1
|
Bundgaard L, Årman F, Åhrman E, Walters M, Auf dem Keller U, Malmström J, Jacobsen S. An Equine Protein Atlas Highlights Synovial Fluid Proteome Dynamics during Experimentally LPS-Induced Arthritis. J Proteome Res 2024; 23:4849-4863. [PMID: 39395021 DOI: 10.1021/acs.jproteome.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
In human proteomics, substantial efforts are ongoing to leverage large collections of mass spectrometry (MS) fragment ion spectra into extensive spectral libraries (SL) as a resource for data independent acquisition (DIA) analysis. Currently, such initiatives in equine research are still missing. Here we present a large-scale equine SL, comprising 6394 canonical proteins and 89,329 unique peptides, based on data dependent acquisition analysis of 75 tissue and body fluid samples from horses. The SL enabled large-scale DIA-MS based quantification of the same samples to generate a quantitative equine protein distribution atlas to infer dominant proteins in different organs and body fluids. Data mining revealed 163 proteins uniquely identified in a specific type of tissue or body fluid, serving as a starting point to determine tissue-specific or tissue-type-specific proteins. We showcase the SL by highlighting proteome dynamics in equine synovial fluid samples during experimental lipopolysaccharide-induced arthritis. A fuzzy c-means cluster analysis pinpointed SERPINB1, ATRN, NGAL, LTF, MMP1, and LBP as putative biomarkers for joint inflammation. This SL provides an extendable resource for future equine studies employing DIA-MS.
Collapse
Affiliation(s)
- Louise Bundgaard
- Section of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filip Årman
- Division of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Emma Åhrman
- Division of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Marie Walters
- Section of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Johan Malmström
- Division of Infection Medicine Proteomics, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Stine Jacobsen
- Section of Medicine and Surgery, Department of Veterinary Clinical Sciences, University of Copenhagen, 2630 Taastrup, Denmark
| |
Collapse
|
2
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Carminati L, Carlessi E, Longhi E, Taraboletti G. Controlled extracellular proteolysis of thrombospondins. Matrix Biol 2023; 119:82-100. [PMID: 37003348 DOI: 10.1016/j.matbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Limited proteolysis of thrombospondins is a powerful mechanism to ensure dynamic tuning of their activities in the extracellular space. Thrombospondins are multifunctional matricellular proteins composed of multiple domains, each with a specific pattern of interactions with cell receptors, matrix components and soluble factors (growth factors, cytokines and proteases), thus with different effects on cell behavior and responses to changes in the microenvironment. Therefore, the proteolytic degradation of thrombospondins has multiple functional consequences, reflecting the local release of active fragments and isolated domains, exposure or disruption of active sequences, altered protein location, and changes in the composition and function of TSP-based pericellular interaction networks. In this review current data from the literature and databases is employed to provide an overview of cleavage of mammalian thrombospondins by different proteases. The roles of the fragments generated in specific pathological settings, with particular focus on cancer and the tumor microenvironment, are discussed.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy.
| |
Collapse
|
4
|
Zhang C, Gawri R, Lau YK, Spruce LA, Fazelinia H, Jiang Z, Jo SY, Scanzello CR, Mai W, Dodge GR, Casal ML, Smith LJ. Proteomics identifies novel biomarkers of synovial joint disease in a canine model of mucopolysaccharidosis I. Mol Genet Metab 2023; 138:107371. [PMID: 36709534 PMCID: PMC9918716 DOI: 10.1016/j.ymgme.2023.107371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Rahul Gawri
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Hossein Fazelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Zhirui Jiang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Stephanie Y Jo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Carla R Scanzello
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104, USA
| | - Wilfried Mai
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Dreiner M, Munk T, Zaucke F, Liphardt AM, Niehoff A. Relationship between different serum cartilage biomarkers in the acute response to running and jumping in healthy male individuals. Sci Rep 2022; 12:6434. [PMID: 35440750 PMCID: PMC9018733 DOI: 10.1038/s41598-022-10310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The effect of physical activity on serum cartilage biomarkers is largely unknown. The purpose of the study was to systematically analyze the acute effect of two frequently used exercise interventions (running and jumping) on the correlation of seven serum biomarkers that reflect cartilage extracellular matrix metabolism. Fifteen healthy male volunteers (26 ± 4 years, 181 ± 4 cm, 77 ± 6 kg) participated in the repeated measurement study. In session 1, the participants accomplished 15 × 15 series of reactive jumps within 30 min. In session 2, they ran on a treadmill (2.2 m/s) for 30 min. Before and after both exercise protocols, four blood samples were drawn separated by 30 min intervals. Serum concentrations of seven biomarkers were determined: COMP, MMP-3, MMP-9, YKL-40, resistin, Coll2-1 and Coll2-1 NO2. All biomarkers demonstrated an acute response to mechanical loading. Both the COMP and MMP-3 responses were significantly (p = 0.040 and p = 0.007) different between running and jumping (COMP: jumping + 31%, running + 37%; MMP-3: jumping + 14%, running + 78%). Resistin increased only significantly (p < 0.001) after running, and Coll2-1 NO2 increased significantly (p = 0.001) only after jumping. Significant correlations between the biomarkers were detected. The relationships between individual serum biomarker concentrations may reflect the complex interactions between degrading enzymes and their substrates in ECM homeostasis.
Collapse
Affiliation(s)
- Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Tobias Munk
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopaedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany. .,Faculty of Medicine, Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Endrinaldi E, Ali H, Tofrizal T, Asterina A, Elmatris E, Yarni SD. Optimization of the Duration of the Administration of Mesenchymal Stem Cells Wharton’s Jelly to the Level of Matrix Metalloproteinase-1 and Transforming Growth Factor-β in Osteoarthritis Rat Model. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Mesenchymal Stem Cell Wharton’s Jelly (MSC-WJ) is promising candidates for osteoarthritis (OA) therapy since they have chondrogenic potential and the ability to form the extracellular matrix.
AIM: This study aimed to determine the effect of the time giving MSC-WJ on bioactive markers of osteoarthritis.
METHODS: The osteoarthritis rat model was treated by intra-articular injection with MSC-WJ and α _MEM as a control. Four and 8 weeks later performed a histological analysis of cartilage and the determination of the levels of Matrix Metalloproteinase-1(MMP-1) and Transforming growth factor β1 (TGF-β1) in serum by ELISA.
RESULTS: The results showed that administration of MSC-WJ showed improvement in the histological picture of knee joints in experimental animals characterized by an increase in cartilage thickness on the joint surface. The administration of MSC-WJ showed a tendency to decrease MMP-1 serum levels of OA rats treated for 8 weeks, although statistically did not show a significant difference. Whereas, administration of MSC-WJ showed a decrease in serum levels of TGF-β1 OA rat treated for 8 weeks.
CONCLUSION: MSC-WJ can repair damaged knee OA cartilage tissue. The administration of MSC-WJ can reduce serum levels of TGF-β1 OA rats treated for 8 weeks.
