1
|
Lykov N, Wang H, Panga MJ, Du Z, Chen Z, Chen S, Zhu L, Zhao Y. Evaluating the involvement and mutual interaction of wbp2 and yap in embryogenesis with an emphasis on liver function in zebrafish embryos. Tissue Cell 2024; 91:102600. [PMID: 39486132 DOI: 10.1016/j.tice.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) play complex roles in liver health, influencing processes such as fibrosis, cancer development, and regeneration. WW domain binding protein-2 (WBP2) primarily enhances the co-translational activity of YAP/TAZ, which is crucial for the progression of liver diseases. Despite existing knowledge, the specific functions of WBP2 and its interactions with YAP remain inadequately understood. This study investigates the expression levels of WBP2 in zebrafish embryos and its molecular interaction with YAP. We employed morpholino-mediated knockdown of wbp2 and yap, followed by assessments of liver histology, immunofluorescence, and co-immunoprecipitation. Subsequently, RNA sequencing analyses were conducted to elucidate the signaling pathways and mechanisms underlying the interplay between YAP and WBP2 in liver injury. Our findings highlight the significant interaction between WBP2 and YAP, emphasizing their potential as therapeutic targets for liver diseases.
Collapse
Affiliation(s)
- Nikita Lykov
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
2
|
Huang X, Cheng S, Han J. Polyglutamine binding protein 1 regulates neurite outgrowth through recruiting N-WASP. J Biol Chem 2024; 300:107537. [PMID: 38971314 PMCID: PMC11339035 DOI: 10.1016/j.jbc.2024.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.
Collapse
Affiliation(s)
- Xuejiao Huang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Shanshan Cheng
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Junhai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China.
| |
Collapse
|
3
|
Cheng K, Zhang C, Lu Y, Li J, Tang H, Ma L, Zhu H. The Glycine-Rich RNA-Binding Protein Is a Vital Post-Transcriptional Regulator in Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3504. [PMID: 37836244 PMCID: PMC10575402 DOI: 10.3390/plants12193504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Glycine-rich RNA binding proteins (GR-RBPs), a branch of RNA binding proteins (RBPs), play integral roles in regulating various aspects of RNA metabolism regulation, such as RNA processing, transport, localization, translation, and stability, and ultimately regulate gene expression and cell fate. However, our current understanding of GR-RBPs has predominantly been centered on Arabidopsis thaliana, a model plant for investigating plant growth and development. Nonetheless, an increasing body of literature has emerged in recent years, shedding light on the presence and functions of GRPs in diverse crop species. In this review, we not only delineate the distinctive structural domains of plant GR-RBPs but also elucidate several contemporary mechanisms of GR-RBPs in the post-transcriptional regulation of RNA. These mechanisms encompass intricate processes, including RNA alternative splicing, polyadenylation, miRNA biogenesis, phase separation, and RNA translation. Furthermore, we offer an exhaustive synthesis of the diverse roles that GR-RBPs fulfill within crop plants. Our overarching objective is to provide researchers and practitioners in the field of agricultural genetics with valuable insights that may inform and guide the application of plant genetic engineering for enhanced crop development and sustainable agriculture.
Collapse
Affiliation(s)
- Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China;
| | - Yao Lu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hui Tang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (K.C.); (Y.L.); (J.L.); (H.T.); (L.M.)
| |
Collapse
|
4
|
The role of PQBP1 in neural development and function. Biochem Soc Trans 2023; 51:363-372. [PMID: 36815699 DOI: 10.1042/bst20220920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 11/17/2022]
Abstract
Mutations in the polyglutamine tract-binding protein 1 (PQBP1) gene are associated with Renpenning syndrome, which is characterized by microcephaly, intellectual deficiency, short stature, small testes, and distinct facial dysmorphism. Studies using different models have revealed that PQBP1 plays essential roles in neural development and function. In this mini-review, we summarize recent findings relating to the roles of PQBP1 in these processes, including in the regulation of neural progenitor proliferation, neural projection, synaptic growth, neuronal survival, and cognitive function via mRNA transcription and splicing-dependent or -independent processes. The novel findings provide insights into the mechanisms underlying the pathogenesis of Renpenning syndrome and may advance drug discovery and treatment for this condition.
Collapse
|
5
|
‘Come Together’—The Regulatory Interaction of Herpesviral Nuclear Egress Proteins Comprises both Essential and Accessory Functions. Cells 2022; 11:cells11111837. [PMID: 35681532 PMCID: PMC9180862 DOI: 10.3390/cells11111837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Herpesviral nuclear egress is a fine-tuned regulatory process that defines the nucleocytoplasmic release of viral capsids. Nuclear capsids are unable to traverse via nuclear pores due to the fact of their large size; therefore, herpesviruses evolved to develop a vesicular transport pathway mediating the transition across the two leaflets of the nuclear membrane. The entire process involves a number of regulatory proteins, which support the local distortion of the nuclear envelope. In the case of the prototype species of β-Herpesvirinae, the human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the core proteins pUL50 and pUL53 that oligomerize, form capsid docking lattices and mediate multicomponent assembly with NEC-associated viral and cellular proteins. The NEC-binding principle is based on the hook-into-groove interaction through an N-terminal hook-like pUL53 protrusion that embraces an α-helical pUL50 binding groove. Thus far, the function and characteristics of herpesviral core NECs have been well studied and point to the groove proteins, such as pUL50, as the multi-interacting, major determinants of NEC formation and egress. This review provides closer insight into (i) sequence and structure conservation of herpesviral core NEC proteins, (ii) experimentation on cross-viral core NEC interactions, (iii) the essential functional roles of hook and groove proteins for viral replication, (iv) an establishment of assay systems for NEC-directed antiviral research and (v) the validation of NEC as putative antiviral drug targets. Finally, this article provides new insights into the conservation, function and antiviral targeting of herpesviral core NEC proteins and, into the complex regulatory role of hook and groove proteins during the assembly, egress and maturation of infectious virus.
