1
|
Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res 2017; 58:115-151. [PMID: 28109737 DOI: 10.1016/j.preteyeres.2017.01.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
This article discusses retinal oxygenation and retinal metabolism by focusing on measurements made with two of the principal methods used to study O2 in the retina: measurements of PO2 with oxygen-sensitive microelectrodes in vivo in animals with a retinal circulation similar to that of humans, and oximetry, which can be used non-invasively in both animals and humans to measure O2 concentration in retinal vessels. Microelectrodes uniquely have high spatial resolution, allowing the mapping of PO2 in detail, and when combined with mathematical models of diffusion and consumption, they provide information about retinal metabolism. Mathematical models, grounded in experiments, can also be used to simulate situations that are not amenable to experimental study. New methods of oximetry, particularly photoacoustic ophthalmoscopy and visible light optical coherence tomography, provide depth-resolved methods that can separate signals from blood vessels and surrounding tissues, and can be combined with blood flow measures to determine metabolic rate. We discuss the effects on retinal oxygenation of illumination, hypoxia and hyperoxia, and describe retinal oxygenation in diabetes, retinal detachment, arterial occlusion, and macular degeneration. We explain how the metabolic measurements obtained from microelectrodes and imaging are different, and how they need to be brought together in the future. Finally, we argue for revisiting the clinical use of hyperoxia in ophthalmology, particularly in retinal arterial occlusions and retinal detachment, based on animal research and diffusion theory.
Collapse
Affiliation(s)
- Robert A Linsenmeier
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Neurobiology Department, Northwestern University, 2205 Tech Drive, Evanston 60208-3520, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| | - Hao F Zhang
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road, Evanston 60208-3107, IL, USA; Ophthalmology Department, Northwestern University, 645 N. Michigan Ave, Suite 440, Chicago 60611, IL, USA.
| |
Collapse
|
2
|
Abstract
UNLABELLED ABSTRACT.: PURPOSE Malfunction of retinal blood flow or oxygenation is believed to be involved in various diseases. Among them are retinal vessel occlusions, diabetic retinopathy and glaucoma. Reliable, non-invasive technology for retinal oxygen measurements has been scarce and most of the knowledge on retinal oxygenation comes from animal studies. This thesis describes human retinal oximetry, performed with novel retinal oximetry technology. The thesis describes studies on retinal vessel oxygen saturation in (1) light and dark in healthy volunteers, (2) central retinal vein occlusion, (3) branch retinal vein occlusion, (4) central retinal artery occlusion, (5) diabetic retinopathy, (6) patients undergoing glaucoma surgery and (7) patients taking glaucoma medication. METHODS The retinal oximeter (Oxymap ehf., Reykjavik, Iceland) is based on a fundus camera. An attached image splitter allows the simultaneous capture of four images of the same area of the fundus. Two images are used for further analysis, one acquired with 586 nm light and one with 605 nm light. Light absorbance of retinal vessels is sensitive to oxygen saturation at 605 nm but not at 586 nm. Measurement of reflected light at these wavelengths allows estimation of oxygen saturation in the main retinal vessels. This is performed with custom-made analysis software. RESULTS LIGHT AND DARK: After 30 min in the dark, oxygen saturation in retinal arterioles of healthy volunteers was 92 ± 4% (mean ± SD, n = 15). After 5 min in 80 cd/m(2) light, the arteriolar saturation was 89 ± 5%. The decrease was statistically significant (p = 0.008). The corresponding values for retinal venules were 60 ± 5% in the dark and 55 ± 10% in the light (p = 0.020). Similar results were found after alternating 5 min periods of darkness and light. In a second experiment (n = 19), a significant decrease in retinal vessel oxygen saturation was found in 100 cd/m(2) light compared with darkness but 1 and 10 cd/m(2) light had no significant effect. CENTRAL RETINAL VEIN OCCLUSION: In patients with central retinal vein occlusion, the mean saturation in affected retinal venules was 49 ± 12%, while the mean value