Collapse
|
7
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
8
|
Geng X, Chen C, Huang Y, Hou J. The prognostic value and potential mechanism of Matrix Metalloproteinases among Prostate Cancer. Int J Med Sci 2020; 17:1550-1560. [PMID: 32669958 PMCID: PMC7359399 DOI: 10.7150/ijms.46780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Matrix Metalloproteinases (MMPs) play an indispensable role in the initial alteration and development of PCa. We tried to generate an MMP-related prognostic signature (MMPS) in prostate cancer (PCa). Methods: TCGA-PRAD, MSKCC/GSE21032, GSE116918, GSE70769 cohorts were enrolled to assess the prognostic value of MMPs. The least absolute shrinkage and selection operator (LASSO) Cox regression was employed to generate the MMPS signature. The log-rank test and Kaplan-Meier (K-M) survival curve were applied to show the difference RFS, The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) was plotted to predict the accuracy of signature. CIBERSORT was conducted to analyze the different immune infiltration in MMPS-H and MMPS-L groups. Potential signaling pathways activated in the MMPS-H groups by Metascape. Results: MMP1, MMP7, MMP11, MMP24 and MMP26 were selected by LASSO regression and established the MMPS predict signature. The MMPS showed the high prognostic value in TCGA-PRAD training cohort (AUC=0.714) and validation cohorts (GSE116918: AUC=0.976, GSE70769: AUC=0.738, MSKCC: AUC=0.793). Pid integrin1 pathway, G2M checkpoint, and response to growth factor signaling pathways were activated in MMPS-H group, patients with the high MMPS risk score and low M2 macrophage showed the worst recurrence-free survival (RFS). Conclusion: MMPs involved and played an essential role in the tumorigenesis and biochemical recurrence in PCa patients. The MMPS signature could accurately predict the recurrence of PCa patients and validated in several cohorts.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Disease-Free Survival
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Kaplan-Meier Estimate
- Male
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 11/genetics
- Matrix Metalloproteinase 11/metabolism
- Matrix Metalloproteinase 7/genetics
- Matrix Metalloproteinase 7/metabolism
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Matrix Metalloproteinases, Membrane-Associated/genetics
- Matrix Metalloproteinases, Membrane-Associated/metabolism
- Matrix Metalloproteinases, Secreted/genetics
- Matrix Metalloproteinases, Secreted/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- ROC Curve
Collapse
Affiliation(s)
| | | | | | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Endrinaldi E, Darwin E, Zubir N, Revilla G. The Effect of Mesenchymal Stem Cell Wharton's Jelly on Matrix Metalloproteinase-1 and Interleukin-4 Levels in Osteoarthritis Rat Model. Open Access Maced J Med Sci 2019; 7:529-535. [PMID: 30894907 PMCID: PMC6420948 DOI: 10.3889/oamjms.2019.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND: Osteoarthritis (OA) is generally considered a degenerative joint disease caused by biomechanical changes and the ageing process. In OA pathogenesis, the development of OA is thought to be regulated largely by excess matrix metalloproteinase (MMP), which contributes to the degradation of extracellular matrices such as MMP-1 and Interleukin-4. AIM: This study aims to prove the influence of Mesenchymal Stem Cell Wharton Jelly on decreasing MMP-1 levels and increasing IL-4 which is a specific target as a target component in cases of osteoarthritis in vivo. MATERIAL AND METHODS: This research is an experimental study with the design of Post-Test-Only Control Group Design. The sample consisted of 16 OA rats as a control group and 16 OA rats treated with MSC-WJ as a treatment group. OA induction is done by injection of monosodium iodoacetate (MIA) into the intra-articular right knee. Giving MSC-WJ is done in the third week after MIA induction. The serum MMP-1 and IL-4 levels were measured after 3 weeks treated with MSC-WJ using the ELISA method. The statistical test used is an independent t-test. The value of p < 0.05 was said to be statistically significant. RESULTS: The result showed that serum MMP-1 levels were higher in the group treated with MSC-WJ than in the control group (p < 0.05). Serum IL-4 levels were higher in the group treated with MSC-WJ than in the control group (p < 0.05). CONCLUSION: This study concluded that MSC-WJ increased MMP-1 levels and IL-4 levels in serum OA rats. MSC-WJ showed a negative effect on MMP-1 in the serum of OA rats.
Collapse
Affiliation(s)
- Endrinaldi Endrinaldi
- Postgraduate Biomedical Science, Faculty of Medicine, Andalas University, Padang, Indonesia.,Department of Chemistry, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Eryati Darwin
- Department of Histology, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Nasrul Zubir
- Department of Internal Medicine, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Gusti Revilla
- Department of Anatomy, Faculty of Medicine, Andalas University, Padang, Indonesia
| |
Collapse
|
10
|
Posey KL, Coustry F, Hecht JT. Cartilage oligomeric matrix protein: COMPopathies and beyond. Matrix Biol 2018; 71-72:161-173. [PMID: 29530484 PMCID: PMC6129439 DOI: 10.1016/j.matbio.2018.02.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large pentameric glycoprotein that interacts with multiple extracellular matrix proteins in cartilage and other tissues. While, COMP is known to play a role in collagen secretion and fibrillogenesis, chondrocyte proliferation and mechanical strength of tendons, the complete range of COMP functions remains to be defined. COMPopathies describe pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), two skeletal dysplasias caused by autosomal dominant COMP mutations. The majority of the mutations are in the calcium binding domains and compromise protein folding. COMPopathies are ER storage disorders in which the retention of COMP in the chondrocyte ER stimulates overwhelming cellular stress. The retention causes oxidative and inflammation processes leading to chondrocyte death and loss of long bone growth. In contrast, dysregulation of wild-type COMP expression is found in numerous diseases including: fibrosis, cardiomyopathy and breast and prostate cancers. The most exciting clinical application is the use of COMP as a biomarker for idiopathic pulmonary fibrosis and cartilage degeneration associated osteoarthritis and rheumatoid and, as a prognostic marker for joint injury. The ever expanding roles of COMP in single gene disorders and multifactorial diseases will lead to a better understanding of its functions in ECM and tissue homeostasis towards the goal of developing new therapeutic avenues.
Collapse
Affiliation(s)
- Karen L Posey
- McGovern Medical School, UTHealth, Department of Pediatrics, United States.
| | - Francoise Coustry
- McGovern Medical School, UTHealth, Department of Pediatrics, United States
| | - Jacqueline T Hecht
- McGovern Medical School, UTHealth, Department of Pediatrics, United States; UTHealth, School of Dentistry, United States
| |
Collapse
|
11
|
Chang ZK, Meng FG, Zhang ZQ, Mao GP, Huang ZY, Liao WM, He AS. MicroRNA-193b-3p regulates matrix metalloproteinase 19 expression in interleukin-1β-induced human chondrocytes. J Cell Biochem 2018; 119:4775-4782. [PMID: 29323744 DOI: 10.1002/jcb.26669] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Abstract
Micro(mi)RNAs are small, non-coding RNA molecules known to play a significant role in osteoarthritis (OA) initiation and development, and similar to matrix metalloproteinases (MMPs), they participate in cartilage degeneration and cleave multiple extracellular matrices. The aim of this study was to determine whether the expression of MMP-19 in interleukin (IL)-1β-induced human chondrocytes is directly regulated by miR-193b-3p. Expression levels of miR-193b-3p and MMP-19 in normal and osteoarthritis (OA) human cartilage, and interleukin-1 β (IL-1β)-induced human chondrocytes were determined by real-time polymerase chain reaction. Additionally, expression level of MMP-19 in IL-1β-induced human chondrocytes was estimated by Western blotting and immunohistochemistry analyses. The effect of miR-193b-3p on MMP-19 expression was evaluated using transient transfection of normal human chondrocytes with miR-193b-3p mimic or its antisense inhibitor (miR-193b-3p inhibitor), and siMMP-19. The putative binding site of miR-193b-3p in the 3'-untranslated region (UTR) of MMP-19 mRNA was validated by luciferase reporter assay. miR-193b-3p expression was reduced in OA cartilage compared to that in normal chondrocytes, while the opposite was observed for MMP-19. Upregulation of MMP-19 expression was correlated with downregulation of miR-193b-3p in IL-1β-stimulated normal chondrocytes. Increase in miR-193b-3p levels was associated with silencing of MMP-19. Overexpression of miR-193b-3p suppressed the activity of the reporter construct containing the 3'-UTR of human MMP-19 mRNA and inhibited the IL-1β-induced expression of MMP-19 and iNOS in chondrocytes, while treatment with miR-193b-3p inhibitor enhanced MMP-19 expression. MiR-193b-3p is an important regulator of MMP-19 in human chondrocytes and may relieve the inflammatory response in OA.