Collapse
|
6
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|
7
|
Wang Y, Zhang S, Sun Q, Yuan F, Zhao L, Ye Z, Li Y, Wang R, Jiang H, Hu P, Tian D, Liu B. WAC, a novel GBM tumor suppressor, induces GBM cell apoptosis and promotes autophagy. Med Oncol 2021; 38:132. [PMID: 34581882 DOI: 10.1007/s12032-021-01580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
WAC is closely related to the occurrence and development of tumors. However, its role in human glioblastoma (GBM) and its potential regulatory mechanisms have not been investigated. This study demonstrated that WAC is downregulated in GBM, and its low expression predicts a poor prognosis. We investigated the effect of WAC on the proliferation of glioma cells through a CCK-8 assay, EdU incorporation, and cell formation. The effects of WAC on apoptosis and autophagy in glioma were determined by flow cytometry, TUNEL detection, immunofluorescence, q-PCR, WB, and scanning electron microscopy. We found that overexpression of WAC inhibited the proliferation of glioma cells, promoted apoptosis, and induced autophagy. Therefore, WAC is likely to play a role as a new regulatory molecule in glioma.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ronggui Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Street, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Abstract
Cancer is an unpleasant, painful disease. It is one of the most devastating diseases worldwide diminishing many lives. Many genetic and epigenetic changes occur before cancer develops. Mutation in SETD2 gene is one such example. RNA splicing, DNA damage repair, DNA methylation and histone methylation are some of the biological processes mediated by SETD2. SETD2 (histone H3 lysine 36 methyltransferase) is a frequently mutated gene in different types of cancer. Loss of SETD2 is associated with worse prognosis and aggressive phenotypes. Histone modification is one of the epigenetic regulation having a significant effect on gene regulation. N6-methyladenosine (m6A) mRNA modification is a well-known posttranscriptional modification playing a pivotal role in many normal and pathological processes affecting RNA metabolism. SETD2 catalyses H3K36 trimethylation and in turn H3K36me3 guides the deposition of m6A on nascent RNA transcripts. Finally, this review summarizes the deep understanding of the role of SETD2 in RNA methylation/modification and how SETD2 mutation contributes to tumour development.
Collapse
|
9
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
10
|
The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. J Cancer Res Clin Oncol 2021; 147:1287-1297. [PMID: 33580421 DOI: 10.1007/s00432-021-03552-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.
Collapse
|
11
|
Lahav N, Rotem-Bamberger S, Fahoum J, Dodson EJ, Kraus Y, Mousa R, Metanis N, Friedler A, Schueler-Furman O. Phosphorylation of the WWOX Protein Regulates Its Interaction with p73. Chembiochem 2020; 21:1843-1851. [PMID: 32185845 DOI: 10.1002/cbic.202000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Indexed: 11/10/2022]
Abstract
We describe a molecular characterization of the interaction between the cancer-related proteins WWOX and p73. This interaction is mediated by the first of two WW domains (WW1) of WWOX and a PPXY-motif-containing region in p73. While phosphorylation of Tyr33 of WWOX and association with p73 are known to affect apoptotic activity, the quantitative effect of phosphorylation on this specific interaction is determined here for the first time. Using ITC and fluorescence anisotropy, we measured the binding affinity between WWOX domains and a p73 derived peptide, and showed that this interaction is regulated by Tyr phosphorylation of WW1. Chemical synthesis of the phosphorylated domains of WWOX revealed that the binding affinity of WWOX to p73 is decreased when WWOX is phosphorylated. This result suggests a fine-tuning of binding affinity in a differential, ligand-specific manner: the decrease in binding affinity of WWOX to p73 can free both partners to form new interactions.
Collapse
Affiliation(s)
- Noa Lahav
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Emma-Joy Dodson
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Yahel Kraus
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| |
Collapse
|
12
|
Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 2020; 11:3349-3356. [PMID: 32231741 PMCID: PMC7097956 DOI: 10.7150/jca.38391] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of malignant tumors; and a great deal of attention has been paid to the histone methylation level in recent years. As a 230-kD epigenetic regulator, the histone H3 lysine 36 histone (H3K36) methyltransferase SETD2 is a key enzyme of the nuclear receptor SET domain-containing (NSD) family, which is associated with a specific hyperphosphorylated domain, a large subunit of RNA polymerase II (RNAPII), named RNAPII subunit B1 (RPB1), and SETD2 which methylates the ly-36 position of dimethylated histone H3 (H3K36me2) to generate trimethylated H3K36 (H3K36me3). SETD2 is involved in various cellular processes, including transcriptional regulation, DNA damage repair, non-histone protein-related functions and some other processes. Great efforts of high-throughput sequencing have revealed that SETD2 is mutated or its function is lost in a range of solid cancers, including renal cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, osteosarcoma, and so on. Mutation, or functional loss, of the SETD2 gene produces dysfunction in corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemotherapy resistance, and unfavorable prognosis, suggesting that SETD2 possibly acts as a tumor suppressor. However, its underlying mechanism remains largely unexplored. In the present study, we summarized the latest advances of effects of SETD2 expression at the mRNA and protein levels in solid cancers, and its potential molecular and cellular functions as well as clinical applications were also reviewed.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Wei-Qing Zhao
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Cheng Fang
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Xin Yang
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| | - Mei Ji
- Department of Oncology, the Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, No. 185 Juqian Road, Tianning District, Changzhou 213003, China
| |
Collapse
|
13
|
Abstract
The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain-containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore, Singapore 119077.,Center for Computational Biology, DUKE-NUS Medical School, Singapore 169857
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Singapore 119077.,Laboratory of Cancer Signaling and Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597.,Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, Singapore 117411.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
14
|
Gao XM, Zhang DD, Hou CC, Du C, Luo SY, Zhu JQ. Developmental and mRNA transcript relative abundance pattern of vitellogenin receptors, LR8-/Lrp13, during ovarian development in the large yellow croaker (Larimichthys crocea). Anim Reprod Sci 2020; 213:106271. [DOI: 10.1016/j.anireprosci.2019.106271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
|
15
|
Pasam B, Medicherla KM, Rathore RS, Upadhyayula RS. Molecular dynamics insights on the role β-augmentation of the peptide N-terminus with binding site β-hairpin of proprotein convertase subtilisin/kexin 9. Chem Biol Drug Des 2019; 94:2073-2083. [PMID: 31452340 DOI: 10.1111/cbdd.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 11/27/2022]
Abstract
PCSK9, a member of the proprotein convertase family, is a key negative regulator of hepatic low-density lipoprotein receptor (LDLR) concentrations in the blood plasma and is associated with the risk of coronary artery disease (CAD). Peptide inhibitors designed to block PCSK9-LDLR interactions could reduce the risk of CAD. We present a study of the interaction of a PCSK9 bound peptide and its design through modification by phosphorylation using molecular dynamics simulations. Extensive explicit solvent simulations of PCSK9 and its mutant (Asp374 → Tyr374) with designed peptides provide insights into the mechanism of peptide binding at the protein interface. We establish that β-augmentation is the key mechanism of peptide association with PCSK9. Position-specific phosphorylation of threonine residues is observed to have noticeable effect in modulating protein-peptide association. This study provides a handle to explore and improve the design of peptides bound to PCSK9 by incorporating knowledge-derived functional motifs into designing potent binders.