for venules in the fellow eye was 65 ± 6% (mean ± SD, p = 0.003, n = 8). The retinal arteriolar saturation was the same in affected (99 ± 3%) and the unaffected (99 ± 6%) eyes. The venous oxygen saturation showed much variation between affected eyes. BRANCH RETINAL VEIN OCCLUSION: Median oxygen saturation in venules affected by branch retinal vein occlusion was 59% (range, 12-93%, n = 22), while it was 63% (23-80%) in unaffected venules in the affected eye and 55% (39-80%) in venules in the fellow eye. The difference was not statistically significant (p > 0.05). There was a significant difference between affected arterioles (median 101%; range, 89-115%) and unaffected arterioles (95%, 85-104%) in the affected eye (p < 0.05, n = 18). CENTRAL RETINAL ARTERY OCCLUSION: In a patient with a day's history of central retinal artery occlusion due to temporal arteritis, the mean arteriolar saturation was 71 ± 9% and 63 ± 9% in the venules. One month later, after treatment with prednisolone, the mean arteriolar saturation was 100 ± 4% and the venous saturation 54 ± 5%. DIABETIC RETINOPATHY: When compared with healthy volunteers (n = 31), patients with all categories of diabetic retinopathy had on average 7-10 percentage points higher saturation in retinal arterioles (p < 0.05 for all categories, n = 6-8 in each category). In venules, the saturation was 8-12 percentage points higher (p < 0.05 for all categories). GLAUCOMA SURGERY: Oxygen saturation in retinal arterioles increased by 2 percentage points on average (p = 0.046, n = 19) with surgery, which lowered intraocular pressure from 23 ± 7 mmHg (mean ± SD) to 10 ± 4 mmHg (p < 0.0001). No other significant changes were found (p ≥ 0.35). DORZOLAMIDE: A significant reduction of 3 percentage points was found in arterioles (p < 0.01) and venules (p < 0.05) when patients with glaucoma or ocular hypertension changed from dorzolamide-timolol combination eye drops to timolol alone (n = 6). No change was found in patients, who started on timolol and switched to the combination therapy (p > 0.05, n = 7). CONCLUSIONS Dual wavelength oximetry can be used to non-invasively measure retinal vessel oxygen saturation in health and disease. The results indicate that retinal vessel oxygen saturation is (1) increased in the dark, (2) lower in venules affected by central retinal vein occlusions, (3) variable in branch retinal vein occlusion, (4) lower in retinal arterioles in central retinal artery occlusion, (5) increased in diabetic retinopathy, (6-7) mildly affected by glaucoma surgery or dorzolamide.
Collapse
|
3
|
Krizaj D, Mercer AJ, Thoreson WB, Barabas P. Intracellular pH modulates inner segment calcium homeostasis in vertebrate photoreceptors. Am J Physiol Cell Physiol 2010; 300:C187-97. [PMID: 20881233 DOI: 10.1152/ajpcell.00264.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal metabolic and electrical activity is associated with shifts in intracellular pH (pH(i)) proton activity and state-dependent changes in activation of signaling pathways in the plasma membrane, cytosol, and intracellular compartments. We investigated interactions between two intracellular messenger ions, protons and calcium (Ca²(+)), in salamander photoreceptor inner segments loaded with Ca²(+) and pH indicator dyes. Resting cytosolic pH in rods and cones in HEPES-based saline was acidified by ∼0.4 pH units with respect to pH of the superfusing saline (pH = 7.6), indicating that dissociated inner segments experience continuous acid loading. Cytosolic alkalinization with ammonium chloride (NH₄Cl) depolarized photoreceptors and stimulated Ca²(+) release from internal stores, yet paradoxically also evoked dose-dependent, reversible decreases in [Ca²(+)](i). Alkalinization-evoked [Ca²(+)](i) decreases were independent of voltage-operated and store-operated Ca²(+) entry, plasma membrane Ca²(+) extrusion, and Ca²(+) sequestration into internal stores. The [Ca²(+)](i)-suppressive effects of alkalinization were antagonized by the fast Ca²(+) buffer BAPTA, suggesting that pH(i) directly regulates Ca²(+) binding to internal anionic sites. In summary, this data suggest that endogenously produced protons continually modulate the membrane potential, release from Ca²(+) stores, and intracellular Ca²(+) buffering in rod and cone inner segments.
Collapse
Affiliation(s)
- David Krizaj
- Department of Ophthalmology, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, 84132, USA.
