/SCP2 axis component, a key step in meiotic chromosome axis assembly, and is dispensable for sister chromatid cohesion. Crucially, the expression of Rec11-Rec10 fusion protein nearly completely bypasses the requirement for CK1 or cohesin phosphorylation for LinE assembly and recombination. This study uncovers a central mechanism of the cohesin-dependent assembly of the meiotic chromosome axis and recombination apparatus that acts independently of sister chromatid cohesion.
Collapse
Affiliation(s)
- Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan; Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan; Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan; Graduate School of Science, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.
| |
Collapse
|
8
|
Weng KA, Jeffreys CA, Bickel SE. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation. PLoS Genet 2014; 10:e1004607. [PMID: 25211017 PMCID: PMC4161318 DOI: 10.1371/journal.pgen.1004607] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages at the same rate at which they are lost.
Collapse
Affiliation(s)
- Katherine A. Weng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Charlotte A. Jeffreys
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
9
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|
10
|
Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587:2299-312. [PMID: 23831059 DOI: 10.1016/j.febslet.2013.06.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Faithful segregation of chromosomes during mitosis and meiosis is the cornerstone process of life. Cohesin, a multi-protein complex conserved from yeast to human, plays a crucial role in this process by keeping the sister chromatids together from S-phase to anaphase onset during mitosis and meiosis. Technological advancements have discovered myriad functions of cohesin beyond its role in sister chromatid cohesion (SCC), such as transcription regulation, DNA repair, chromosome condensation, homolog pairing, monoorientation of sister kinetochore, etc. Here, we have focused on such functions of cohesin that are either independent of or dependent on its canonical role of sister chromatid cohesion. At the end, human diseases associated with malfunctioning of cohesin, albeit with mostly unperturbed sister chromatid cohesion, have been discussed.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
11
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiácovo MP. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 2012; 10:e1001378. [PMID: 22927794 PMCID: PMC3424243 DOI: 10.1371/journal.pbio.1001378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
At the onset of the first meiotic division, the protein LAB-1 recruits the PP1 phosphatase to cohesion complexes, preventing Aurora B kinase from targeting cohesins for degradation prematurely and thereby ensuring proper progression of meiotic events in C. elegans. Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program. A critical step for achieving successful cell division is the regulation of how the cohesin complexes that bind sister chromatids are initially deposited, then maintained, and finally removed to allow the chromatids to separate into daughter cells. This is particularly challenging during meiosis, when the sister chromatids must remain partially connected to each other through the first division. In organisms that have a single focal centromere on each chromosome, such as mammals and flies, cohesin is protected through the first meiotic division by the protein Shugoshin, which binds the PP2A phosphatase. PP2A counteracts phosphorylation by the Aurora B kinase; if certain cohesins are phosphorylated by Aurora B they become targeted for removal, which allows the chromatids to separate. In the nematode C. elegans, the chromosomes lack a localized centromere and the predicted Shugoshin homolog is not required for protection of cohesins; instead, this function is executed in metaphase of the first meiotic division by the protein LAB-1. But it is not completely understood what leads to the deposition of cohesin prior to entry into meiosis and to its maintenance throughout early meiosis I. In this study, we show that LAB-1 is also required for the loading and maintenance of the cohesin complex. LAB-1 ensures that the chromatids are not separated prematurely, and thus enables the proper progression of events through prophase I of meiosis. We propose that LAB-1 may act at the onset of meiosis in a manner akin to Shugoshin, by recruiting the PP1 phosphatase to counteract Aurora B kinase, thereby ensuring sister chromatid cohesion.