Collapse
Affiliation(s)
- Zong-Kun Chang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan-Gang Meng
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Qi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gu-Ping Mao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Yu Huang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Ming Liao
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ai-Shan He
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Velinov N, Aebersold D, Haeni N, Hlushchuk R, Weinstein F, Sedlacek R, Djonov V. Matrix Metalloproteinase-19 is a Predictive Marker for Tumor Invasiveness in Patients with Oropharyngeal Squamous Cell Carcinoma. Int J Biol Markers 2018. [DOI: 10.1177/172460080702200405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims To evaluate the expression of matrix metalloproteinase-19 (MMP-19) in oropharyngeal squamous cell carcinoma along with its association with structural features of invasiveness. To investigate whether MMP-19 expression correlates with lymphatic or systemic metastasis and prognosis in patients who have received definitive radiotherapy. Methods and results The histological evaluation of the invasive front was based on Bryne's malignancy grading system. We correlated the immunohistochemical expression pattern with morphological parameters which characterize tumor invasiveness such as keratinization, nuclear polymorphism, invasion pattern, and the host inflammatory response. Local immunoreactivity for MMP-19 was positively correlated with tumor invasiveness as reflected in its structural characteristics and the degree of nuclear polymorphism, and negatively correlated with the inflammatory response of the host. No correlation existed between MMP-19 expression and clinicopathological features (TNM stage, grade of differentiation) or a patient's outcome and prognosis. Conclusions This latter finding probably reflects the unique change for MMPs from high immunoreactivity within healthy tissue areas and non-invasive tumor parts, through absence in the least invasive neoplastic regions, to strong re-expression at a highly invasive front of the same tumor. Our findings indicate that MMP-19 can be used as a marker for tumor invasiveness in patients with oropharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- N. Velinov
- Institute of Anatomy, University of Bern, Bern
| | - D. Aebersold
- Department of Radiation Oncology, University of Bern, Inselspital, Bern - Switzerland
- The contribution of both authors was equivalent
| | - N. Haeni
- Institute of Anatomy, University of Bern, Bern
- The contribution of both authors was equivalent
| | - R. Hlushchuk
- Institute of Anatomy, University of Bern, Bern
- Institute of Anatomy, University of Fribourg, Fribourg - Switzerland
| | | | - R. Sedlacek
- Institute of Biochemistry, University of Kiel, Kiel - Germany
| | - V. Djonov
- Institute of Anatomy, University of Bern, Bern
- Institute of Anatomy, University of Fribourg, Fribourg - Switzerland
| |
Collapse
|
13
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Lorenzo P, Aspberg A, Saxne T, Önnerfjord P. Quantification of cartilage oligomeric matrix protein (COMP) and a COMP neoepitope in synovial fluid of patients with different joint disorders by novel automated assays. Osteoarthritis Cartilage 2017; 25:1436-1442. [PMID: 28473207 DOI: 10.1016/j.joca.2017.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/13/2017] [Accepted: 04/22/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop automated immunoassays for the quantification of Cartilage Oligomeric Matrix Protein (COMP) and a COMP neoepitope in synovial fluid and to investigate their diagnostic potential in different joint conditions. METHODS Two sandwich immunoassays were developed for the quantification of COMP and a COMP neoepitope, using an automated analyser (IDS-iSYS, Immunodiagnostic Systems, Boldon, UK). Assay performance was evaluated in terms of sensitivity, recovery, linearity, and intra- and inter-assay precision. Clinical performance was evaluated by analysing synovial fluid from patients diagnosed with rheumatoid arthritis (RA), reactive arthritis (ReA), osteoarthritis (OA) or acute trauma (AT). RESULTS Both automated assays showed good performance for all parameters tested. Quantification of these biomarkers showed the highest median values for Total COMP in the OA group, followed by the AT group, the ReA group, and the RA group. For the COMP neoepitope the AT group showed the highest median value, followed by the ReA group, the OA group, and the RA group. The ratio COMP neoepitope/Total COMP showed distinct differences between the patients groups, as well as between RA patients with slow or rapid progression of joint damage. CONCLUSIONS The newly developed automated assays have a good technical performance, can reliably quantify different epitopes on the COMP molecule and show different levels of the two biomarkers in synovial fluid in patients with different joint diseases. The combination of these two assays, measuring their ratio, shows promise for early detection of patients with RA with different prognosis regarding progression of joint damage.
Collapse
Affiliation(s)
- P Lorenzo
- Lund University, Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, BMC-C12, 22184 Lund, Sweden.
| | - A Aspberg
- Lund University, Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, BMC-C12, 22184 Lund, Sweden.
| | - T Saxne
- Lund University, Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, BMC-C12, 22184 Lund, Sweden.
| | - P Önnerfjord
- Lund University, Department of Clinical Sciences Lund, Section for Rheumatology and Molecular Skeletal Biology, BMC-C12, 22184 Lund, Sweden.
| |
Collapse
|
15
|
Biochemical and Biological Attributes of Matrix Metalloproteinases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:1-73. [PMID: 28413025 DOI: 10.1016/bs.pmbts.2017.02.005] [Citation(s) in RCA: 739] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are involved in the degradation of various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation of their latent zymogen form. MMPs are often secreted as inactive pro-MMP form which is cleaved to the active form by various proteinases including other MMPs. MMPs cause degradation of ECM proteins such as collagen and elastin, but could influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in tissue remodeling during various physiological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair, as well as in pathological conditions such as myocardial infarction, fibrotic disorders, osteoarthritis, and cancer. Increases in specific MMPs could play a role in arterial remodeling, aneurysm formation, venous dilation, and lower extremity venous disorders. MMPs also play a major role in leukocyte infiltration and tissue inflammation. MMPs have been detected in cancer, and elevated MMP levels have been associated with tumor progression and invasiveness. MMPs can be regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs have been proposed as biomarkers for numerous pathological conditions and are being examined as potential therapeutic targets in various cardiovascular and musculoskeletal disorders as well as cancer.
Collapse
|
16
|
Timmons BC, Mahendroo M. Processes Regulating Cervical Ripening Differ From Cervical Dilation and Postpartum Repair: Insights From Gene Expression Studies. Reprod Sci 2016; 14:53-62. [DOI: 10.1177/1933719107309587] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Brenda C. Timmons
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas,
| |
Collapse
|
17
|
Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ. Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. J Cell Physiol 2016; 231:2599-621. [DOI: 10.1002/jcp.25430] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Amit P. Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Luca H. Debs
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Desiree Nguyen
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Kunal Patel
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - M'hamed Grati
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Denise Yan
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
| | - Prem Chapagain
- Department of Physics; Florida International University; Miami Florida
- Biomolecular Science Institute; Florida International University; Miami Florida
| | - Xue Zhong Liu
- Department of Otolaryngology; University of Miami Miller School of Medicine; Miami Florida
- Department of Biochemistry; University of Miami Miller School of Medicine; Miami Florida
| |
Collapse
|
18
|
Brauer R, Tureckova J, Kanchev I, Khoylou M, Skarda J, Prochazka J, Spoutil F, Beck IM, Zbodakova O, Kasparek P, Korinek V, Chalupsky K, Karhu T, Herzig KH, Hajduch M, Gregor M, Sedlacek R. MMP-19 deficiency causes aggravation of colitis due to defects in innate immune cell function. Mucosal Immunol 2016; 9:974-85. [PMID: 26555704 DOI: 10.1038/mi.2015.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/29/2015] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are potential biomarkers for disease activity in inflammatory bowel disease (IBD). However, clinical trials targeting MMPs have not succeeded, likely due to poor understanding of the biological functions of individual MMPs. Here, we explore the role of MMP-19 in IBD pathology. Using a DSS-induced model of colitis, we show evidence for increased susceptibility of Mmp-19-deficient (Mmp-19(-/-)) mice to colitis. Absence of MMP-19 leads to significant disease progression, with reduced survival rates, severe tissue destruction, and elevated levels of pro-inflammatory modulators in the colon and plasma, and failure to resolve inflammation. There was a striking delay in neutrophil infiltration into the colon of Mmp-19(-/-) mice during the acute colitis, leading to persistent inflammation and poor recovery; this was rescued by reconstitution of irradiated Mmp-19(-/-) mice with wild-type bone marrow. Additionally, Mmp-19-deficient macrophages exhibited decreased migration in vivo and in vitro and the mucosal barrier appeared compromised. Finally, chemokine fractalkine (CX3CL1) was identified as a novel substrate of MMP-19, suggesting a link between insufficient processing of CX3CL1 and cell recruitment in the Mmp-19(-/-) mice. MMP-19 proves to be a critical factor in balanced host response to colonic pathogens, and for orchestrating appropriate innate immune response in colitis.