| | | | | | | |
Collapse
|
4
|
Szikra T, Krizaj D. Intracellular organelles and calcium homeostasis in rods and cones. Vis Neurosci 2007; 24:733-43. [PMID: 17986362 PMCID: PMC3038346 DOI: 10.1017/s0952523807070587] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/17/2007] [Indexed: 11/05/2022]
Abstract
The role of intracellular organelles in Ca2+ homeostasis was studied in salamander rod and cone photoreceptors under conditions that simulate photoreceptor activation by darkness and light. Sustained depolarization evoked a Ca2+ gradient between the cell body and ellipsoid regions of the inner segment (IS). The standing pattern of calcium fluxes was created by interactions between the plasma membrane, endoplasmic reticulum (ER), and mitochondria. Pharmacological experiments suggested that mitochondria modulate both baseline [Ca2+]i in hyperpolarized cells as well as kinetics of Ca2+ entry via L type Ca2+ channels in cell bodies and ellipsoids of depolarized rods and cones. Inhibition of mitochondrial Ca2+ sequestration by antimycin/oligomycin caused a three-fold reduction in the amount of Ca2+ accumulated into intracellular organelles in both cell bodies and ellipsoids. A further 50% decrease in intracellular Ca2+ content within cell bodies, but not ellipsoids, was observed after suppression of SERCA-mediated Ca2+ uptake into the ER. Inhibition of Ca2+ sequestration into the endoplasmic reticulum by thapsigargin or cyclopiazonic acid decreased the magnitude and kinetics of depolarization-evoked Ca2+ signals in cell bodies of rods and cones and decreased the amount of Ca2+ accumulated into internal stores. These results suggest that steady-state [Ca2+]i in photoreceptors is regulated in a region-specific manner, with the ER contribution predominant in the cell body and mitochondrial buffering [Ca2+] the ellipsoid. Local [Ca2+]i levels are set by interactions between the plasma membrane Ca2+ channels and transporters, ER and mitochondria. Mitochondria are likely to play an essential role in temporal and spatial buffering of photoreceptor Ca2+.
Collapse
Affiliation(s)
- Tamas Szikra
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, California, USA
| | | |
Collapse
|
5
|
The interrelated effects of body size and choroid rete development on the ocular O2 partial pressure of Atlantic (Gadus morhua) and Greenland cod (Gadus ogac). Polar Biol 2004. [DOI: 10.1007/s00300-004-0657-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Blair NP, Liu T, Warren KA, Glaser DA, Kennedy M, Tran H, Larson CA, Atluri P, Saidel MA, Blair MP. Ocular oxygen consumption: estimates using vitreoperfusion in the cat. Retina 2004; 24:120-31. [PMID: 15076953 DOI: 10.1097/00006982-200402000-00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Little is known about the ocular oxygen consumption rate (QO2) in human diseases. Alterations in QO2 must occur in many conditions, such as retinal ischemia. We present a method of estimating QO2 that eventually could be used in patients during vitrectomy surgery. METHODS We performed vitreoperfusion (i.e., perfusion of the vitreous cavity after vitrectomy) in 14 cat eyes with no ocular blood flow. The solution contained nutrients at a high partial pressure of oxygen (PO2). In eight eyes, the retinas were undisturbed (Group 1), and in six eyes, we excised the retinas (Group 2). We estimated QO2 in both groups on the basis of the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. RESULTS The mean and standard deviation of QO2 was 3.2 +/- 0.8 microL/min in Group 1 and 0.4+/- 0.7 microL/min in Group 2, with the difference being the retinal contribution, 88%. In Group 1, metabolism, bulk flow, and diffusion accounted for 82, 13, and 5%, respectively, of the oxygen loss from the vitreoperfusion solution. CONCLUSION We estimated ocular oxygen consumption by means of vitreoperfusion. Eventually, the pathophysiology of human diseases may be clarified by similar measurements during vitrectomy.