Collapse
Affiliation(s)
- Yonatan B. Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Saravanapriah Nadarajan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivo Van Bostelen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chung G, O'Neil NJ, Rose AM. CHL-1 provides an essential function affecting cell proliferation and chromosome stability in Caenorhabditis elegans. DNA Repair (Amst) 2011; 10:1174-82. [PMID: 21968058 DOI: 10.1016/j.dnarep.2011.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/24/2011] [Accepted: 09/09/2011] [Indexed: 01/05/2023]
Abstract
A family of helicases that are important in maintaining genome stability is the iron-sulfur group. Members of this family include DOG-1/FANCJ, RTEL1, XPD and Chl1p/DDX11. In Caenorhabitis elegans, the predicted gene M03C11.2 has orthology to the CHL1 (Chromosome loss 1) gene in Saccharomyces cerevisiae and DDX11 (DEAD/H box polypeptide 11) in humans. In this paper, we show that the chl-1 gene in C. elegans is required for normal development and fertility. Mutants have lineage-independent cell proliferation defects that result in a Stu (sterile uncoordinated) phenotype, characterized by gonadal abnormalities and a reduced number of D motor neurons and seam cells. A chromosome stability defect is present in the germ cells, where an abnormal number of DAPI-staining chromosomes appear in diakinesis. CHL-1 function is required for the integrity of poly-guanine/poly-cytosine DNA in the absence of DOG-1/FANCJ: the loss of CHL-1 alone does not result in the deletion of G-tracts, but it does increase the number of deletions observed in the dog-1; chl-1 double mutant, indicating a role for CHL-1 during replication and repair. In addition, we observed that cohesin defects increased the number of deletions in the absence of DOG-1/FANCJ. Our results demonstrate a role for CHL-1 in cell proliferation and maintaining normal chromosome numbers, and implicate CHL-1 in chromosome stability and repair of unresolved secondary structures during replication.
Collapse
Affiliation(s)
- George Chung
- Department of Medical Genetics, University of British Columbia, 419-2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
14
|
Baudrimont A, Penkner A, Woglar A, Mamnun YM, Hulek M, Struck C, Schnabel R, Loidl J, Jantsch V. A new thermosensitive smc-3 allele reveals involvement of cohesin in homologous recombination in C. elegans. PLoS One 2011; 6:e24799. [PMID: 21957461 PMCID: PMC3177864 DOI: 10.1371/journal.pone.0024799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 11/25/2022] Open
Abstract
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Alexandra Penkner
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasmine M. Mamnun
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Margot Hulek
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Cathrin Struck
- Department of Genetics, Technical University of Braunschweig, Braunschweig, Germany
| | - Ralf Schnabel
- Department of Genetics, Technical University of Braunschweig, Braunschweig, Germany
| | - Josef Loidl
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Verena Jantsch
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Lightfoot J, Testori S, Barroso C, Martinez-Perez E. Loading of meiotic cohesin by SCC-2 is required for early processing of DSBs and for the DNA damage checkpoint. Curr Biol 2011; 21:1421-30. [PMID: 21856158 DOI: 10.1016/j.cub.2011.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chromosome segregation and the repair of DNA double-strand breaks (DSBs) by homologous recombination require cohesin, the protein complex that mediates sister chromatid cohesion (SCC). In addition, cohesin is also required for the integrity of DNA damage checkpoints in somatic cells, where cohesin loading depends on a conserved complex containing the Scc2/Nipbl protein. Although cohesin is required for the completion of meiotic recombination, little is known about how cohesin promotes the repair of meiotic DSBs and about the factors that promote loading of cohesin during meiosis. RESULTS Here we show that during Caenorhabditis elegans meiosis, loading of cohesin requires SCC-2, whereas the cohesin-related complexes condensin and SMC-5/6 can be loaded by mechanisms independent of both SCC-2 and cohesin. Although the lack of cohesin in scc-2 mutants impairs the repair of meiotic DSBs, surprisingly, the persistent DNA damage fails to trigger an apoptotic response of the conserved pachytene DNA damage checkpoint. Mutants carrying an scc-3 allele that abrogates loading of meiotic cohesin are also deficient in the apoptotic response of the pachytene checkpoint, and both scc-2 and scc-3 mutants fail to recruit the DNA damage sensor 9-1-1 complex onto persistent damage sites during meiosis. Furthermore, we show that meiotic cohesin is also required for the timely loading of the RAD-51 recombinase to irradiation-induced DSBs. CONCLUSIONS We propose that meiotic cohesin promotes DSB processing and recruitment of DNA damage checkpoint proteins, thus implicating cohesin in the earliest steps of the DNA damage response during meiosis.