Collapse
Affiliation(s)
- Bhargavi Pasam
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.,Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Jaipur, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research (BISR), Jaipur, India
| | | | | |
Collapse
|
16
|
Effects of the Pentapeptide P33 on Memory and Synaptic Plasticity in APP/PS1 Transgenic Mice: A Novel Mechanism Presenting the Protein Fe65 as a Target. Int J Mol Sci 2019; 20:ijms20123050. [PMID: 31234498 PMCID: PMC6627374 DOI: 10.3390/ijms20123050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023] Open
Abstract
Regulated intramembrane proteolysis (RIP) of the amyloid precursor protein (APP) leads to the formation of fragments, among which the intracellular domain of APP (AICD) was also identified to be a causative of early pathological events. AICD-counteracting proteins, such as Fe65, may serve as alternative therapeutic targets of Alzheimer’s disease (AD). The detection of elevated levels of Fe65 in the brains of both human patients and APP transgenic mice may further strengthen the hypothesis that influencing the interaction between Fe65 and APP may have a beneficial effect on the course of AD. Based on a PXP motif, proven to bind to the WW domain of Fe65, a new pentapeptide was designed and tested. The impedimental effect of P33 on the production of beta amyloid (Aβ) (soluble fraction and aggregated plaques) and on the typical features of the AD pathology (decreased dendritic spine density, synaptic markers, elevated inflammatory reactions) was also demonstrated. Significant enhancements of both learning ability and memory function were observed in a Morris water maze paradigm. The results led us to formulate the theory that P33 acts by altering the conformation of Fe65 via binding to its WW domain, consequently hindering any interactions between Fe65 and key members involved in APP processing.
Collapse
|
17
|
Nayak T, Trotter J, Sakry D. The Intracellular Cleavage Product of the NG2 Proteoglycan Modulates Translation and Cell-Cycle Kinetics via Effects on mTORC1/FMRP Signaling. Front Cell Neurosci 2018; 12:231. [PMID: 30131676 PMCID: PMC6090502 DOI: 10.3389/fncel.2018.00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
The NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPCs) and is abundantly expressed by tumors such as melanoma and glioblastoma. Functions of NG2 include an influence on proliferation, migration and neuromodulation. Similar to other type-1 membrane proteins, NG2 undergoes proteolysis, generating a large ectodomain, a C-terminal fragment (CTF) and an intracellular domain (ICD) via sequential action of α- and γ-secretases which is enhanced by neuronal activity. Functional roles of NG2 have so far been shown for the full-length protein, the released ectodomain and CTF, but not for the ICD. In this study, we characterized the role of the NG2 ICD in OPC and Human Embryonic Kidney (HEK) cells. Overexpressed ICD is predominantly localized in the cell cytosol, including the distal processes of OPCs. Nuclear localisation of a fraction of the ICD is dependent on Nuclear Localisation Signals. Immunoprecipitation and Mass Spectrometry followed by functional analysis indicated that the NG2 ICD modulates mRNA translation and cell-cycle kinetics. In OPCs and HEK cells, ICD overexpression results in an mTORC1-dependent upregulation of translation, as well as a shift of the cell population toward S-phase. NG2 ICD increases the active (phosphorylated) form of mTOR and modulates downstream signaling cascades, including increased phosphorylation of p70S6K1 and increased expression of eEF2. Strikingly, levels of FMRP, an RNA-binding protein that is regulated by mTOR/p70S6K1/eEF2 were decreased. In neurons, FMRP acts as a translational repressor under activity-dependent control and is mutated in Fragile X Syndrome (FXS). Knock-down of endogenous NG2 in primary OPC reduced translation and mTOR/p70S6K1 phosphorylation in Oli-neu. Here, we identify the NG2 ICD as a regulator of translation in OPCs via modulation of the well-established mTORC1 pathway. We show that FXS-related FMRP signaling is not exclusive to neurons but plays a role in OPCs. This provides a signal cascade in OPC which can be influenced by the neuronal network, since the NG2 ICD has been shown to be generated by constitutive as well as activity-dependent cleavage. Our results also elucidate a possible role of NG2 in tumors exhibiting enhanced rates of translation and rapid cell cycle kinetics.
Collapse
Affiliation(s)
- Tanmoyita Nayak
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jacqueline Trotter
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dominik Sakry
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
18
|
Bobes RJ, Navarrete-Perea J, Ochoa-Leyva A, Anaya VH, Hernández M, Cervantes-Torres J, Estrada K, Sánchez-Lopez F, Soberón X, Rosas G, Nunes CM, García-Varela M, Sotelo-Mundo RR, López-Zavala AA, Gevorkian G, Acero G, Laclette JP, Fragoso G, Sciutto E. Experimental and Theoretical Approaches To Investigate the Immunogenicity of Taenia solium-Derived KE7 Antigen. Infect Immun 2017; 85:e00395-17. [PMID: 28923896 PMCID: PMC5695116 DOI: 10.1128/iai.00395-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/11/2017] [Indexed: 11/20/2022] Open
Abstract
Taenia solium cysticercosis, a parasitic disease that affects human health in various regions of the world, is preventable by vaccination. Both the 97-amino-acid-long KETc7 peptide and its carboxyl-terminal, 18-amino-acid-long sequence (GK-1) are found in Taenia crassiceps Both peptides have proven protective capacity against cysticercosis and are part of the highly conserved, cestode-native, 264-amino-acid long protein KE7. KE7 belongs to a ubiquitously distributed family of proteins associated with membrane processes and may participate in several vital cell pathways. The aim of this study was to identify the T. solium KE7 (TsKE7) full-length protein and to determine its immunogenic properties. Recombinant TsKE7 (rTsKE7) was expressed in Escherichia coli Rosetta2 cells and used to obtain mouse polyclonal antibodies. Anti-rTsKE7 antibodies detected the expected native protein among the 350 spots developed from T. solium cyst vesicular fluid in a mass spectrometry-coupled immune proteomic analysis. These antibodies were then used to screen a phage-displayed 7-random-peptide library to map B-cell epitopes. The recognized phages displayed 9 peptides, with the consensus motif Y(F/Y)PS sequence, which includes YYYPS (named GK-1M, for being a GK-1 mimotope), exactly matching a part of GK-1. GK-1M was recognized by 58% of serum samples from cysticercotic pigs with 100% specificity but induced weak protection against murine cysticercosis. In silico analysis revealed a universal T-cell epitope(s) in native TsKE7 potentially capable of stimulating cytotoxic T lymphocytes and helper T lymphocytes under different major histocompatibility complex class I and class II mouse haplotypes. Altogether, these results provide a rationale for the efficacy of the KETc7, rTsKE7, and GK-1 peptides as vaccines.