Collapse
Affiliation(s)
- R Brauer
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic.,Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - J Tureckova
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - I Kanchev
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - M Khoylou
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - J Skarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - J Prochazka
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - F Spoutil
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - I M Beck
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - O Zbodakova
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - P Kasparek
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic.,Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - V Korinek
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - K Chalupsky
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| | - T Karhu
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - K-H Herzig
- Institute of Biomedicine and Biocenter of Oulu, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - M Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - M Gregor
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, Laboratory of Integrative Biology, Prague, Czech Republic
| | - R Sedlacek
- Institute of Molecular Genetics of the ASCR, Laboratory of Transgenic Models of Diseases, Prague, Czech Republic
| |
Collapse
|
19
|
Schultz HS, Guo L, Keller P, Fleetwood AJ, Sun M, Guo W, Ma C, Hamilton JA, Bjørkdahl O, Berchtold MW, Panina S. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis. Eur J Immunol 2016; 46:952-63. [PMID: 26786702 DOI: 10.1002/eji.201545986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/15/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023]
Abstract
Osteoclast-associated receptor (OSCAR) is an activating receptor expressed by human myeloid cells. Collagen type I (ColI) and collagen type II (ColII) serve as ligands for OSCAR. OSCAR-collagen interaction stimulates RANK-dependent osteoclastogenesis. We have recently reported that OSCAR promotes functional maturation of monocyte-derived dendritic cells. OSCAR is upregulated on monocytes from rheumatoid arthritis (RA) patients with active disease, and these monocytes show an increased proosteoclastogenic potential. In the current study, we have addressed a functional role for an OSCAR-collagen interaction on monocytes. We show that OSCAR-ColII signaling promoted the survival of monocytes. Moreover, ColII stimulated the release of proinflammatory cytokines by monocytes from healthy donors, which could be completely blocked by an anti-OSCAR monoclonal antibody. Mononuclear cells from the synovial fluid of RA patients plated on ColII secreted TNF-α and IL-8 in an OSCAR-dependent manner. Global RNA profiling showed that components of multiple signaling pathways relevant to RA pathogenesis are regulated at the transcriptional level by OSCAR in monocytes. Thus, OSCAR can play a proinflammatory role in monocyte-derived cells and may contribute crucially on multiple levels to RA pathogenesis.
Collapse
Affiliation(s)
- Heidi S Schultz
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark.,Department of Biology, Copenhagen University, Copenhagen, Denmark
| | - Li Guo
- Novo Nordisk Research Centre China CA, Beijing, China
| | - Pernille Keller
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - Andrew J Fleetwood
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Mingyi Sun
- Novo Nordisk Research Centre China CA, Beijing, China
| | - Wei Guo
- Novo Nordisk Research Centre China CA, Beijing, China
| | - Chunyan Ma
- Novo Nordisk Research Centre China CA, Beijing, China
| | - John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Olle Bjørkdahl
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | | | - Svetlana Panina
- Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
20
|
The Function and Roles of ADAMTS-7 in Inflammatory Diseases. Mediators Inflamm 2015; 2015:801546. [PMID: 26696755 PMCID: PMC4677222 DOI: 10.1155/2015/801546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS proteinases are a group of multidomain and secreted metalloproteinases containing the thrombospondin motifs. ADAMTS-7 is a member of ADAMTS family and plays a crucial role in the pathogenesis of arthritis. Overexpression of ADAMTS-7 gene promotes the breakdown of cartilage oligomeric matrix protein (COMP) matrix and accelerates the progression of both surgically induced osteoarthritis and collagen-induced arthritis. Moreover, ADAMTS-7 and tumor necrosis factor-α (TNF-α) form a positive feedback loop in osteoarthritis. More significantly, granulin-epithelin precursor, a growth factor has important roles in bone development and bone-associated diseases, disturbs the interaction between ADAMTS-7 and COMP, and prevents COMP degradation. This review is based on our results and provides an overview of current knowledge of ADAMTS-7, including its structure, function, gene regulation, and inflammatory diseases involvement.
Collapse
|
21
|
Wu X, Qi H, Yang Y, Yin Y, Ma D, Li H, Qu Y. Downregulation of matrix metalloproteinase‑19 induced by respiratory syncytial viral infection affects the interaction between epithelial cells and fibroblasts. Mol Med Rep 2015; 13:167-73. [PMID: 26548962 PMCID: PMC4686067 DOI: 10.3892/mmr.2015.4518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 10/05/2015] [Indexed: 12/03/2022] Open
Abstract
The present study was designed to examine the expression and function of matrix metalloproteinase-19 (MMP-19), which is downregulated following respiratory syncytial virus (RSV) infection. The diverse expression levels of MMP were examined using a designed cDNA expression array. The expression and secretion of MMP-19 was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and ELISA, respectively. The proliferation of epithelial cells and lung fibroblasts were examined using flow cytometry. The epithelial-mesenchymal transition (EMT) was also examined by performing western blot and RT-qPCR analyses. The results of the cDNA assay showed that infection with RSV resulted in the abnormal expression of certain metalloproteinases. Among these, the expression of MMP-19 decreased 3 and 7 days following infection. By using flow cytometric, western blot and RT-qPCR analyses, the present study demonstrated that the downregulation of MMP-19 inhibited the proliferation of epithelial cells, promoted the EMT and induced the proliferation of lung fibroblasts. Taken together, the findings of the present study suggested that the downregulation of MMP-19 following RSV infection may be associated with the development of airway hyper-responsiveness.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huijuan Qi
- Intensive Care Unit, The People's Hospital of Yucheng, Yucheng, Shandong 251200, P.R. China
| | - Yan Yang
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunhong Yin
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dedong Ma
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hao Li
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yiqing Qu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
23
|
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2014; 15:77-95. [DOI: 10.1586/14737159.2015.979158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Yoon H, Blaber SI, Li W, Scarisbrick IA, Blaber M. Activation profiles of human kallikrein-related peptidases by matrix metalloproteinases. Biol Chem 2014; 394:137-47. [PMID: 23241590 DOI: 10.1515/hsz-2012-0249] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/20/2012] [Indexed: 11/15/2022]
Abstract
The 15 human kallikrein-related peptidases (KLKs) are clinically important biomarkers and therapeutic targets of interest in inflammation, cancer, and neurodegenerative disease. KLKs are secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their amino-terminal pro-peptide, and this is a key step in their functional regulation. Physiologically relevant KLK regulatory cascades of activation have been described in skin desquamation and semen liquefaction, and work by a large number of investigators has elucidated pairwise and autolytic activation relationships among the KLKs with the potential for more extensive activation cascades. More recent work has asked whether functional intersection of KLKs with other types of regulatory proteases exists. Such studies show a capacity for members of the thrombostasis axis to act as broad activators of pro-KLKs. In the present report, we ask whether such functional intersection is possible between the KLKs and the members of the matrix metalloproteinase (MMP) family by evaluating the ability of the MMPs to activate pro-KLKs. The results identify MMP-20 as a broad activator of pro-KLKs, suggesting the potential for intersection of the KLK and MMP axes under pathological dysregulation of MMP-20 expression.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA
| | | | | | | | | |
Collapse
|
25
|
Ruthard J, Kamper M, Renno JH, Kühn G, Hillebrand U, Höllriegl S, Johannis W, Zaucke F, Klatt AR. COMP does not directly modify the expression of genes involved in cartilage homeostasis in contrast to several other cartilage matrix proteins. Connect Tissue Res 2014; 55:348-56. [PMID: 25111190 DOI: 10.3109/03008207.2014.951440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated whether COMP may modify cartilage metabolism and play a role as an endogenous disease aggravating factor in OA. MATERIALS AND METHODS Full-length and momomeric COMP was recombinantly expressed in human embryonic kidney cells and purified it via affinity chromatography. Purified COMP was used to stimulate either primary human chondrocytes or cartilage explants. Changes in the expression profiles of inflammatory genes, differentiation markers and growth factors were examined by immunoassay and by quantitative real-time reverse-transcription polymerase chain reaction. RESULTS Incubation of primary human chondrocytes or cartilage explants in the presence of COMP did not induce statistically significant changes in the expression of IL-6, MMP1, MMP13, collagen I, collagen II, collagen X, TGF-β1 and BMP-2. CONCLUSIONS In contrast to collagen II and matrilin-3, COMP lacks the ability to trigger a proinflammatory response in chondrocytes, although it carries an RGD motif and can bind to integrins. COMP is a well-accepted biomarker for osteoarthritis but increased COMP levels do not necessarily correlate with inflammation.
Collapse
Affiliation(s)
- Johannes Ruthard
- Institute for Clinical Chemistry, University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 2014; 37:102-11. [PMID: 24997222 DOI: 10.1016/j.matbio.2014.06.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.
Collapse
Affiliation(s)
- Chitrangada Acharya
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Ashleen Kishore
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Victoria Van Dinh
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Paul E Di Cesare
- Department of Orthopaedics and Rehabilitation, New York Hospital Queens, New York, NY 11355, USA
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
27
|
Matrix metalloproteinases: the gene expression signatures of head and neck cancer progression. Cancers (Basel) 2014; 6:396-415. [PMID: 24531055 PMCID: PMC3980592 DOI: 10.3390/cancers6010396] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/14/2014] [Accepted: 01/29/2014] [Indexed: 11/17/2022] Open
Abstract
Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.