Collapse
Affiliation(s)
- James Lightfoot
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | |
Collapse
|
16
|
Qiao H, Lohmiller LD, Anderson LK. Cohesin proteins load sequentially during prophase I in tomato primary microsporocytes. Chromosome Res 2011; 19:193-207. [PMID: 21234670 DOI: 10.1007/s10577-010-9184-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Proteins of the cohesin complex are essential for sister chromatid cohesion and proper chromosome segregation during both mitosis and meiosis. Cohesin proteins are also components of axial elements/lateral elements (AE/LEs) of synaptonemal complexes (SCs) during meiosis, and cohesins are thought to play an important role in meiotic chromosome morphogenesis and recombination. Here, we have examined the cytological behavior of four cohesin proteins (SMC1, SMC3, SCC3, and REC8/SYN1) during early prophase I in tomato microsporocytes using immunolabeling. All four cohesins are discontinuously distributed along the length of AE/LEs from leptotene through early diplotene. Based on current models for the cohesin complex, the four cohesin proteins should be present at the same time and place in equivalent amounts. However, we observed that cohesins often do not colocalize at the same AE/LE positions, and cohesins differ in when they load onto and dissociate from AE/LEs of early prophase I chromosomes. Cohesin labeling of LEs from pachytene nuclei is similar through euchromatin, pericentric heterochromatin, and kinetochores but is distinctly reduced through the nucleolar organizer region of chromosome 2. These results indicate that the four cohesin proteins may form different complexes and/or perform additional functions during meiosis in plants, which are distinct from their essential function in sister chromatid cohesion.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523-1878, USA
| | | | | |
Collapse
|
17
|
Wood AJ, Severson AF, Meyer BJ. Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 2010; 11:391-404. [PMID: 20442714 PMCID: PMC3491780 DOI: 10.1038/nrg2794] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Condensin and cohesin complexes act in diverse nuclear processes in addition to their widely known roles in chromosome compaction and sister chromatid cohesion. Recent work has elucidated the contribution of condensin and cohesin to interphase genome organization, control of gene expression, metazoan development and meiosis. Despite these wide-ranging functions, several themes have come to light: both complexes establish higher-order chromosome structure by inhibiting or promoting interactions between distant genomic regions, both complexes influence the chromosomal association of other proteins, and both complexes achieve functional specialization by swapping homologous subunits. Emerging data are expanding the range of processes in which condensin and cohesin are known to participate and are enhancing our knowledge of how chromosome architecture is regulated to influence numerous cellular functions.
Collapse
Affiliation(s)
- Andrew J Wood
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
18
|
Schvarzstein M, Wignall SM, Villeneuve AM. Coordinating cohesion, co-orientation, and congression during meiosis: lessons from holocentric chromosomes. Genes Dev 2010; 24:219-28. [PMID: 20123904 DOI: 10.1101/gad.1863610] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Organisms that reproduce sexually must reduce their chromosome number by half during meiosis to generate haploid gametes. To achieve this reduction in ploidy, organisms must devise strategies to couple sister chromatids so that they stay together during the first meiotic division (when homologous chromosomes separate) and then segregate away from one another during the second division. Here we review recent findings that shed light on how Caenorhabditis elegans, an organism with holocentric chromosomes, deals with these challenges of meiosis by differentiating distinct chromosomal subdomains and remodeling chromosome structure during prophase. Furthermore, we discuss how features of chromosome organization established during prophase affect later chromosome behavior during the meiotic divisions. Finally, we illustrate how analysis of holocentric meiosis can inform our thinking about mechanisms that operate on monocentric chromosomes.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
19
|
Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I. Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 2009; 118:591-605. [PMID: 19533160 DOI: 10.1007/s00412-009-0220-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/22/2009] [Indexed: 12/19/2022]
Abstract
In contrast to yeast, plant interphase nuclei often display incomplete alignment (cohesion) along sister chromatid arms. Sister chromatid cohesion mediated by the multi-subunit cohesin complex is essential for correct chromosome segregation during nuclear divisions and for DNA recombination repair. The cohesin complex consists of the conserved proteins SMC1, SMC3, SCC3, and an alpha-kleisin subunit. Viable homozygous mutants could be selected for the Arabidopsis thaliana alpha-kleisins SYN1, SYN2, and SYN4, which can partially compensate each other. For the kleisin SYN3 and for the single-copy genes SMC1, SMC3, and SCC3, only heterozygous mutants were obtained that displayed between 77% and 97% of the wild-type transcript level. Compared to wild-type nuclei, sister chromatid alignment was significantly decreased along arms in 4C nuclei of the homozygous syn1 and syn4 and even of the heterozygous smc1, smc3, scc3, and syn3 mutants. Knocking out SYN1 and SYN4 additionally impaired sister centromere cohesion. Homozygous mutants of SWITCH1 (required for meiotic sister chromatid alignment) displayed sterility and decreased sister arm alignment. For the cohesin loading complex subunit SCC2, only heterozygous mutants affecting sister centromere alignment were obtained. Defects of the alpha-kleisin SYN4, which impair sister chromatid alignment in 4C differentiated nuclei, do apparently not disturb alignment during prometaphase nor cause aneuploidy in meristematic cells. The syn2, 3, 4 scc3 and swi1 mutants display a high frequency of anaphases with bridges (~10% to >20% compared to 2.6% in wild type). Our results suggest that (a) already a slight reduction of the average transcript level in heterozygous cohesin mutants may cause perturbation of cohesion, at least in some leaf cells at distinct loci; (b) the decreased sister chromatid alignment in cohesin mutants can obviously not fully be compensated by other cohesion mechanisms such as DNA concatenation; (c) some cohesin genes, in addition to cohesion, might have further essential functions (e.g., for genome stability, apparently by facilitating correct recombination repair of double-strand breaks).
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Severson AF, Ling L, van Zuylen V, Meyer BJ. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev 2009; 23:1763-78. [PMID: 19574299 PMCID: PMC2720254 DOI: 10.1101/gad.1808809] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/04/2009] [Indexed: 01/22/2023]
Abstract
Faithful transmission of the genome through sexual reproduction requires reduction of genome copy number during meiosis to produce haploid sperm and eggs. Meiosis entails steps absent from mitosis to achieve this goal. When meiosis begins, sisters are held together by sister chromatid cohesion (SCC), mediated by the cohesin complex. Homologs then become linked through crossover recombination. SCC subsequently holds both sisters and homologs together. Separation of homologs and then sisters requires two successive rounds of chromosome segregation and the stepwise removal of Rec8, a meiosis-specific cohesin subunit. We show that HTP-3, a known component of the C. elegans axial element (AE), molecularly links these meiotic innovations. We identified HTP-3 in a genetic screen for factors necessary to maintain SCC until meiosis II. Our data show that interdependent loading of HTP-3 and cohesin is a principal step in assembling the meiotic chromosomal axis and in establishing SCC. HTP-3 recruits all known AE components to meiotic chromosomes and promotes cohesin loading, the first known involvement of an AE protein in this process. Furthermore, REC-8 and two paralogs, called COH-3 and COH-4, together mediate meiotic SCC, but they perform specialized functions. REC-8 alone is necessary and sufficient for the persistence of SCC after meiosis I. In htp-3 and rec-8 mutants, sister chromatids segregate away from one another in meiosis I (equational division), rather than segregating randomly, as expected if SCC were completely eliminated. AE assembly fails only when REC-8, COH-3, and COH-4 are simultaneously disrupted. Premature equational sister separation in rec8 mutants of other organisms suggests the involvement of multiple REC-8 paralogs, which may have masked a conserved requirement for cohesin in AE assembly.