Collapse
Affiliation(s)
- Raúl J Bobes
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - José Navarrete-Perea
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
- Instituto Nacional de Medicina Genómica, México City, México
| | - Adrián Ochoa-Leyva
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Hugo Anaya
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | | | - Karel Estrada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Filiberto Sánchez-Lopez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Xavier Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Instituto Nacional de Medicina Genómica, México City, México
| | - Gabriela Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Cáris Maroni Nunes
- UNESP, Universidade Estadual Paulista, Department of Animal Health and Production, Araçatuba, SP, Brazil
| | - Martín García-Varela
- Instituto de Biología, Universidad Nacional Autónoma de México, México City, México
| | - Rogerio Rafael Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - Alonso Alexis López-Zavala
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Juan P Laclette
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
19
|
Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. J Virol 2017; 91:JVI.00812-17. [PMID: 28768865 DOI: 10.1128/jvi.00812-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV) is a member of the Filoviridae family and the cause of hemorrhagic fever outbreaks. The EBOV VP40 (eVP40) matrix protein is the main driving force for virion assembly and budding. Indeed, expression of eVP40 alone in mammalian cells results in the formation and budding of virus-like particles (VLPs) which mimic the budding process and morphology of authentic, infectious EBOV. To complete the budding process, eVP40 utilizes its PPXY L-domain motif to recruit a specific subset of host proteins containing one or more modular WW domains that then function to facilitate efficient production and release of eVP40 VLPs. In this report, we identified additional host WW-domain interactors by screening for potential interactions between mammalian proteins possessing one or more WW domains and WT or PPXY mutant peptides of eVP40. We identified the HECT family E3 ubiquitin ligase WWP1 and all four of its WW domains as strong interactors with the PPXY motif of eVP40. The eVP40-WWP1 interaction was confirmed by both peptide pulldown and coimmunoprecipitation assays, which also demonstrated that modular WW domain 1 of WWP1 was most critical for binding to eVP40. Importantly, the eVP40-WWP1 interaction was found to be biologically relevant for VLP budding since (i) small interfering RNA (siRNA) knockdown of endogenous WWP1 resulted in inhibition of eVP40 VLP egress, (ii) coexpression of WWP1 and eVP40 resulted in ubiquitination of eVP40 and a subsequent increase in eVP40 VLP egress, and (iii) an enzymatically inactive mutant of WWP1 (C890A) did not ubiquitinate eVP40 or enhance eVP40 VLP egress. Last, our data show that ubiquitination of eVP40 by WWP1 enhances egress of VLPs and concomitantly decreases cellular levels of higher-molecular-weight oligomers of eVP40. In sum, these findings contribute to our fundamental understanding of the functional interplay between host E3 ligases, ubiquitination, and regulation of EBOV VP40-mediated egress.IMPORTANCE Ebola virus (EBOV) is a high-priority, emerging human pathogen that can cause severe outbreaks of hemorrhagic fever with high mortality rates. As there are currently no approved vaccines or treatments for EBOV, a better understanding of the biology and functions of EBOV-host interactions that promote or inhibit viral budding is warranted. Here, we describe a physical and functional interaction between EBOV VP40 (eVP40) and WWP1, a host E3 ubiquitin ligase that ubiquitinates VP40 and regulates VLP egress. This viral PPXY-host WW domain-mediated interaction represents a potential new target for host-oriented inhibitors of EBOV egress.
Collapse
|
20
|
Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. Dev Biol 2017; 429:213-224. [PMID: 28663133 PMCID: PMC5554722 DOI: 10.1016/j.ydbio.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023]
Abstract
In many animals, maternally synthesized mRNAs are critical for primary germ layer formation. In Xenopus, several maternal mRNAs are enriched in the animal blastomere progenitors of the embryonic ectoderm. We previously identified one of these, WW-domain binding protein 2 N-terminal like (wbp2nl), that others previously characterized as a sperm protein (PAWP) that promotes meiotic resumption. Herein we demonstrate that it has an additional developmental role in regionalizing the embryonic ectoderm. Knock-down of Wbp2nl in the dorsal ectoderm reduced cranial placode and neural crest gene expression domains and expanded neural plate domains; knock-down in ventral ectoderm reduced epidermal gene expression. Conversely, increasing levels of Wbp2nl in the neural plate induced ectopic epidermal and neural crest gene expression and repressed many neural plate and cranial placode genes. The effects in the neural plate appear to be mediated, at least in part, by down-regulating chd, a BMP antagonist. Because the cellular function of Wbp2nl is not known, we mutated several predicted motifs. Expressing mutated proteins in embryos showed that a putative phosphorylation site at Thr45 and an α-helix in the PH-G domain are required to ectopically induce epidermal and neural crest genes in the neural plate. An intact YAP-binding motif also is required for ectopic epidermal gene expression as well as for down-regulating chd. This work reveals novel developmental roles for a cytoplasmic protein that promotes epidermal and neural crest formation at the expense of neural ectoderm.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Paaqua A Grant
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Sergey Yaklichkin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Johnson
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
21
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
22
|
Liang J, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Han Z, Harty RN. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathog 2017; 13:e1006132. [PMID: 28076420 PMCID: PMC5226679 DOI: 10.1371/journal.ppat.1006132] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Mechanobiology Institute and Institute for Molecular and Cell Biology (IMCB, A*STAR), Republic of Singapore
| | - Ziying Han
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
23
|
ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. J Virol 2016; 90:9163-71. [PMID: 27489272 DOI: 10.1128/jvi.01078-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Ebola virus (EBOV) and Marburg virus (MARV) belong to the Filoviridae family and can cause outbreaks of severe hemorrhagic fever, with high mortality rates in humans. The EBOV VP40 (eVP40) and MARV VP40 (mVP40) matrix proteins play a central role in virion assembly and egress, such that independent expression of VP40 leads to the production and egress of virus-like particles (VLPs) that accurately mimic the budding of infectious virus. Late (L) budding domains of eVP40 recruit host proteins (e.g., Tsg101, Nedd4, and Alix) that are important for efficient virus egress and spread. For example, the PPxY-type L domain of eVP40 and mVP40 recruits the host Nedd4 E3 ubiquitin ligase via its WW domains to facilitate budding. Here we sought to identify additional WW domain host interactors and demonstrate that the PPxY L domain motif of eVP40 interacts specifically with the WW domain of the host E3 ubiquitin ligase ITCH. ITCH, like Nedd4, is a member of the HECT class of E3 ubiquitin ligases, and the resultant physical and functional interaction with eVP40 facilitates VLP and virus budding. Identification of this novel eVP40 interactor highlights the functional interplay between cellular E3 ligases, ubiquitination, and regulation of VP40-mediated egress. IMPORTANCE The unprecedented magnitude and scope of the recent 2014-2015 EBOV outbreak in West Africa and its emergence here in the United States and other countries underscore the critical need for a better understanding of the biology and pathogenesis of this emerging pathogen. We have identified a novel and functional EBOV VP40 interactor, ITCH, that regulates VP40-mediated egress. This virus-host interaction may represent a new target for our previously identified small-molecule inhibitors of virus egress.