Collapse
|
28
|
Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN DENTISTRY 2013; 2013:684607. [PMID: 24159389 PMCID: PMC3789414 DOI: 10.1155/2013/684607] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development.
Collapse
Affiliation(s)
- John D. Bartlett
- Harvard School of Dental Medicine & Chair, Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge MA 02142, USA
| |
Collapse
|
29
|
Bruschi F, Pinto B. The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens 2013; 2:105-29. [PMID: 25436884 PMCID: PMC4235708 DOI: 10.3390/pathogens2010105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/30/2013] [Accepted: 02/11/2013] [Indexed: 12/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) represent a large family of over twenty different secreted or membrane-bound endopeptidases, involved in many physiological (embryogenesis, precursor or stem cell mobilization, tissue remodeling during wound healing, etc.), as well as pathological (inflammation, tumor progression and metastasis in cancer, vascular pathology, etc.) conditions. For a long time, MMPs were considered only for the ability to degrade extracellular matrix (ECM) molecules (e.g., collagen, laminin, fibronectin) and to release hidden epitopes from the ECM. In the last few years, it has been fully elucidated that these molecules have many other functions, mainly related to the immune response, in consideration of their effects on cytokines, hormones and chemokines. Among others, MMP-2 and MMP-9 are endopeptidases of the MMP family produced by neutrophils, macrophages and monocytes. When infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. In this review, the involvement of MMPs and, in particular, of gelatinases in both protozoan and helminth infections will be described. In cerebral malaria, for example, MMPs play a role in the pathogenesis of such diseases. Also, trypanosomosis and toxoplasmosis will be considered for protozoan infections, as well as neurocysticercosis and angiostrongyloidosis, as regards helminthiases. All these situations have in common the proteolytic action on the blood brain barrier, mediated by MMPs.
Collapse
Affiliation(s)
- Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., University of Pisa, School of Medicine, Via Roma, 55, 56126, Italy.
| | - Barbara Pinto
- Department of Translational Research, N.T.M.S., University of Pisa, School of Medicine, Via Roma, 55, 56126, Italy.
| |
Collapse
|
30
|
Du Y, Gao C, Liu Z, Wang L, Liu B, He F, Zhang T, Wang Y, Wang X, Xu M, Luo GZ, Zhu Y, Xu Q, Wang X, Kong W. Upregulation of a Disintegrin and Metalloproteinase With Thrombospondin Motifs-7 by miR-29 Repression Mediates Vascular Smooth Muscle Calcification. Arterioscler Thromb Vasc Biol 2012; 32:2580-8. [PMID: 22995515 DOI: 10.1161/atvbaha.112.300206] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yaoyao Du
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Cheng Gao
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Ziyi Liu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Li Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Bo Liu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Fan He
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Tao Zhang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Yue Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Xiujie Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Mingjiang Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Guan-Zheng Luo
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Yi Zhu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Qingbo Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Xian Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| | - Wei Kong
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.D., C.G., Z.L., L.W., B.L., M.X., Y.Z., X.W., W.K.); Division of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (F.H.); Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China (T.Z.); Department of Nephrology, Peking
| |
Collapse
|
31
|
Jirouskova M, Zbodakova O, Gregor M, Chalupsky K, Sarnova L, Hajduch M, Ehrmann J, Jirkovska M, Sedlacek R. Hepatoprotective effect of MMP-19 deficiency in a mouse model of chronic liver fibrosis. PLoS One 2012; 7:e46271. [PMID: 23056273 PMCID: PMC3467204 DOI: 10.1371/journal.pone.0046271] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is characterized by the deposition and increased turnover of extracellular matrix. This process is controlled by matrix metalloproteinases (MMPs), whose expression and activity dynamically change during injury progression. MMP-19, one of the most widely expressed MMPs, is highly expressed in liver; however, its contribution to liver pathology is unknown. The aim of this study was to elucidate the role of MMP-19 during the development and resolution of fibrosis by comparing the response of MMP-19-deficient (MMP19KO) and wild-type mice upon chronic liver CCl(4)-intoxication. We show that loss of MMP-19 was beneficial during liver injury, as plasma ALT and AST levels, deposition of fibrillar collagen, and phosphorylation of SMAD3, a TGF-ß1 signaling molecule, were all significantly lower in MMP19KO mice. The ameliorated course of the disease in MMP19KO mice likely results from a slower rate of basement membrane destruction and ECM remodeling as the knockout mice maintained significantly higher levels of type IV collagen and lower expression and activation of MMP-2 after 4 weeks of CCl(4)-intoxication. Hastened liver regeneration in MMP19KO mice was associated with slightly higher IGF-1 mRNA expression, slightly increased phosphorylation of Akt kinase, decreased TGF-ß1 mRNA levels and significantly reduced SMAD3 phosphorylation. In addition, primary hepatocytes isolated from MMP19KO mice showed impaired responsiveness towards TGF-ß1 stimulation, resulting in lower expression of Snail1 and vimentin mRNA. Thus, MMP-19-deficiency improves the development of hepatic fibrosis through the diminished replacement of physiological extracellular matrix with fibrotic deposits in the beginning of the injury, leading to subsequent changes in TGF-ß and IGF-1 signaling pathways.
Collapse
Affiliation(s)
| | - Olga Zbodakova
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Martin Gregor
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Karel Chalupsky
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Lenka Sarnova
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Jiri Ehrmann
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Marie Jirkovska
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
32
|
Lai Y, Yu XP, Zhang Y, Tian Q, Song H, Mucignat MT, Perris R, Samuels J, Krasnokutsky S, Attur M, Greenberg JD, Abramson SB, Di Cesare PE, Liu C. Enhanced COMP catabolism detected in serum of patients with arthritis and animal disease models through a novel capture ELISA. Osteoarthritis Cartilage 2012; 20:854-62. [PMID: 22595227 PMCID: PMC3389204 DOI: 10.1016/j.joca.2012.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/15/2012] [Accepted: 05/06/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The study aimed determining whether assessment of cartilage oligomeric matrix protein (COMP) degradation products could serve as a serological disease course and therapeutic response predictor in arthritis. METHODS We generated a panel of monoclonal antibodies against COMP fragments and developed a novel capture enzyme-linked immunosorbent assay (ELISA) for detecting COMP fragments in patients with osteoarthritis (OA) and rheumatoid arthritis (RA). This test was also used to monitor COMP fragments in surgically-induced OA, collagen-induced arthritis (CIA), and tumor necrosis factor (TNF) transgenic animal models. RESULTS Compared with a commercial COMP ELISA kit that detected no significant difference in COMP levels between OA and control groups, a significant increase of the COMP fragments were noted in the serum of OA patients assayed by this newly established ELISA. In addition, serum COMP fragment levels were well correlated with severity in OA patients and the progression of surgically-induced OA in murine models. Furthermore, the serum levels of COMP fragments in RA patients, mice with CIA, and TNF transgenic mice were significantly higher when compared with their controls. Interestingly, treatment with TNFα inhibitors and methotrexate led to a significant decrease of serum COMP fragments in RA patients. Additionally, administration of Atsttrin [Tang, et al., Science 2011;332(6028):478] also resulted in a significant reduction in COMP fragments in arthritis mice models. CONCLUSION A novel sandwich ELISA is capable of reproducibly measuring serum COMP fragments in both arthritic patients and rodent arthritis models. This test also provides a valuable means to utilize serum COMP fragments for monitoring the effects of interventions in arthritis.