Collapse
Affiliation(s)
- Aaron F. Severson
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Lorraine Ling
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Vanessa van Zuylen
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Schurko AM, Logsdon JM, Eads BD. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol 2009; 9:78. [PMID: 19383157 PMCID: PMC2680839 DOI: 10.1186/1471-2148-9-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 04/21/2009] [Indexed: 11/21/2022] Open
Abstract
Background Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The Daphnia pulex genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes D. pulex an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved. Results We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of D. pulex. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, RECQ2 (which suppresses homologous recombination) is present in multiple copies while DMC1 is the only gene in our inventory that is absent in the Daphnia genome. Expression patterns for 44 gene copies were similar during meiosis versus parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues. Conclusion We propose that expansions in meiotic gene families in D. pulex may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.
Collapse
Affiliation(s)
- Andrew M Schurko
- Roy J Carver Center for Comparative Genomics and Department of Biology, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
22
|
Cena A, Kozłowska E, Płochocka D, Grynberg M, Ishikawa T, Fronk J, Kurlandzka A. The F658G substitution in Saccharomyces cerevisiae cohesin Irr1/Scc3 is semi-dominant in the diploid and disturbs mitosis, meiosis and the cell cycle. Eur J Cell Biol 2008; 87:831-44. [PMID: 18617290 DOI: 10.1016/j.ejcb.2008.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022] Open
Abstract
The sister chromatid cohesion complex of Saccharomyces cerevisiae includes chromosomal ATPases Smc1p and Smc3p, the kleisin Mcd1p/Scc1p, and Irr1p/Scc3p, the least studied component. We have created an irr1-1 mutation (F658G substitution) which is lethal in the haploid and semi-dominant in the heterozygous diploid irr1-1/IRR1. The mutated Irr1-1 protein is present in the nucleus, its level is similar to that of wild-type Irr1p/Scc3p and it is able to interact with chromosomes. The irr1-1/IRR1 diploid exhibits mitotic and meiotic chromosome segregation defects, irregularities in mitotic divisions and is severely affected in meiosis. These defects are gene-dosage dependent, and experiments with synchronous cultures suggest that they may result from the malfunctioning of the spindle assembly checkpoint. The partial structure of Irr1p/Scc3p was predicted and the F658G substitution was found to induce marked changes in the general shape of the predicted protein. Nevertheless, the mutant protein retains its ability to interact with Scc1p, another component of the cohesin complex, as shown by coimmunoprecipitation.
Collapse
Affiliation(s)
- Agata Cena
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
23
|
Goodyer W, Kaitna S, Couteau F, Ward JD, Boulton SJ, Zetka M. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev Cell 2008; 14:263-74. [PMID: 18267094 DOI: 10.1016/j.devcel.2007.11.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/18/2007] [Accepted: 11/17/2007] [Indexed: 01/02/2023]
Abstract
Repair of the programmed meiotic double-strand breaks (DSBs) that initiate recombination must be coordinated with homolog pairing to generate crossovers capable of directing chromosome segregation. Chromosome pairing and synapsis proceed independently of recombination in worms and flies, suggesting a paradoxical lack of coregulation. Here, we find that the meiotic axis component HTP-3 links DSB formation with homolog pairing and synapsis. HTP-3 forms complexes with the DSB repair components MRE-11/RAD-50 and the meiosis-specific axis component HIM-3. Loss of htp-3 or mre-11 recapitulates meiotic phenotypes consistent with a failure to generate DSBs, suggesting that HTP-3 associates with MRE-11/RAD-50 in a complex required for meiotic DSB formation. Loss of HTP-3 eliminates HIM-3 localization to axes and HIM-3-dependent homolog alignment, synapsis, and crossing over. Our study reveals a mechanism for coupling meiotic DSB formation with homolog pairing through the essential participation of an axis component with complexes mediating both processes.