Collapse
|
24
|
Pucheta-Martinez E, D’Amelio N, Lelli M, Martinez-Torrecuadrada JL, Sudol M, Saladino G, Gervasio FL. Changes in the folding landscape of the WW domain provide a molecular mechanism for an inherited genetic syndrome. Sci Rep 2016; 6:30293. [PMID: 27456546 PMCID: PMC4960638 DOI: 10.1038/srep30293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/01/2016] [Indexed: 10/25/2022] Open
Abstract
WW domains are small domains present in many human proteins with a wide array of functions and acting through the recognition of proline-rich sequences. The WW domain belonging to polyglutamine tract-binding protein 1 (PQBP1) is of particular interest due to its direct involvement in several X chromosome-linked intellectual disabilities, including Golabi-Ito-Hall (GIH) syndrome, where a single point mutation (Y65C) correlates with the development of the disease. The mutant cannot bind to its natural ligand WBP11, which regulates mRNA processing. In this work we use high-field high-resolution NMR and enhanced sampling molecular dynamics simulations to gain insight into the molecular causes the disease. We find that the wild type protein is partially unfolded exchanging among multiple beta-strand-like conformations in solution. The Y65C mutation further destabilizes the residual fold and primes the protein for the formation of a disulphide bridge, which could be at the origin of the loss of function.
Collapse
Affiliation(s)
| | - Nicola D’Amelio
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Moreno Lelli
- University of Florence, Department of Chemistry, Magnetic Resonance Center (CERM), 50019 Sesto Fiorentino (FI), Italy
| | - Jorge L. Martinez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Marius Sudol
- Institute of Molecular and Cell Biology A*STAR, 61 Biopolis, Singapore 138673, Republic of Singapore
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore
- National University of Singapore, Department of Physiology, The Yong Loo Li School of Medicine, 2 Medical Drive, Singapore 117597, Republic of Singapore
| | - Giorgio Saladino
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Research Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, Poser I, Mann M, Hyman AA, Citi S. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem 2016; 291:11016-29. [PMID: 27044745 DOI: 10.1074/jbc.m115.712935] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 01/07/2023] Open
Abstract
PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions.
Collapse
Affiliation(s)
- Diego Guerrera
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Jimit Shah
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ekaterina Vasileva
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Sophie Sluysmans
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Isabelle Méan
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Lionel Jond
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ina Poser
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Matthias Mann
- the Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Anthony A Hyman
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Sandra Citi
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland,
| |
Collapse
|
26
|
Rodríguez-Muñoz R, Cárdenas-Aguayo MDC, Alemán V, Osorio B, Chávez-González O, Rendon A, Martínez-Rojas D, Meraz-Ríos MA. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons. PLoS One 2015; 10:e0137328. [PMID: 26378780 PMCID: PMC4574971 DOI: 10.1371/journal.pone.0137328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/19/2023] Open
Abstract
The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.
Collapse
Affiliation(s)
- Rafael Rodríguez-Muñoz
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - María del Carmen Cárdenas-Aguayo
- Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Víctor Alemán
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Beatriz Osorio
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Oscar Chávez-González
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Alvaro Rendon
- Institut de la Vision, UMR Inserm, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Université Pierre et Marie Curie, Paris, France
| | - Dalila Martínez-Rojas
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
- * E-mail: (MAMMR); (DMR)
| | - Marco Antonio Meraz-Ríos
- Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
- * E-mail: (MAMMR); (DMR)
| |
Collapse
|
27
|
Jiang J, Wang N, Jiang Y, Tan H, Zheng J, Chen G, Jia Z. Characterization of substrate binding of the WW domains in human WWP2 protein. FEBS Lett 2015; 589:1935-42. [PMID: 25999310 DOI: 10.1016/j.febslet.2015.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2.
Collapse
Affiliation(s)
- Jiahong Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Nan Wang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Yafei Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biochemical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
28
|
Koschek K, Durmaz V, Krylova O, Wieczorek M, Gupta S, Richter M, Bujotzek A, Fischer C, Haag R, Freund C, Weber M, Rademann J. Peptide-polymer ligands for a tandem WW-domain, an adaptive multivalent protein-protein interaction: lessons on the thermodynamic fitness of flexible ligands. Beilstein J Org Chem 2015; 11:837-47. [PMID: 26124884 PMCID: PMC4464424 DOI: 10.3762/bjoc.11.93] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Three polymers, poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), hyperbranched polyglycerol (hPG), and dextran were investigated as carriers for multivalent ligands targeting the adaptive tandem WW-domain of formin-binding protein (FBP21). Polymer carriers were conjugated with 3–9 copies of the proline-rich decapeptide GPPPRGPPPR-NH2 (P1). Binding of the obtained peptide–polymer conjugates to the tandem WW-domain was investigated employing isothermal titration calorimetry (ITC) to determine the binding affinity, the enthalpic and entropic contributions to free binding energy, and the stoichiometry of binding for all peptide–polymer conjugates. Binding affinities of all multivalent ligands were in the µM range, strongly amplified compared to the monovalent ligand P1 with a KD > 1 mM. In addition, concise differences were observed, pHPMA and hPG carriers showed moderate affinity and bound 2.3–2.8 peptides per protein binding site resulting in the formation of aggregates. Dextran-based conjugates displayed affinities down to 1.2 µM, forming complexes with low stoichiometry, and no precipitation. Experimental results were compared with parameters obtained from molecular dynamics simulations in order to understand the observed differences between the three carrier materials. In summary, the more rigid and condensed peptide–polymer conjugates based on the dextran scaffold seem to be superior to induce multivalent binding and to increase affinity, while the more flexible and dendritic polymers, pHPMA and hPG are suitable to induce crosslinking upon binding.
Collapse
Affiliation(s)
- Katharina Koschek
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany ; Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Wiener Str. 12, 28359 Bremen, Germany
| | - Vedat Durmaz
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany
| | - Oxana Krylova
- Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marek Wieczorek
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Shilpi Gupta
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Martin Richter
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alexander Bujotzek
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany
| | - Christina Fischer
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christian Freund
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marcus Weber
- Konrad-Zuse-Zentrum für Informationstechnik Berlin, Numerical Analysis and Modelling, Takustr. 7, 14195 Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
29
|
Sakry D, Yigit H, Dimou L, Trotter J. Oligodendrocyte precursor cells synthesize neuromodulatory factors. PLoS One 2015; 10:e0127222. [PMID: 25966014 PMCID: PMC4429067 DOI: 10.1371/journal.pone.0127222] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/13/2015] [Indexed: 12/20/2022] Open
Abstract
NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling.