Collapse
Affiliation(s)
- Yongjie Lai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003,Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiu-Ping Yu
- Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong 250012, China,To whom correspondence should be addressed: Xiu-Ping Yu, Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China, Tel: 86-531-88382579, ; or Chuan-Ju Liu, PhD, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, 301 East 17th Street, New York, NY 10003. Tel: 212-598-6103; Fax: 212-598-6096;
| | - Yuying Zhang
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Haicheng Song
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Maria Teresa Mucignat
- Department of Genetics, Microbiology and Anthropology, University of Parma, Parma 43100, Italy
| | - Roberto Perris
- Department of Genetics, Microbiology and Anthropology, University of Parma, Parma 43100, Italy
| | - Jonathan Samuels
- Division of Rheumatology, NYU Hospital for Joint Diseases, New York, NY 10003
| | | | - Mukundan Attur
- Division of Rheumatology, NYU Hospital for Joint Diseases, New York, NY 10003
| | | | - Steven B. Abramson
- Division of Rheumatology, NYU Hospital for Joint Diseases, New York, NY 10003
| | - Paul E. Di Cesare
- Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, CA 95817
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003,Department of Cell Biology, New York University School of Medicine, New York, NY 10016,To whom correspondence should be addressed: Xiu-Ping Yu, Institute of Pathogenic Biology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China, Tel: 86-531-88382579, ; or Chuan-Ju Liu, PhD, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, 10003, 301 East 17th Street, New York, NY 10003. Tel: 212-598-6103; Fax: 212-598-6096;
| |
Collapse
|
33
|
Bartlett JD, Skobe Z, Nanci A, Smith CE. Matrix metalloproteinase 20 promotes a smooth enamel surface, a strong dentino-enamel junction, and a decussating enamel rod pattern. Eur J Oral Sci 2012; 119 Suppl 1:199-205. [PMID: 22243247 DOI: 10.1111/j.1600-0722.2011.00864.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of the matrix metalloproteinase 20 (MMP20, enamelysin) gene cause autosomal-recessive amelogenesis imperfecta, and Mmp20 ablated mice also have malformed dental enamel. Here we showed that Mmp20 null mouse secretory-stage ameloblasts maintain a columnar shape and are present as a single layer of cells. However, the maturation-stage ameloblasts from null mouse cover extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin, indicative of a faulty dentino-enamel junction (DEJ). The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The enamel rods in Mmp20 null mice were grossly malformed or absent, indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ.
Collapse
Affiliation(s)
- John D Bartlett
- Department of Cytokine Biology, Forsyth Institute, Cambridge, MA 02142, USA.
| | | | | | | |
Collapse
|
34
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
35
|
Abstract
Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that undergo transient or longer-term interactions with other extracellular matrix components. They share properties with other matrix molecules, cytokines, adaptor proteins, and chaperones, modulate the organization of collagen fibrils, and bind and localize an array of growth factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and context-dependent pathways, mammalian thrombospondins contribute to wound healing and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis. We overview the domain organization and structure of thrombospondins, key features of their evolution, and their cell biology. We discuss their roles in vivo, associations with human disease, and ongoing translational applications. In many respects, we are only beginning to appreciate the important roles of these proteins in physiology and pathology.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
36
|
Decock J, Thirkettle S, Wagstaff L, Edwards DR. Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med 2011; 15:1254-65. [PMID: 21418514 PMCID: PMC4373327 DOI: 10.1111/j.1582-4934.2011.01302.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The original notion that matrix metalloproteinases (MMPs) act as tumour and metastasis-promoting enzymes by clearing a path for tumour cells to invade and metastasize has been challenged in the last decade. It has become clear that MMPs are involved in numerous steps of tumour progression and metastasis, and hence are now considered to be multifaceted proteases. Moreover, more recent experimental evidence indicates that some members of the MMP family behave as tumour-suppressor enzymes and should therefore be regarded as anti-targets in cancer therapy. The complexity of the pro- and anti-tumorigenic and -metastatic functions might partly explain why broad-spectrum MMP inhibitors failed in phase III clinical trials. This review will provide a focussed overview of the published data on the tumour-suppressive behaviour of MMPs.
Collapse
Affiliation(s)
- Julie Decock
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | | | | | |
Collapse
|
37
|
Brauer R, Beck IM, Roderfeld M, Roeb E, Sedlacek R. Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen. BMC BIOCHEMISTRY 2011; 12:38. [PMID: 21787393 PMCID: PMC3160879 DOI: 10.1186/1471-2091-12-38] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/25/2011] [Indexed: 11/10/2022]
Abstract
Background Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of extracellular matrix (ECM) in order to allow endothelial cells to migrate and invade into the surrounding tissue. Matrix metalloproteinases (MMPs) are considered to play a central role in the remodeling of basement membranes and ECM. However, MMPs contribute to vascular remodeling not only by degrading ECM components. Specific MMPs enhance angiogenesis via several ways; they help pericytes to detach from vessels undergoing angiogenesis, release ECM-bound angiogenic growth factors, expose cryptic pro-angiogenic integrin binding sites in the ECM, generate promigratory ECM component fragments, and cleave endothelial cell-cell adhesions. MMPs can also negatively influence the angiogenic process through generating endogenous angiogenesis inhibitors by proteolytic cleavage. Angiostatin, a proteolytic fragment of plasminogen, is one of the most potent antagonists of angiogenesis that inhibits migration and proliferation of endothelial cells. Reports have shown that metalloelastase, pancreas elastase, plasmin reductase, and plasmin convert plasminogen to angiostatin. Results We report here that MMP-19 processes human plasminogen in a characteristic cleavage pattern to generate three angiostatin-like fragments with a molecular weight of 35, 38, and 42 kDa. These fragments released by MMP-19 significantly inhibited the proliferation of HMEC cells by 27% (p = 0.01) and reduced formation of capillary-like structures by 45% (p = 0.05) compared with control cells. As it is known that angiostatin blocks hepatocyte growth factor (HGF)-induced pro-angiogenic signaling in endothelial cells due to structural similarities to HGF, we have analyzed if the plasminogen fragments generated by MMP-19 interfere with this pathway. As it involves the activation of c-met, the receptor of HGF, we could show that MMP-19-dependent processing of plasminogen decreases the phosphorylation of c-met. Conclusion Altogether, MMP-19 exhibits an anti-angiogenic effect on endothelial cells via generation of angiostatin-like fragments.
Collapse
Affiliation(s)
- Rena Brauer
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
38
|
Berg G, Miksztowicz V, Schreier L. Metalloproteinases in metabolic syndrome. Clin Chim Acta 2011; 412:1731-9. [PMID: 21703252 DOI: 10.1016/j.cca.2011.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 12/16/2022]
Abstract
Experimental and clinical evidence supports the concept that metalloproteinases (MMPs), beyond different physiologic functions, also play a role in the development and rupture of the atherosclerotic plaque. Interest in MMPs has been rapidly increasing during the last years, especially as they have been proposed as biomarkers of vulnerable plaques. Different components of the metabolic syndrome (MS) have been identified as possible stimulus for the synthesis and activity of MMPs, like pro-inflammatory and pro-oxidant state, hyperglycemia, hypertension and dyslipidemia. On the other hand, anti-inflammatory cytokines like adiponectin are inversely associated with MMPs. Among the several MMPs studied, collagenases (MMP-1 and MMP-8) and gelatinases (MMP-2 and MMP-9) are the most associated with MS. Our aim was to summarize and discuss the relation between different components of the MS on MMPs, as well as the effect of the cluster of the metabolic alterations itself. It also highlights the necessity of further studies, in both animals and humans, to elucidate the function of novel MMPs identified, as well as the role of the known enzymes in different steps of metabolic diseases. Understanding the mechanisms of MS impact on MMPs and vice versa is an interesting area of research that will positively enhance our understanding of the complexity of MS and atherosclerosis.
Collapse
Affiliation(s)
- Gabriela Berg
- Lipids and Lipoproteins Laboratory. Department of Clinical Biochemistry, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| | | | | |
Collapse
|
39
|
Chan KC, Ko JMY, Lung HL, Sedlacek R, Zhang ZF, Luo DZ, Feng ZB, Chen S, Chen H, Chan KW, Tsao SW, Chua DTT, Zabarovsky ER, Stanbridge EJ, Lung ML. Catalytic activity of Matrix metalloproteinase-19 is essential for tumor suppressor and anti-angiogenic activities in nasopharyngeal carcinoma. Int J Cancer 2011; 129:1826-37. [PMID: 21165953 DOI: 10.1002/ijc.25855] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 12/02/2010] [Indexed: 11/10/2022]
Abstract
The association of Matrix metalloproteinase-19 (MMP19) in the development of nasopharyngeal carcinoma (NPC) was identified from differential gene profiling, which showed MMP19 was one of the candidate genes down-regulated in the NPC cell lines. In this study, quantitative RT-PCR and Western blot analysis showed MMP19 was down-regulated in all seven NPC cell lines. By tissue microarray immunohistochemical staining, MMP19 appears down-regulated in 69.7% of primary NPC specimens. Allelic deletion and promoter hypermethylation contribute to MMP19 down-regulation. We also clearly demonstrate that the catalytic activity of MMP19 plays an important role in antitumor and antiangiogenesis activities in comparative studies of the wild-type and the catalytically inactive mutant MMP19. In the in vivo tumorigenicity assay, only the wild-type (WT), but not mutant, MMP19 transfectants suppress tumor formation in nude mice. In the in vitro colony formation assay, WT MMP19 dramatically reduces colony-forming ability of NPC cell lines, when compared to the inactive mutant. In the tube formation assay of human umbilical vein endothelial cells and human microvascular endothelial cells (HMEC-1), secreted WT MMP19, but not mutant MMP19, induces reduction of tube-forming ability in endothelial cells with decreased vascular endothelial growth factor (VEGF) in conditioned media detected by enzyme-linked immunosorbent assay (ELISA). The anti-angiogenic activity of WT MMP19 is correlated with suppression of tumor formation. These results now clearly show that catalytic activity of MMP19 is essential for its tumor suppressive and anti-angiogenic functions in NPC.