Collapse
Affiliation(s)
- William Goodyer
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, Bickel SE, Dorsett D. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 2008; 117:51-66. [PMID: 17909832 PMCID: PMC2258212 DOI: 10.1007/s00412-007-0125-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 01/11/2023]
Abstract
Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Hayley A. Webber
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Gabe Haller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | - Joel C. Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
25
|
Abstract
The faithful segregation of homologous chromosomes during meiosis is dependent on the formation of physical connections (chiasma) that form following reciprocal exchange of DNA molecules during meiotic recombination. Here we review the current knowledge in the Caenorhabditis elegans meiotic recombination field. We discuss recent developments that have improved our understanding of the crucial steps that must precede the initiation and propagation of meiotic recombination. We summarize the pathways that impact on meiotic prophase entry and the current understanding of how chromosomes reorganize and interact to promote homologous chromosome pairing and subsequent synapsis. We pay particular attention to the mechanisms that contribute to meiotic DNA double-strand break (DSB) formation and strand exchange processes, and how the C. elegans system compares with other model organisms. Finally, we highlight current and future areas of research that are likely to further our understanding of the meiotic recombination process.
Collapse
Affiliation(s)
- Tatiana Garcia-Muse
- DNA Damage Response Laboratory, Clare Hall Laboratories, Cancer Research UK, Blanch Lane, South Mimms, EN6 3LD, UK
| | | |
Collapse
|
26
|
Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y. Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. ACTA ACUST UNITED AC 2006; 174:499-508. [PMID: 16893973 PMCID: PMC2064256 DOI: 10.1083/jcb.200605074] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The meiotic cohesin Rec8 is required for the stepwise segregation of chromosomes during the two rounds of meiotic division. By directly measuring chromosome compaction in living cells of the fission yeast Schizosaccharomyces pombe, we found an additional role for the meiotic cohesin in the compaction of chromosomes during meiotic prophase. In the absence of Rec8, chromosomes were decompacted relative to those of wild-type cells. Conversely, loss of the cohesin-associated protein Pds5 resulted in hypercompaction. Although this hypercompaction requires Rec8, binding of Rec8 to chromatin was reduced in the absence of Pds5, indicating that Pds5 promotes chromosome association of Rec8. To explain these observations, we propose that meiotic prophase chromosomes are organized as chromatin loops emanating from a Rec8-containing axis: the absence of Rec8 disrupts the axis, resulting in disorganized chromosomes, whereas reduced Rec8 loading results in a longitudinally compacted axis with fewer attachment points and longer chromatin loops.
Collapse
Affiliation(s)
- Da-Qiao Ding
- Cell Biology Group, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
McCracken S, Longman D, Marcon E, Moens P, Downey M, Nickerson JA, Jessberger R, Wilde A, Caceres JF, Emili A, Blencowe BJ. Proteomic analysis of SRm160-containing complexes reveals a conserved association with cohesin. J Biol Chem 2005; 280:42227-36. [PMID: 16159877 DOI: 10.1074/jbc.m507410200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we describe a rapid immunoaffinity purification procedure for gel-free tandem mass spectrometry-based analysis of endogenous protein complexes and apply it to the characterization of complexes containing the SRm160 (serine/arginine repeat-related nuclear matrix protein of 160 kDa) splicing coactivator. In addition to promoting splicing, SRm160 stimulates 3'-end processing via its N-terminal PWI nucleic acid-binding domain and is found in a post-splicing exon junction complex that has been implicated in coupling splicing with mRNA turnover, export, and translation. Consistent with these known functional associations, we found that the majority of proteins identified in SRm160-containing complexes are associated with pre-mRNA processing. Interestingly, SRm160 is also associated with factors involved in chromatin regulation and sister chromatid cohesion, specifically the cohesin subunits SMC1alpha, SMC3, RAD21, and SA2. Gradient fractionation suggested that there are two predominant SRm160-containing complexes, one enriched in splicing components and the other enriched in cohesin subunits. Co-immunoprecipitation and co-localization experiments, as well as combinatorial RNA interference in Caenorhabditis elegans, support the existence of conserved and functional interactions between SRm160 and cohesin.