Collapse
Affiliation(s)
- Dominik Sakry
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
- * E-mail: (JT); (DS)
| | - Hatice Yigit
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, D-80336 Munich, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University Mainz, D-55122 Mainz, Germany
- * E-mail: (JT); (DS)
| |
Collapse
|
30
|
Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C. Nuclear and extranuclear effects of vitamin A. Can J Physiol Pharmacol 2015; 93:1065-75. [PMID: 26459513 DOI: 10.1139/cjpp-2014-0522] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin A or retinol is a multifunctional vitamin that is essential at all stages of life from embryogenesis to adulthood. Up to now, it has been accepted that the effects of vitamin A are exerted by active metabolites, the major ones being 11-cis retinal for vision, and all trans-retinoic acid (RA) for cell growth and differentiation. Basically RA binds nuclear receptors, RARs, which regulate the expression of a battery of target genes in a ligand dependent manner. During the last decade, new scenarios have been discovered, providing a rationale for the understanding of other long-noted but not explained functions of retinol. These novel scenarios involve: (i) other nuclear receptors such as PPAR β/δ, which regulate the expression of other target genes with other functions; (ii) extranuclear and nontranscriptional effects, such as the activation of kinases, which phosphorylate RARs and other transcription factors, thus expanding the list of the RA-activated genes; (iii) finally, vitamin A is active per se and can work as a cytokine that regulates gene transcription by activating STRA6. New effects of vitamin A and RA are continuously being discovered in new fields, revealing new targets and new mechanisms thus improving the understanding the pleiotropicity of their effects.
Collapse
Affiliation(s)
- Madina Iskakova
- a Division of Cell Biology and Cell Line Development, The International Biotechnology Center « Generium », Vladimirskaya Street 14, Volginsky, 601125, Russian Federation
| | - Mikhail Karbyshev
- a Division of Cell Biology and Cell Line Development, The International Biotechnology Center « Generium », Vladimirskaya Street 14, Volginsky, 601125, Russian Federation
| | - Aleksandr Piskunov
- a Division of Cell Biology and Cell Line Development, The International Biotechnology Center « Generium », Vladimirskaya Street 14, Volginsky, 601125, Russian Federation
| | - Cécile Rochette-Egly
- b Department of Functional Genomics and Cancer, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| |
Collapse
|
31
|
Mantovani F, Zannini A, Rustighi A, Del Sal G. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta Gen Subj 2015; 1850:2048-60. [PMID: 25641576 DOI: 10.1016/j.bbagen.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. SCOPE OF REVIEW p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. MAJOR CONCLUSIONS The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. GENERAL SIGNIFICANCE The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
32
|
Schuchardt BJ, Mikles DC, Hoang LM, Bhat V, McDonald CB, Sudol M, Farooq A. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity. FEBS J 2014; 281:5532-51. [PMID: 25283809 DOI: 10.1111/febs.13095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 11/30/2022]
Abstract
YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.
Collapse
Affiliation(s)
- Brett J Schuchardt
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
34
|
Reading BJ, Hiramatsu N, Schilling J, Molloy KT, Glassbrook N, Mizuta H, Luo W, Baltzegar DA, Williams VN, Todo T, Hara A, Sullivan CV. Lrp13 is a novel vertebrate lipoprotein receptor that binds vitellogenins in teleost fishes. J Lipid Res 2014; 55:2287-95. [PMID: 25217480 DOI: 10.1194/jlr.m050286] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.
Collapse
Affiliation(s)
- Benjamin J Reading
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Justin Schilling
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Katelyn T Molloy
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Norm Glassbrook
- Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC
| | - Hiroko Mizuta
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Wenshu Luo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | | | - Valerie N Williams
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Takashi Todo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Akihiko Hara
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Craig V Sullivan
- Biological Sciences, North Carolina State University, Raleigh, NC Carolina AquaGyn, Raleigh, NC
| |
Collapse
|
35
|
Nallet-Staub F, Marsaud V, Li L, Gilbert C, Dodier S, Bataille V, Sudol M, Herlyn M, Mauviel A. Pro-invasive activity of the Hippo pathway effectors YAP and TAZ in cutaneous melanoma. J Invest Dermatol 2013; 134:123-132. [PMID: 23897276 PMCID: PMC3938155 DOI: 10.1038/jid.2013.319] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 01/03/2023]
Abstract
YAP and its paralog protein TAZ are downstream effectors of the Hippo pathway. Both are amplified in many human cancers and promote cell proliferation and epithelial-mesenchymal transition. Little is known about the status of the Hippo pathway in cutaneous melanoma. We profiled Hippo pathway component expression in a panel of human melanoma cell lines and melanocytic lesions, and characterized the capacity of YAP and TAZ to control melanoma cell behavior. YAP and TAZ immuno-staining in human samples revealed mixed cytoplasmic and nuclear staining for both proteins in benign nevi and superficial spreading melanoma. TAZ was expressed at higher levels than YAP1/2 in all cell lines and in those with high invasive potential. Stable YAP or TAZ knockdown dramatically reduced the expression of the classical Hippo target CCN2/connective-tissue growth factor (CTGF), as well as anchorage-independent growth, capacity to invade Matrigel, and ability form lung metastases in mice following tail-vein injection. YAP knockdown also reduced invasion in a model of skin reconstruct. Inversely, YAP overexpression increased melanoma cell invasiveness, associated with increased TEA domain-dependent transcription and CCN2/CTGF expression. Together, these results demonstrate that both YAP and TAZ contribute to the invasive and metastatic capacity of melanoma cells and may represent worthy targets for therapeutic intervention.
Collapse
Affiliation(s)
- Flore Nallet-Staub
- Team "TGF-β and Oncogenesis", Centre de Recherche, Institut Curie, Orsay, France; INSERM U1021, Orsay, France; CNRS UMR 3347, Orsay, France
| | - Véronique Marsaud
- Team "TGF-β and Oncogenesis", Centre de Recherche, Institut Curie, Orsay, France; INSERM U1021, Orsay, France; CNRS UMR 3347, Orsay, France
| | - Ling Li
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Cristèle Gilbert
- Team "TGF-β and Oncogenesis", Centre de Recherche, Institut Curie, Orsay, France; INSERM U1021, Orsay, France; CNRS UMR 3347, Orsay, France
| | - Sophie Dodier
- Team "TGF-β and Oncogenesis", Centre de Recherche, Institut Curie, Orsay, France; INSERM U1021, Orsay, France; CNRS UMR 3347, Orsay, France
| | | | - Marius Sudol
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | | | - Alain Mauviel
- Team "TGF-β and Oncogenesis", Centre de Recherche, Institut Curie, Orsay, France; INSERM U1021, Orsay, France; CNRS UMR 3347, Orsay, France.
| |
Collapse
|
36
|
Yazicioglu MN, Monaldini L, Chu K, Khazi FR, Murphy SL, Huang H, Margaritis P, High KA. Cellular localization and characterization of cytosolic binding partners for Gla domain-containing proteins PRRG4 and PRRG2. J Biol Chem 2013; 288:25908-25914. [PMID: 23873930 PMCID: PMC3764795 DOI: 10.1074/jbc.m113.484683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genes encoding a family of proteins termed proline-rich γ-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular γ-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins.
