1
|
Ball J, Gannavaram S, Gadda G. Structural determinants for substrate specificity of flavoenzymes oxidizing d-amino acids. Arch Biochem Biophys 2018; 660:87-96. [PMID: 30312594 DOI: 10.1016/j.abb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
The oxidation of d-amino acids is relevant to neurodegenerative diseases, detoxification, and nutrition in microorganisms and mammals. It is also important for the resolution of racemic amino acid mixtures and the preparation of chiral building blocks for the pharmaceutical and food industry. Considerable biochemical and structural knowledge has been accrued in recent years on the enzymes that carry out the oxidation of the Cα-N bond of d-amino acids. These enzymes contain FAD as a required coenzyme, share similar overall three-dimensional folds and highly conserved active sites, but differ in their specificity for substrates with neutral, anionic, or cationic side-chains. Here, we summarize the current biochemical and structural knowledge regarding substrate specificity on d-amino acid oxidase, d-aspartate oxidase, and d-arginine dehydrogenase for which a wealth of biochemical and structural studies is available.
Collapse
Affiliation(s)
- Jacob Ball
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Swathi Gannavaram
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Giovanni Gadda
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; Departments of Biology, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
2
|
Wünsch M, Schröder D, Fröhr T, Teichmann L, Hedwig S, Janson N, Belu C, Simon J, Heidemeyer S, Holtkamp P, Rudlof J, Klemme L, Hinzmann A, Neumann B, Stammler HG, Sewald N. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics. Beilstein J Org Chem 2017; 13:2428-2441. [PMID: 29234470 PMCID: PMC5704752 DOI: 10.3762/bjoc.13.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman's chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilyl)ethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cyclo)alkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics.
Collapse
Affiliation(s)
- Matthias Wünsch
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - David Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Tanja Fröhr
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lisa Teichmann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sebastian Hedwig
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Nils Janson
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Clara Belu
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jasmin Simon
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Shari Heidemeyer
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Philipp Holtkamp
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jens Rudlof
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Lennard Klemme
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alessa Hinzmann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
3
|
Abstract
Homochirality is fundamental for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, D- amino acids were recently detected in various living organisms, including mammals. Of these D-amino acids, D-serine has been most extensively studied. D-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl- D-aspartate receptor (NMDAr). D-Serine binds with high affinity to a co-agonist site at the NMDAr and, along with glutamate, mediates several vital physiological and pathological processes, including NMDAr transmission, synaptic plasticity and neurotoxicity. Therefore, a key role for D-serine as a determinant of NMDAr mediated neurotransmission in mammalian CNS has been suggested. In this context, we review the known functions of D-serine in human physiology, such as CNS development, and pathology, such as neuro-psychiatric and neurodegenerative diseases related to NMDAr dysfunction.
Collapse
|
4
|
Pedotti M, Ghisla S, Motteran L, Molla G, Pollegioni L. Catalytic and redox properties of glycine oxidase from Bacillus subtilis. Biochimie 2009; 91:604-12. [DOI: 10.1016/j.biochi.2009.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
5
|
Setyawati MI, Chien LJ, Lee CK. Self-immobilized recombinant Acetobacter xylinum for biotransformation. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Fuchs SA, Berger R, Klomp LWJ, de Koning TJ. D-amino acids in the central nervous system in health and disease. Mol Genet Metab 2005; 85:168-80. [PMID: 15979028 DOI: 10.1016/j.ymgme.2005.03.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/05/2005] [Accepted: 03/09/2005] [Indexed: 11/13/2022]
Abstract
Recent evidence has shown that d-amino acids are present in animals and humans in high concentrations and fulfill specific biological functions. In the central nervous system, two d-amino acids, d-serine and d-aspartate, occur in considerable concentrations. d-Serine is synthesized and metabolized endogenously and the same might account for d-aspartate. d-Serine has been studied most extensively and was shown to play a role in excitatory amino acid metabolism, being a co-agonist of the N-methyl-d-aspartate (NMDA) receptor. Insight into d-serine metabolism is relevant for physiological NMDA receptor (NMDAr) activation and for all the disorders associated with an altered function of the NMDAr, such as schizophrenia, ischemia, epilepsy, and neurodegenerative disorders. d-Aspartate appears to play a role in development and endocrine function, but the precise function of d-aspartate and other d-amino acids in animals and humans requires further investigation. As d-amino acids play biological roles, alterations in the concentrations of d-amino acids might occur in some disorders and relate to the pathogenesis of these disorders. d-Amino acid concentrations may then not only help in the diagnostic process, but also provide novel therapeutic targets. Consequently, the presence and important roles of d-amino acids in higher organisms do not only challenge former theories on mammalian physiology, but also contribute to exciting new insights in human disease.