Collapse
Affiliation(s)
- Susan McCracken
- Banting and Best Department of Medical Research, C. H. Best Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Márquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mézard C, Grelon M. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 2005; 118:4621-32. [PMID: 16176934 DOI: 10.1242/jcs.02583] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The success of the first meiotic division relies (among other factors) on the formation of bivalents between homologous chromosomes, the monopolar orientation of the sister kinetochores at metaphase I and the maintenance of centromeric cohesion until the onset of anaphase II. The meiotic cohesin subunit, Rec8 has been reported to be one of the key players in these processes, but its precise role in kinetochore orientation is still under debate. By contrast, much less is known about the other non-SMC cohesin subunit, Scc3. We report the identification and the characterisation of AtSCC3, the sole Arabidopsis homologue of Scc3. The detection of AtSCC3 in mitotic cells, the embryo lethality of a null allele Atscc3-2, and the mitotic defects of the weak allele Atscc3-1 suggest that AtSCC3 is required for mitosis. AtSCC3 was also detected in meiotic nuclei as early as interphase, and bound to the chromosome axis from early leptotene through to anaphase I. We show here that both AtREC8 and AtSCC3 are necessary not only to maintain centromere cohesion at anaphase I, but also for the monopolar orientation of the kinetochores during the first meiotic division. We also found that AtREC8 is involved in chromosome axis formation in an AtSPO11-1-independent manner. Finally, we provide evidence for a role of AtSPO11-1 in the stability of the cohesin complex.
Collapse
Affiliation(s)
- Liudmila Chelysheva
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes, INRA de Versailles, Route de Saint-Cyr, 78026 Versailles CEDEX, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H. Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 2005; 170:213-23. [PMID: 16027219 PMCID: PMC2171397 DOI: 10.1083/jcb.200501042] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022] Open
Abstract
In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster-SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8delta meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization-dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.
Collapse
|
30
|
Moore LL, Stanvitch G, Roth MB, Rosen D. HCP-4/CENP-C promotes the prophase timing of centromere resolution by enabling the centromere association of HCP-6 in Caenorhabditis elegans. Mol Cell Biol 2005; 25:2583-92. [PMID: 15767665 PMCID: PMC1061647 DOI: 10.1128/mcb.25.7.2583-2592.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior to microtubule capture, sister centromeres resolve from one another, coming to rest on opposite surfaces of the condensing chromosome. Subsequent assembly of sister kinetochores at each sister centromere generates a geometry favorable for equal levels of segregation of chromatids. The holocentric chromosomes of Caenorhabditis elegans are uniquely suited for the study of centromere resolution and subsequent kinetochore assembly. In C. elegans, only two proteins have been identified as being necessary for centromere resolution, the kinase AIR-2 (prophase only) and the centromere protein HCP-4/CENP-C. Here we found that the loss of proteins involved in chromosome cohesion bypassed the requirement for HCP-4/CENP-C but not for AIR-2. Interestingly, the loss of cohesin proteins also restored the localization of HCP-6 to the kinetochore. The loss of the condensin II protein HCP-6 or MIX-1/SMC2 impaired centromere resolution. Furthermore, the loss of HCP-6 or MIX-1/SMC2 resulted in no centromere resolution when either nocodazole or RNA interference (RNAi) of the kinetochore protein KNL-1 perturbed spindle-kinetochore interactions. This result suggests that normal prophase centromere resolution is mediated by condensin II proteins, which are actively recruited to sister centromeres to mediate the process of resolution.