Collapse
Affiliation(s)
- Norman P Blair
- Laboratory of Retinal Circulation and Metabolism, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, 2855 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Winkler BS, Pourcho RG, Starnes C, Slocum J, Slocum N. Metabolic mapping in mammalian retina: a biochemical and 3H-2-deoxyglucose autoradiographic study. Exp Eye Res 2003; 77:327-37. [PMID: 12907165 DOI: 10.1016/s0014-4835(03)00147-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has long been known that mammalian retinas metabolize glucose aerobically to lactic acid and carbon dioxide. The classical view holds that glucose is the primary substrate for energy metabolism in all retinal cells, and that photoreceptor cells have the highest rates of glycolysis and respiration. A different and more recent view is that the Müller cells are the principal, if not sole aerobic producers of lactate, which then serves as the primary fuel for the mitochondria in photoreceptor cells and other retinal neurons. In this paper, we have examined these two competing hypotheses in rat and guinea pig retinas by identifying the cellular sites of glucose uptake and phosphorylation via hexokinase by means of autoradiographic studies with 3H-2-deoxyglucose (3H-2DG). The rat retina serves as a vascular model and the guinea pig retina serves as an avascular model. Rat and guinea pig eyecups were incubated in oxygenated, bicarbonate-buffered media containing glucose in the presence of labeled and unlabeled 2DG. Biochemical measurements of lactate production and ATP content were made on rat retinas incubated with different concentrations of glucose and 2DG in order to establish the optimal condition for conducting the autoradiographic studies with 3H-2DG. The optimal substrate concentrations were 1mM glucose and 0.25 mM 2DG. Results showed that following incubation of dark-adapted rat eyecups for 1 hr in media containing 1mM glucose/0.25 mM 2DG and supplemented with 3H-2DG, the label was distributed throughout all the layers of the retina, from the ganglion cell layer to the retinal pigment epithelium, with denser label associated with the outer retina (photoreceptors) relative to the density of label in the inner retina, as evaluated by counts of silver grains in individual retinal layers. Exposure of rat eyecups to light did not alter the relative distribution of label, but did increase total grain counts by 70%. However, uptake of labeled 2DG, as measured by scintillation counting of radioactivity in trichloroacetic acid extracts, was not significantly different between light- and dark-adapted rat retinas. In guinea pig eyecups, labeled 2DG was distributed throughout all the retinal layers. Addition of 10mM lactate or pyruvate to the glucose/2DG media produced no measurable change in the density or distribution of label in the eyecups. Measurements of the activity of hexokinase in rat retinas revealed that this enzyme was present in both the mitochondrial and cytosolic fractions. The present results suggest that as long as the availability of ambient glucose is adequate, retinal neurons use glucose, rather than glial-derived lactate, as the major substrate for the production of high energy phosphates.
Collapse
Affiliation(s)
- Barry S Winkler
- Eye Research Institute, Oakland University, 406 Dodge Hall, Rochester, MI 48309, USA.
| | | | | | | | | |
Collapse
|
8
|
Twig G, Malchow RP, Hammar K, Smith PJS, Levy H, Perlman I. A novel turtle retinal preparation for simultaneously measuring light-induced electrical activity and changes in metabolite levels. THE BIOLOGICAL BULLETIN 2002; 203:198-200. [PMID: 12414576 DOI: 10.2307/1543395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Gilad Twig
- Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Krizaj D, Copenhagen DR. Calcium regulation in photoreceptors. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2002; 7:d2023-44. [PMID: 12161344 PMCID: PMC1995662 DOI: 10.2741/a896] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review we describe some of the remarkable and intricate mechanisms through which the calcium ion (Ca2+) contributes to detection, transduction and synaptic transfer of light stimuli in rod and cone photoreceptors. The function of Ca2+ is highly compartmentalized. In the outer segment, Ca2+ controls photoreceptor light adaptation by independently adjusting the gain of phototransduction at several stages in the transduction chain. In the inner segment and synaptic terminal, Ca2+ regulates cells' metabolism, glutamate release, cytoskeletal dynamics, gene expression and cell death. We discuss the mechanisms of Ca2+ entry, buffering, sequestration, release from internal stores and Ca2+ extrusion from both outer and inner segments, showing that these two compartments have little in common with respect to Ca2+ homeostasis. We also investigate the various roles played by Ca2+ as an integrator of intracellular signaling pathways, and emphasize the central role played by Ca2+ as a second messenger in neuromodulation of photoreceptor signaling by extracellular ligands such as dopamine, adenosine and somatostatin. Finally, we review the intimate link between dysfunction in photoreceptor Ca2+ homeostasis and pathologies leading to retinal dysfunction and blindness.
Collapse
Affiliation(s)
- David Krizaj
- Dept of Physiology, University of California San Francisco School of Medicine, San Francisco, CA 94143-0730, USA.