Collapse
Affiliation(s)
- King Chi Chan
- Department of Clinical Oncology and Centre for Cancer Research, University of Hong Kong, Pokfulam, Hong Kong (SAR), People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo F, Lai Y, Tian Q, Lin EA, Kong L, Liu C. Granulin-epithelin precursor binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein. ACTA ACUST UNITED AC 2010; 62:2023-36. [PMID: 20506400 DOI: 10.1002/art.27491] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine 1) whether a protein interaction network exists between granulin-epithelin precursor (GEP), ADAMTS-7/ADAMTS-12, and cartilage oligomeric matrix protein (COMP); 2) whether GEP interferes with the interactions between ADAMTS-7/ADAMTS-12 metalloproteinases and COMP substrate, including the cleavage of COMP; 3) whether GEP affects tumor necrosis factor alpha (TNFalpha)-mediated induction of ADAMTS-7/ADAMTS-12 expression and COMP degradation; and 4) whether GEP levels are altered during the progression of arthritis. METHODS Yeast two-hybrid, in vitro glutathione S-transferase pull-down, and coimmunoprecipitation assays were used to 1) examine the interactions between GEP, ADAMTS-7/ADAMTS-12, and COMP, and 2) map the binding sites required for the interactions between GEP and ADAMTS-7/ADAMTS-12. Immunofluorescence cell staining was performed to visualize the subcellular localization of GEP and ADAMTS-7/ADAMTS-12. An in vitro digestion assay was employed to determine whether GEP inhibits ADAMTS-7/ADAMTS-12-mediated digestion of COMP. The role of GEP in inhibiting TNFalpha-induced ADAMTS-7/ADAMTS-12 expression and COMP degradation in cartilage explants was also analyzed. RESULTS GEP bound directly to ADAMTS-7 and ADAMTS-12 in vitro and in chondrocytes, and the 4 C-terminal thrombospondin motifs of ADAMTS-7/ADAMTS-12 and each granulin unit of GEP mediated their interactions. Additionally, GEP colocalized with ADAMTS-7 and ADAMTS-12 on the cell surface of chondrocytes. More importantly, GEP inhibited COMP degradation by ADAMTS-7/ADAMTS-12 in a dose-dependent manner through 1) competitive inhibition through direct protein-protein interactions with ADAMTS-7/ADAMTS-12 and COMP, and 2) inhibition of TNFalpha-induced ADAMTS-7/ADAMTS-12 expression. Furthermore, GEP levels were significantly elevated in patients with either osteoarthritis or rheumatoid arthritis. CONCLUSION Our observations demonstrate a novel protein-protein interaction network between GEP, ADAMTS-7/ADAMTS-12, and COMP. Furthermore, GEP is a novel specific inhibitor of ADAMTS-7/ADAMTS-12-mediated COMP degradation and may play a significant role in preventing the destruction of joint cartilage in arthritis.
Collapse
Affiliation(s)
- Fengjin Guo
- New York University School of Medicine, New York, New York 10003, USA
| | | | | | | | | | | |
Collapse
|
41
|
Differential gene expression profiling of metalloproteinases and their inhibitors: a comparison between bovine intervertebral disc nucleus pulposus cells and articular chondrocytes. Spine (Phila Pa 1976) 2010; 35:1101-8. [PMID: 20473119 DOI: 10.1097/brs.0b013e3181c0c727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A comparative in vitro metalloproteinases and their inhibitors gene expression profile. OBJECTIVE To obtain a complete expression profile of matrix metalloproteinases (MMPs), family of proteases with a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS), and tissue inhibitors of metalloproteinases (TIMPs) in bovine adult nucleus pulposus (NP) cells and to compare this profile with the expression profile obtained from bovine adult articular chondrocytes cultured under identical conditions. SUMMARY OF BACKGROUND DATA The cells of the NP resemble articular chondrocytes morphologically but produce a matrix which, though consisting of similar components, has very different biomechanical properties. No specific markers for NP cells have yet been identified; they can be distinguished from chondrocytes only by differences in gene expression. Here we compare profiles of gene expression of metalloproteinases and their inhibitors between NP cells and chondrocytes to improve understanding of the differences between these cell types. METHODS NP cells and articular chondrocytes were harvested respectively from bovine caudal discs and the articular cartilage of metacarpal-phalangeal joints of 18- to 24-month-old steers. These cells were cultured under identical conditions for 96 hours in alginate beads. Expression levels of MMPs, ADAMTSs, and TIMPs were detected by real-time RT-PCR. RESULTS Gene profiling demonstrated distinct differences between levels of MMPs, ADAMTSs, and TIMPs produced by chondrocytes and NP cells. In particular, NP cells expressed considerably more MMP-2 and MMP-14 than chondrocytes, and expression of ADAMTS-1,-2,-17 and TIMP-1 was also higher. However, expression of MMP-1,-3,-7,-8,-10,-11,-13,-16,-19,-20,-21,-23,-24,-28, ADAMTS-4,-5,-6,-14,-18,-19, and TIMP-3 was lower in NP cells than in chondrocytes. Chondrocytes but not NP cells expressed MMP12 and MMP27; this difference is a potential marker for distinguishing between NP cells and chondrocytes. CONCLUSION Because culture conditions and animal age were identical, differences in metalloproteinase and inhibitor expression between NP cells and chondrocytes were intrinsic to cell phenotype and not induced by differences in the in situ extracellular environment.
Collapse
|
42
|
Abstract
During the progression of cutaneous melanomas, matrix metalloproteinases (MMPs) facilitate the tumour cells to traverse the basement membrane and invade the dermis. In this study, we analysed the expression of MMP19 in the course of melanoma progression. Although MMP19 was absent in melanocytes and melanoma cells of early stages of melanoma development, its expression was strongly upregulated in the neighbouring keratinocytes that may facilitate the vertical outgrowth of melanoma cells. In contrast to early stages, MMP19 was upregulated during the vertical growth phase of melanoma and in metastases. The upregulation of MMP19 in melanoma of Clark levels IV and V correlates with that of MMP2 and also simultaneously with ceased expression of E-cadherin. To reveal whether MMP19 facilitates the invasion of melanomas, we examined adhesion and migratory capacity of selected melanoma cell lines. Melanoma cell lines with low expression of MMP19 exhibited increased adhesion to various substrates and lower migration in comparison with the cell line with higher expression of MMP19. Moreover, ectopic expression of MMP19 could restore the migratory capacity of melanoma cells with low endogenous level of MMP19. These results suggest that the increase of MMP19 expression hallmarks the progression of cutaneous melanoma and might augment melanoma growth by promoting the invasion of tumour cells.
Collapse
|
43
|
Abstract
Neoepitope antibodies recognize the newly created N or C terminus of protein degradation products but fail to recognize the same sequence of amino acids present in intact or undigested protein. Aggrecan neoepitope antibodies have been pivotal in studies determining the contribution of matrix metalloproteinases (MMPs) and aggrecanases to aggrecanolysis. In particular, an antibody to the A(374)RGSV N terminus was instrumental in the landmark discovery of the aggrecanases, ADAMTS-4 and ADAMTS-5. Antibodies to neoepitopes at the major MMP cleavage site DIPEN(341)/(342)FFGVG helped to distinguish MMP-driven aggrecan loss from aggrecanase-driven aggrecan loss and identified a role for MMPs in late-stage disease. More recently, neoepitope antibodies that recognize cleavage sites in the chondroitin sulphate-rich region of aggrecan have been used to show that aggrecanase cleavage proceeds in a defined manner, beginning at the C terminus and proceeding to the signature cleavage at NITEGE(373)/(374)ARGSV in the interglobular domain. Work with the C-terminal neoepitope antibodies has underscored the need to use a suite of neoepitope antibodies to fully describe aggrecanolysis in vitro. In this chapter, we describe the production of two aggrecan neoepitope antibodies as examples: the monoclonal anti-FFGVG antibody (AF-28) and the polyclonal anti-DIPEN antisera.