Collapse
Affiliation(s)
- Mustafa N Yazicioglu
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Luca Monaldini
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Kirk Chu
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Fayaz R Khazi
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Samuel L Murphy
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Heshu Huang
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Paris Margaritis
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104,; the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Katherine A High
- From the Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104,; the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, and; the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.
| |
Collapse
|
37
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
38
|
Lemos RR, Ferreira J, Keasey MP, Oliveira JR. An Update on Primary Familial Brain Calcification. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 110:349-71. [DOI: 10.1016/b978-0-12-410502-7.00015-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Non-destructive inhibition of metallofullerenol Gd@C(82)(OH)(22) on WW domain: implication on signal transduction pathway. Sci Rep 2012; 2:957. [PMID: 23233876 PMCID: PMC3518810 DOI: 10.1038/srep00957] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/30/2012] [Indexed: 11/09/2022] Open
Abstract
Endohedral metallofullerenol Gd@C82(OH)22 has recently been shown to effectively inhibit tumor growth; however, its potential adverse bioeffects remain to be understood before its wider applications. Here, we present our study on the interaction between Gd@C82(OH)22 and WW domain, a representative protein domain involved in signaling and regulatory pathway, using all-atom explicit solvent molecular dynamics simulations. We find that Gd@C82(OH)22 has an intrinsic binding preference to the binding groove, particularly the key signature residues Y28 and W39. In its binding competition with the native ligand PRM, Gd@C82(OH)22 is shown to easily win the competition over PRM in occupying the active site, implying that Gd@C82(OH)22 can impose a potential inhibitory effect on the WW domain. Further analyses with binding free energy landscapes reveal that Gd@C82(OH)22 can not only directly block the binding site of the WW domain, but also effectively distract the PRM from its native binding pocket.
Collapse
|
40
|
Huang JM, Nagatomo I, Suzuki E, Mizuno T, Kumagai T, Berezov A, Zhang H, Karlan B, Greene MI, Wang Q. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 2012; 32:2220-9. [PMID: 22689061 PMCID: PMC3443515 DOI: 10.1038/onc.2012.231] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Yes-associated protein (YAP) is a transcriptional factor involved in tissue development and tumorigenesis. Although YAP has been recognized as a key element of the Hippo signaling pathway, the mechanisms that regulate YAP activities remain to be fully characterized. In this study, we demonstrate that the non-receptor type protein tyrosine phosphatase 14 (PTPN14) functions as a negative regulator of YAP. We show that YAP forms a protein complex with PTPN14 through the WW domains of YAP and the PPXY motifs of PTPN14. In addition, PTPN14 inhibits YAP-mediated transcriptional activities. Knockdown of YAP sensitizes cancer cells to various anti-cancer agents, such as cisplatin, the EGFR tyrosine kinase inhibitor erlotinib, and the small-molecule antagonist of survivin, S12. YAP-targeted modalities may be used in combination with other cancer drugs to achieve maximal therapeutic effects.
Collapse
Affiliation(s)
- J-M Huang
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Degradation of mutant huntingtin via the ubiquitin/proteasome system is modulated by FE65. Biochem J 2012; 443:681-9. [PMID: 22352297 DOI: 10.1042/bj20112175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An unstable expansion of the polyglutamine repeat within exon 1 of the protein Htt (huntingtin) causes HD (Huntington's disease). Mounting evidence shows that accumulation of N-terminal mutant Htt fragments is the source of disruption of normal cellular processes which ultimately leads to neuronal cell death. Understanding the degradation mechanism of mutant Htt and improving its clearance has emerged as a new direction in developing therapeutic approaches to treat HD. In the present study we show that the brain-enriched adaptor protein FE65 is a novel interacting partner of Htt. The binding is mediated through WW-polyproline interaction and is dependent on the length of the polyglutamine tract. Interestingly, a reduction in mutant Htt protein level was observed in FE65-knockdown cells, and the process requires the UPS (ubiquitin/proteasome system). Moreover, the ubiquitination level of mutant Htt was found to be enhanced when FE65 is knocked down. Immunofluroescence staining revealed that FE65 associates with mutant Htt aggregates. Additionally, we demonstrated that overexpression of FE65 increases mutant Htt-induced cell death both in vitro and in vivo. These results suggest that FE65 facilitates the accumulation of mutant Htt in cells by preventing its degradation via the UPS, and thereby enhances the toxicity of mutant Htt.
Collapse
|
42
|
Abstract
The cyclin-dependent kinases (Cdks) regulate many cellular processes, including the cell cycle, neuronal development, transcription, and posttranscriptional processing. To perform their functions, Cdks bind to specific cyclin subunits to form a functional and active cyclin/Cdk complex. This review is focused on Cyclin K, which was originally considered an alternative subunit of Cdk9, and on its newly identified partners, Cdk12 and Cdk13. We briefly summarize research devoted to each of these proteins. We also discuss the proteins' functions in the regulation of gene expression via the phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II, contributions to the maintenance of genome stability, and roles in the onset of human disease and embryo development.
Collapse
Affiliation(s)
- Jiri Kohoutek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| | | |
Collapse
|
43
|
Rees M, Gorba C, de Chiara C, Bui TTT, Garcia-Maya M, Drake AF, Okazawa H, Pastore A, Svergun D, Chen YW. Solution model of the intrinsically disordered polyglutamine tract-binding protein-1. Biophys J 2012; 102:1608-16. [PMID: 22500761 DOI: 10.1016/j.bpj.2012.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/30/2012] [Accepted: 02/13/2012] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine tract-binding protein-1 (PQBP-1) is a 265-residue nuclear protein that is involved in transcriptional regulation. In addition to its role in the molecular pathology of the polyglutamine expansion diseases, mutations of the protein are associated with X-linked mental retardation. PQBP-1 binds specifically to glutamine repeat sequences and proline-rich regions, and interacts with RNA polymerase II and the spliceosomal protein U5-15kD. In this work, we obtained a biophysical characterization of this protein by employing complementary structural methods. PQBP-1 is shown to be a moderately compact but largely disordered molecule with an elongated shape, having a Stokes radius of 3.7 nm and a maximum molecular dimension of 13 nm. The protein is monomeric in solution, has residual β-structure, and is in a premolten globule state that is unaffected by natural osmolytes. Using small-angle x-ray scattering data, we were able to generate a low-resolution, three-dimensional model of PQBP-1.
Collapse
Affiliation(s)
- Martin Rees
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Molecular insights into the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1. FEBS Lett 2012; 586:2795-9. [PMID: 22710169 DOI: 10.1016/j.febslet.2012.03.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 11/23/2022]
Abstract
The WW domain-containing PQBP1 (polyglutamine tract-binding protein 1) protein regulates mRNA processing and gene transcription. Mutations in the PQBP1 gene were reported in several X chromosome-linked intellectual disability (XLID) disorders, including Golabi-Ito-Hall (GIH) syndrome. The missense mutation in the GIH syndrome maps within a functional region of the PQBP1 protein known as the WW domain. The causative mutation of PQBP1 replaces the conserved tyrosine (Y) at position 65 within the aromatic core of the WW domain to cysteine (C), which is a chemically significant change. In this short review, we analyze structural models of the Y65C mutated and wild type WW domains of PQBP1 in order to infer potential molecular mechanisms that render the mutated PQBP1 protein inactive in terms of ligand binding and its function as a regulator of mRNA splicing.