Collapse
Affiliation(s)
- Landon L Moore
- Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany St., E642, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
31
|
Maddox PS, Oegema K, Desai A, Cheeseman IM. "Holo"er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res 2005; 12:641-53. [PMID: 15289669 DOI: 10.1023/b:chro.0000036588.42225.2f] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kinetochores are proteinaceous organelles that assemble on centromeric DNA to direct chromosome segregation in all eukaryotes. While many aspects of kinetochore function are conserved, the nature of the chromosomal domain upon which kinetochores assemble varies dramatically between different species. In monocentric eukaryotes, kinetochores assemble on a localized region of each chromosome. In contrast, holocentric species such as the nematode Caenorhabditis elegans have diffuse kinetochores that form along the entire length of their chromosomes. Here, we discuss the nature of chromosome segregation in C. elegans. In addition to reviewing what is known about kinetochore function, chromosome structure, and chromosome movement, we consider the consequences of the specialized holocentric architecture on chromosome segregation.
Collapse
Affiliation(s)
- Paul S Maddox
- CMM-East, Rm 3071G, Ludwig Institute for Cancer Research, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Meiosis is the type of cell division that gives rise to eggs and sperm. Errors in the execution of this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Here, we review recent findings on how cell-cycle controls ensure the coordination of meiotic events, with a particular focus on the segregation of chromosomes.
Collapse
Affiliation(s)
- Adèle L Marston
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
33
|
Abstract
The synaptonemal complex (SC) is a protein lattice that resembles railroad tracks and connects paired homologous chromosomes in most meiotic systems. The two side rails of the SC, known as lateral elements (LEs), are connected by proteins known as transverse filaments. The LEs are derived from the axial elements of the chromosomes and play important roles in chromosome condensation, pairing, transverse filament assembly, and prohibiting double-strand breaks (DSBs) from entering into recombination pathways that involve sister chromatids. The proteins that make up the transverse filaments of the SC also play a much earlier role in committing a subset of DSBs into a recombination pathway, which results in the production of reciprocal meiotic crossovers. Sites of crossover commitment can be observed as locations where the SC initiates and as immunostaining foci for a set of proteins required for the processing of DSBs to mature crossovers. In most (but not all) organisms it is the establishment of sites marking such crossover-committed DSBs that facilitates completion of synapsis (full-length extension of the SC). The function of the mature full-length SC may involve both the completion of meiotic recombination at the DNA level and the exchange of the axial elements of the two chromatids involved in the crossover. However, the demonstration that the sites of crossover formation are designated prior to SC formation, and the finding that these sites display interference, argues against a role of the mature SC in mediating the process of interference. Finally, in at least some organisms, modifications of the SC alone are sufficient to ensure meiotic chromosome segregation in the complete absence of meiotic recombination.
Collapse
Affiliation(s)
- Scott L Page
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
34
|
Jantsch V, Pasierbek P, Mueller MM, Schweizer D, Jantsch M, Loidl J. Targeted gene knockout reveals a role in meiotic recombination for ZHP-3, a Zip3-related protein in Caenorhabditis elegans. Mol Cell Biol 2004; 24:7998-8006. [PMID: 15340062 PMCID: PMC515049 DOI: 10.1128/mcb.24.18.7998-8006.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The meiotically expressed Zip3 protein is found conserved from Saccharomyces cerevisiae to humans. In baker's yeast, Zip3p has been implicated in synaptonemal complex (SC) formation, while little is known about the protein's function in multicellular organisms. We report here the successful targeted gene disruption of zhp-3 (K02B12.8), the ZIP3 homolog in the nematode Caenorhabditis elegans. Homozygous zhp-3 knockout worms show normal homologue pairing and SC formation. Also, the timing of appearance and the nuclear localization of the recombination protein Rad-51 seem normal in these animals, suggesting proper initiation of meiotic recombination by DNA double-strand breaks. However, the occurrence of univalents during diplotene indicates that C. elegans ZHP-3 protein is essential for reciprocal recombination between homologous chromosomes and thus chiasma formation. In the absence of ZHP-3, reciprocal recombination is abolished and double-strand breaks seem to be repaired via alternative pathways, leading to achiasmatic chromosomes and the occurrence of univalents during meiosis I. Green fluorescent protein-tagged C. elegans ZHP-3 forms lines between synapsed chromosomes and requires the SC for its proper localization.
Collapse
Affiliation(s)
- Verena Jantsch
- Department of Cell Biology and Genetics, Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|