Collapse
Affiliation(s)
- Sabine A Fuchs
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
7
|
D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/pl00021754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0050-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Meurisse R, Brasseur R, Thomas A. Aromatic side-chain interactions in proteins: Near- and far-sequence Tyr-X pairs. Proteins 2003; 54:478-90. [PMID: 14747996 DOI: 10.1002/prot.10582] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present study, an extensive analysis of the aromatic Tyr-X interactions is performed on a data set of 593 PDB structures, X being Phe, His, Tyr, and Trp. The nonredundant Tyr-X pairs (2645) were retained and separated by both the residue distance in the sequence and the secondary structures they bridge. Similar to the Phe-X and His-X pairs, the far-sequence Tyr-X pairs (X partner > five apart in the sequence: 74%) show comparable secondary structures and conformers for either type of X partner, in contrast with the near-sequence Tyr-X pairs (26%). As the Phe-X pairs, the near-sequence Tyr-X pairs stabilize secondary structures, mainly the alpha- helices (positions 1, 3, and 4) and the beta-strands (position 2). Like the Phe-X and His-X pairs, most far-sequence Tyr-X pairs (34%) bridge beta-strands and only 11% bridge helices. As for the Phe-X and the His-X pairs, the X partners of the far-sequence Tyr-X pairs are frequently "above" the tyrosine ring with tilted and normal rings, whereas the X partner of the near-sequence Tyr-X pairs gradually moves from the "aside" to the "above" location, together with a progressive decrease of normal and increase of parallel rings, respectively. Unlike the His-X pairs, the interactions of the hetroatom in Tyr-X pairs are only favored with a sequence position +4 and over, owing to the spatial accessibility of the heteroatom.
Collapse
Affiliation(s)
- Rita Meurisse
- Centre de Biophysique Moléculaire Numérique, Faculté Scientifique Agronomique de Gembloux, Gembloux, Belgium.
| | | | | |
Collapse
|
11
|
Boselli A, Sacchi S, Job V, Pilone MS, Pollegioni L. Role of tyrosine 238 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4762-71. [PMID: 12354107 DOI: 10.1046/j.1432-1033.2002.t01-1-03173.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Y238, one of the very few conserved residues in the active site of d-amino acid oxidases (DAAO), was mutated to phenylalanine and serine in the enzyme from the yeast Rhodotorula gracilis. The mutated proteins are catalytically competent thus eliminating Tyr238 as an active-site acid/base catalyst. Y238F and Y238S mutants exhibit a threefold slower turnover on d-alanine as substrate, which can be attributed to a slower rate of product release relative to the wild-type enzyme (a change of the rate constants for substrate binding was also evident). The Y238 DAAO mutants have spectral properties similar to those of the wild-type enzyme but the degree of stabilization of the flavin semiquinone and the redox properties in the free form of Y238S are different. The binding of the carboxylic acid competitive inhibitors and the substrate d-alanine are changed only slightly, suggesting that the overall substrate binding pocket remains intact. In agreement with data from the pH dependence of ligand binding and with the protein crystal structure, site-directed mutagenesis results emphasize the importance of residue Y238 in controlling access to the active site instead of a role in the substrate/ligand interaction.
Collapse
Affiliation(s)
- Angelo Boselli
- Department of Structural and Functional Biology, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
12
|
Sacchi S, Lorenzi S, Molla G, Pilone MS, Rossetti C, Pollegioni L. Engineering the substrate specificity of D-amino-acid oxidase. J Biol Chem 2002; 277:27510-6. [PMID: 12021281 DOI: 10.1074/jbc.m203946200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high resolution crystal structure of D-amino-acid oxidase (DAAO) from the yeast Rhodotorula gracilis provided us with the tool to engineer the substrate specificity of this flavo-oxidase. DAAO catalyzes the oxidative deamination of D-amino acids, with the exception of D-aspartate and D-glutamate (which are oxidized by D-aspartate oxidase, DASPO). Following sequence homology, molecular modeling, and simulated annealing docking analyses, the active site residue Met-213 was mutated to arginine. The mutant enzyme showed properties close to those of DASPO (e.g. the oxidation of D-aspartate and the binding of l-tartrate), and it was still active on D-alanine. The presence of an additional guanidinium group in the active site of the DAAO mutant allowed the binding (and thus the oxidation) of D-aspartate, but it was also responsible for a lower catalytic activity on D-alanine. Similar results were also obtained when two additional arginines were simultaneously introduced in the active site of DAAO (M213R/Y238R mutant, yielding an architecture of the active site more similar to that obtained for the DASPO model), but the double mutant showed very low stability in solution. The decrease in maximal activity observed with these DAAO mutants could be due to alterations in the precise orbital alignment required for efficient catalysis, although even the change in the redox properties (more evident in the DAAO-benzoate complex) could play a role. The rational design approach was successful in producing an enzymatic activity with a new, broader substrate specificity, and this approach could also be used to develop DAAO variants suitable for use in biotechnological applications.
Collapse
Affiliation(s)
- Silvia Sacchi
- Department of Structural and Functional Biology, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Bibliography. Current awareness on yeast. Yeast 2002; 19:467-74. [PMID: 11921095 DOI: 10.1002/yea.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|