Collapse
|
45
|
Kim MY, Mo JS, Ann EJ, Yoon JH, Park HS. Dual regulation of notch1 signaling pathway by adaptor protein fe65. J Biol Chem 2011; 287:4690-701. [PMID: 22199353 DOI: 10.1074/jbc.m111.289637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Notch1 receptor functions as a critical controller of cell fate decisions and also as a key regulator of cell growth, differentiation, and proliferation in invertebrates and vertebrates. In this study, we have demonstrated that the adaptor protein Fe65 attenuates Notch1 signaling via the accelerated degradation of the membrane-tethered Notch1 in the cytoplasm. Fe65 also suppresses Notch1 transcriptional activity via the dissociation of the Notch1-IC-recombining binding protein suppressor of hairless (RBP)-Jk complex within the nucleus. Fe65 is capable of forming a trimeric complex with Itch and membrane-tethered Notch1, and Fe65 enhances the protein degradation of membrane-tethered Notch1 via an Itch-dependent proteasomal pathway. Collectively, our results demonstrate that Fe65 carries out different functions depending on its location in the regulation of Notch1 signaling.
Collapse
Affiliation(s)
- Mi-Yeon Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Görnemann J, Barrandon C, Hujer K, Rutz B, Rigaut G, Kotovic KM, Faux C, Neugebauer KM, Séraphin B. Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. RNA (NEW YORK, N.Y.) 2011; 17:2119-29. [PMID: 22020974 PMCID: PMC3222125 DOI: 10.1261/rna.02646811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Complex cellular functions involve large networks of interactions. Pre-mRNA splicing and transcription are thought to be coupled by the C-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). In yeast, the U1 snRNP subunit Prp40 was proposed to mediate cotranscriptional recruitment of early splicing factors through binding of its WW domains to the Pol II CTD. Here we investigate the role of Prp40 in splicing with an emphasis on the role of the WW domains, which might confer protein-protein interactions among the splicing and transcriptional machineries. Affinity purification revealed that Prp40 and Snu71 form a stable heterodimer that stably associates with the U1 snRNP only in the presence of Nam8, a known regulator of 5' splice site recognition. However, the Prp40 WW domains were dispensable for yeast viability. In their absence, no defect in splicing in vivo, U1 or U2 snRNP recruitment in vivo, or early splicing complex assembly in vitro was detected. We conclude that the WW domains of Prp40 do not mediate essential coupling between U1 snRNP and Pol II. Instead, delays in cotranscriptional U5 snRNP and Prp19 recruitment and altered spliceosome formation in vitro suggest that Prp40 WW domains assist in late steps of spliceosome assembly.
Collapse
Affiliation(s)
- Janina Görnemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Katja Hujer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | - Kimberly M. Kotovic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Céline Faux
- CGM, CNRS, 91198 Gif sur Yvette Cedex, France
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, 67404 Illkirch, France
| | - Karla M. Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Corresponding authors.E-mail E-mail .
| | - Bertrand Séraphin
- CGM, CNRS, 91198 Gif sur Yvette Cedex, France
- EMBL, D-69117 Heidelberg, Germany
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, 67404 Illkirch, France
- Corresponding authors.E-mail E-mail .
| |
Collapse
|
47
|
Abstract
The Hippo pathway, a signaling cascade that controls cell cycle progression, apoptosis and cell differentiation, has emerged as a fundamental regulator of many physiological and pathological processes. Recent studies have revealed a complex network of interactions directing Hippo pathway activity, and have connected this pathway with other key signaling pathways. Such crosstalk has uncovered novel roles for Hippo signaling, including regulation of TGFβ/SMAD and WNT/β-catenin pathways. This review highlights some of the recent findings in the Hippo field with an emphasis on how the Hippo pathway is integrated with other pathways to mediate diverse processes.
Collapse
|
48
|
Espanel X, Navin N, Kato Y, Tanokura M, Sudol M. Probing WW Domains to Uncover and Refine Determinants of Specificity in Ligand Recognition. Cytotechnology 2011; 43:105-11. [PMID: 19003214 PMCID: PMC3449593 DOI: 10.1023/b:cyto.0000039913.56708.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the specificity of protein-protein interaction mediated by domains and their ligands will have strong impact on basic and applied research. Visual inspection of WW domain sequences prompted a general classification of the domains into two large subfamilies. One subfamily contains two consecutive aromatic residues in the beta 2 strand of the domain whereas the other contains three or four consecutive aromatic residues in the same position. In the recent past, we proposed a rule of 'two vs. three aromatics' in the beta 2 strand of WW domains as a molecular discriminator between Class I and Class II WW domains, which recognize PPxY or PPLP motifs, respectively. Using phage display libraries expressing WW domains with random sequences replacing a part of the beta 2 strand, we provided additional evidence supporting our rule. We conclude that three consecutive aromatic amino acids within the beta 2 strand of WW domain are required but not always sufficient for the WW domain to belong to Class II.
Collapse
Affiliation(s)
- X Espanel
- Sanofi-Synthelabo, Labege Innopole Voie 1, 31676, Labege, France
| | | | | | | | | |
Collapse
|
49
|
Zhang F, Yu X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 2011; 41:384-97. [PMID: 21329877 DOI: 10.1016/j.molcel.2011.01.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/11/2010] [Accepted: 12/22/2010] [Indexed: 10/24/2022]
Abstract
Histone H2B ubiquitination plays an important role in regulating chromatin organization during gene transcription. It has been shown that RNF20/40 regulates H2B ubiquitination. Here, using protein affinity purification, we have identified WAC as a functional partner of RNF20/40. Depletion of WAC abolishes H2B ubiquitination. WAC interacts with RNF20/40 through its C-terminal coiled-coil region and promotes RNF20/40 s E3 ligase activity for H2B ubiquitination. The N-terminal WW domain of WAC recognizes RNA polymerase II. During gene transcription, WAC targets RNF20/40 to associate with RNA polymerase II complex for H2B ubiquitination at active transcription sites, which regulates transcription. Moreover, WAC-dependent transcription is important for cell-cycle checkpoint activation in response to genotoxic stress. Taken together, our results demonstrate an important regulator for transcription-coupled histone H2B ubiquitination.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
50
|
PRKX critically regulates endothelial cell proliferation, migration, and vascular-like structure formation. Dev Biol 2011; 356:475-85. [PMID: 21684272 DOI: 10.1016/j.ydbio.2011.05.673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 11/21/2022]
Abstract
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.
Collapse
|