| | | |
Collapse
|
10
|
Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 2001; 20:175-208. [PMID: 11173251 DOI: 10.1016/s1350-9462(00)00027-6] [Citation(s) in RCA: 435] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maintenance of an adequate oxygen supply to the retina is critical for retinal function. In species with vascularised retinas, such as man, oxygen is delivered to the retina via a combination of the choroidal vascular bed, which lies immediately behind the retina, and the retinal vasculature, which lies within the inner retina. The high-oxygen demands of the retina, and the relatively sparse nature of the retinal vasculature, are thought to contribute to the particular vulnerability of the retina to vascular disease. A large proportion of retinal blindness is associated with diseases having a vascular component, and disrupted oxygen supply to the retina is likely to be a critical factor. Much attention has therefore been directed at determining the intraretinal oxygen environment in healthy and diseased eyes. Measurements of oxygen levels within the retina have largely been restricted to animal studies in which oxygen sensitive microelectrodes can be used to obtain high-resolution measurements of oxygen tension as a function of retinal depth. Such measurements can immediately identify which retinal layers are supplied with oxygen from the different vascular elements. Additionally, in the outer retinal layers, which do not have any intrinsic oxygen sources, the oxygen distribution can be analysed mathematically to quantify the oxygen consumption rate of specific retinal layers. This has revealed a remarkable heterogeneity of oxygen requirements of different components of the outer retina, with the inner segments of the photoreceptors being the dominant oxygen consumers. Since the presence of the retinal vasculature precludes such a simple quantitative analysis of local oxygen consumption within the inner retina, our understanding of the oxygen needs of the inner retinal components is much less complete. Although several lines of evidence suggest that in the more commonly studied species such as cat, pig, and rat, the oxygen demands of the inner retina as a whole is broadly comparable to that of the outer retina, exactly which cell layers within the inner retina have the most stringent oxygen demands is not known. This may be a critical issue if the cell types most at risk from disrupted oxygen supply are to be identified. This paper reviews our current understanding of the oxygen requirements of the inner and outer retina and presents new data and mathematical models which identify three dominant oxygen-consuming layers in the rat retina. These are the inner segments of the photoreceptors, the outer plexiform layer, and the deeper region of the inner plexiform layer. We also address the intriguing question of how the oxygen requirements of the inner retina are met in those species which naturally have a poorly vascularised, or even totally avascular retina. We present measurements of the intraretinal oxygen distribution in two species of laboratory animal possessing such retinas, the rabbit and the guinea pig. The rabbit has a predominantly avascular retina, with only a narrow band of retinal vasculature, and the guinea pig retina is completely avascular. Both these animals demonstrate species adaptations in which the oxygen requirement of their inner retinas are extremely low when compared to that of their outer retinas. This finding both uncovers a remarkable ability of the inner retina in avascular species to function in a low-oxygen environment, and also highlights the dangers of extrapolating findings from avascular retinas to infer metabolic requirements of vascularised retinas. Different species also demonstrate a marked diversity in the manner in which intraretinal oxygen distribution is influenced by increases in systemic oxygen level. In the vascularised rat retina, the inner retinal oxygen increase is muted by a combination of increased oxygen consumption and a reduction of net oxygen delivery from the retinal circulation. The avascular retina of the guinea pig demonstrated a novel and powerful regulatory mechanism that prevents any dramatic rise in choroidal oxygen levels and keeps retinal oxygen levels within the normal physiological range. In contrast, in the avascular regions of the rabbit retina the choroidal oxygen level passively follows the increase in systemic oxygenation, and there is a dramatic rise in oxygen level in all retinal layers. The presence or absence of oxygen-regulating mechanisms may well reflect important survival strategies for the retina which are not yet understood. Intraretinal oxygen measurements in rat models of retinal disease are also presented. We describe how oxygen distribution across the rat retina is influenced by manipulation of systemic blood pressure. We examine the effect of acute and chronic occlusion of the retinal vasculature, and explore the feasibility of meeting the oxygen needs of the ischemic retina from the choroid. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- D Y Yu
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, 2 Verdun Street, WA 6009, Nedlands, Australia.
| | | |
Collapse
|
11
|
Abstract
Transient changes in retinal oxygen in response to light stimuli were studied to further understand the light-evoked change in oxygen consumption. Double-barreled microelectrodes, which measured oxygen and local voltage simultaneously, were positioned near the photoreceptor inner segments of the toad neural retina-retinal pigment epithelium-choroid preparation. Light-evoked oxygen responses were measured in a normal [Na+] solution, and in a test solution with lowered extracellular [Na+] to inhibit Na+/K+ pumping. Under the normal [Na+] condition, retinal oxygen tension increased in response to light indicating that oxygen utilization had decreased. When the Na+ concentration was lowered in the retina, the oxygen tension decreased in response to light, indicating an increase in oxygen utilization which was smaller than the Na+/K+ pump effect and therefore masked under normal conditions. The increase in oxygen utilization in lowered [Na+] was suppressed by adding 0.7 mM 3-isobutyl-1-methyl-xanthine, a phosphodiesterase inhibitor, suggesting that the response was largely due to hydrolysis and subsequent resynthesis of cyclic GMP. Results of fitting the light-evoked responses to exponential functions suggested that the decrease in oxygen consumption caused by slowing of the photoreceptor Na+/K+ ATPase had a time constant between 130 and 180 sec and that the increase in oxygen utilization from increased cyclic GMP synthesis was faster.
Collapse
Affiliation(s)
- L M Haugh-Scheidt
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|