Collapse
|
44
|
Matrix Metalloproteinase-19 is Highly Expressed in Astroglial Tumors and Promotes Invasion of Glioma Cells. J Neuropathol Exp Neurol 2010; 69:215-23. [DOI: 10.1097/nen.0b013e3181ce9f67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Lin EA, Liu CJ. The role of ADAMTSs in arthritis. Protein Cell 2010; 1:33-47. [PMID: 21203996 DOI: 10.1007/s13238-010-0002-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family consists of 19 proteases. These enzymes are known to play important roles in development, angiogenesis and coagulation; dysregulation and mutation of these enzymes have been implicated in many disease processes, such as inflammation, cancer, arthritis and atherosclerosis. This review briefly summarizes the structural organization and functional roles of ADAMTSs in normal and pathological conditions, focusing on members that are known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (ADAMTS-4 and ADAMTS-5), ADAMTS-7 and ADAMTS-12, the latter two are associated with cartilage oligomeric matrix protein (COMP), a component of the cartilage extracellular matrix (ECM). We will discuss the expression pattern and the regulation of these metalloproteinases at multiple levels, including their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP), and activation (e.g., syndecan-4, PACE-4).
Collapse
Affiliation(s)
- Edward A Lin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | | |
Collapse
|
46
|
Abstract
The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) comprise a family of secreted zinc metalloproteinases with a precisely ordered modular organization. These enzymes play an important role in the turnover of extracellular matrix proteins in various tissues and their dysregulation has been implicated in disease-related processes such as arthritis, atherosclerosis, cancer, and inflammation. ADAMTS-7 and ADAMTS-12 share a similar domain organization to each other and form a subgroup within the ADAMTS family. Emerging evidence suggests that ADAMTS-7 and ADAMTS-12 may play an important role in the development and pathogenesis of various kinds of diseases. In this review, we summarize what is currently known about the roles of these two metalloproteinases, with a special focus on their involvement in chondrogenesis, endochondral ossification, and the pathogenesis of arthritis, atherosclerosis, and cancer. The future study of ADAMTS-7 and ADAMTS-12, as well as the molecules with which they interact, will help us to better understand a variety of human diseases from both a biological and therapeutic standpoint.
Collapse
Affiliation(s)
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery; Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
47
|
Gruber HE, Ingram JA, Hanley EN. Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration. Biotech Histochem 2009; 80:157-62. [PMID: 16298901 DOI: 10.1080/10520290500387607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix of the disc, but the presence of MMP-19 has not been explored. In other tissues, MMP-19 is known to act in proteolysis of the insulin-like growth factor (IGF) binding protein-3, thereby exposing this protein to make it available to influence cell behavior. MMP-19 also has been shown to inhibit capillary-like formation and thus play a role in the avascular nature of the disc. Using immunohistochemistry, normal discs from six subjects aged newborn through 10 years and 20 disc specimens from control donors or surgical patients aged 15-76 (mean age 40.2 years) were examined for immunolocalization of MMP-19; six Thompson grade I discs, five Thompson grade II, eight Thompson grade III, five Thompson grade IV, and one Thompson grade V discs were analyzed. The results indicate that in discs from young subjects, MMP-19 was uniformly localized in the outer annulus. In discs from adult donors and surgical patients, outer and inner annulus cells only occasionally showed MMP-19 localization. The greatest expression of MMP-19 was observed in young discs, and little expression was seen in older or degenerating discs. Because MMP-19 has been shown to regulate IGF-mediated proliferation in other tissues, its decline in the aging/degenerating disc may contribute to the age-related decrease in disc cell numbers.
Collapse
Affiliation(s)
- H E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina 28232, USA.
| | | | | |
Collapse
|
48
|
Liu CJ. The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. ACTA ACUST UNITED AC 2009; 5:38-45. [PMID: 19098927 DOI: 10.1038/ncprheum0961] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/24/2008] [Indexed: 11/09/2022]
Abstract
Loss of articular cartilage caused by extracellular matrix breakdown is the hallmark of arthritis. Degradative fragments of cartilage oligomeric matrix protein (COMP) have been observed in arthritic patients. ADAMTS-7 and ADAMTS-12, two members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family, have been associated with COMP degradation in vitro, and are significantly overexpressed in the cartilage and synovium of patients with rheumatoid arthritis. Recent studies have demonstrated the importance of COMP degradation by ADAMTS-7 and ADAMTS-12. Specifically, the size of COMP fragments generated by ADAMTS-7 or ADAMTS-12 is similar to that of COMP-degradative fragments seen in arthritic patients. In addition, antibodies against ADAMTS-7 or ADAMTS-12 dramatically inhibit tumor necrosis factor-induced and interleukin-1beta-induced COMP degradation in cartilage explants. Furthermore, suppression of ADAMTS-7 or ADAMTS-12 expression using the small interfering RNA silencing approach in human chondrocytes markedly prevents COMP degradation. COMP degradation mediated by ADAMTS-7 and ADAMTS-12 is inhibited by alpha(2)-macroglobulin. More significantly, granulin-epithelin precursor, a newly characterized chondrogenic growth factor, disturbs the interaction between COMP and ADAMTS-7 and ADAMTS-12, preventing COMP degradation by these enzymes. This Review summarizes the evidence demonstrating that ADAMTS-7 and ADAMTS-12 are newly identified enzymes responsible for COMP degradation in arthritis, and that alpha(2)-macroglobulin and granulin-epithelin precursor represent their endogenous inhibitors.
Collapse
Affiliation(s)
- Chuan-Ju Liu
- New York University School of Medicine, New York, NY 10003, USA.
| |
Collapse
|
49
|
Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. ACTA ACUST UNITED AC 2008; 84:228-44. [DOI: 10.1002/bdrc.20130] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Beck IM, Rückert R, Brandt K, Mueller MS, Sadowski T, Brauer R, Schirmacher P, Mentlein R, Sedlacek R. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses. PLoS One 2008; 3:e2343. [PMID: 18523579 PMCID: PMC2386969 DOI: 10.1371/journal.pone.0002343] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 04/23/2008] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-19 (MMP19) affects cell proliferation, adhesion, and migration in vitro but its physiological role in vivo is poorly understood. To determine the function of MMP19, we generated mice deficient for MMP19 by disrupting the catalytic domain of mmp19 gene. Although MMP19-deficient mice do not show overt developmental and morphological abnormalities they display a distinct physiological phenotype. In a model of contact hypersensitivity (CHS) MMP19-deficient mice showed impaired T cell-mediated immune reaction that was characterized by limited influx of inflammatory cells, low proliferation of keratinocytes, and reduced number of activated CD8(+) T cells in draining lymph nodes. In the inflamed tissue, the low number of CD8(+) T cells in MMP19-deficient mice correlated with low amounts of proinflammatory cytokines, especially lymphotactin and interferon-inducible T cell alpha chemoattractant (I-TAC). Further analyses showed that T cell populations in the blood of immature, unsensitized mice were diminished and that this alteration originated from an altered maturation of thymocytes. In the thymus, thymocytes exhibited low proliferation rates and the number of CD4(+)CD8(+) double-positive cells was remarkably augmented. Based on the phenotype of MMP19-deficient mice we propose that MMP19 is an important factor in cutaneous immune responses and influences the development of T cells.
Collapse
Affiliation(s)
- Inken M. Beck
- Institute of Biotechnology, Prague, Czech Republic
- Institute of Molecular Genetics, Prague, Czech Republic
| | - René Rückert
- Research Center Borstel, Department of Immunology and Cell Biology, Borstel, Germany
| | - Katja Brandt
- Research Center Borstel, Department of Immunology and Cell Biology, Borstel, Germany
| | | | | | - Rena Brauer
- Department of Biochemistry, University of Kiel, Kiel, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rolf Mentlein
- Department of Anatomy, University of Kiel, Kiel, Germany
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Prague, Czech Republic
- Department of Biochemistry, University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|