1
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
2
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kanduser M, Kokalj Imsirovic M, Usaj M. The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro. J Membr Biol 2019; 252:105-114. [DOI: 10.1007/s00232-019-00059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
4
|
Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci 2017; 249:248-271. [PMID: 28499600 DOI: 10.1016/j.cis.2017.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
The present review focuses on the effects of pulsed electric fields on lipid vesicles ranging from giant unilamellar vesicles (GUVs) to small unilamellar vesicles (SUVs), from both fundamental and applicative perspectives. Lipid vesicles are the most popular model membrane systems for studying biophysical and biological processes in living cells. Furthermore, as vesicles are made from biocompatible and biodegradable materials, they provide a strategy to create safe and functionalized drug delivery systems in health-care applications. Exposure of lipid vesicles to pulsed electric fields is a common physical method to transiently increase the permeability of the lipid membrane. This method, termed electroporation, has shown many advantages for delivering exogenous molecules including drugs and genetic material into vesicles and living cells. In addition, electroporation can be applied to induce fusion between vesicles and/or cells. First, we discuss in detail how research on cell-size GUVs as model cell systems has provided novel insight into the basic mechanisms of cell electroporation and associated phenomena. Afterwards, we continue with a thorough overview how electroporation and electrofusion have been used as versatile methods to manipulate vesicles of all sizes in different biomedical applications. We conclude by summarizing the open questions in the field of electroporation and possible future directions for vesicles in the biomedical field.
Collapse
|
5
|
Ciobanu F, Golzio M, Kovacs E, Teissié J. Control by Low Levels of Calcium of Mammalian Cell Membrane Electropermeabilization. J Membr Biol 2017; 251:221-228. [PMID: 28823021 DOI: 10.1007/s00232-017-9981-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Electric pulses, when applied to a cell suspension, induce a reversible permeabilization of the plasma membrane. This permeabilized state is a long-lived process (minutes). The biophysical molecular mechanisms supporting the membrane reorganization associated to its permeabilization remain poorly understood. Modeling the transmembrane structures as toroidal lipidic pores cannot explain why they are long-lived and why their resealing is under the control of the ATP level. Our results describe the effect of the level of free Calcium ions. Permeabilization induces a Ca2+ burst as previously shown by imaging of cells loaded with Fluo-3. But this sharp increase is reversible even when Calcium is present at a millimolar concentration. Viability is preserved to a larger extent when submillimolar concentrations are used. The effect of calcium ions is occurring during the resealing step not during the creation of permeabilization as the same effect is observed if Ca2+ is added in the few seconds following the pulses. The resealing time is faster when Ca2+ is present in a dose-dependent manner. Mg2+ is observed to play a competitive role. These observations suggest that Ca2+ is acting not on the external leaflet of the plasma membrane but due to its increased concentration in the cytoplasm. Exocytosis will be enhanced by this Ca2+ burst (but hindered by Mg2+) and occurs in the electropermeabilized part of the cell surface. This description is supported by previous theoretical and experimental results. The associated fusion of vesicles will be the support of resealing.
Collapse
Affiliation(s)
- Florin Ciobanu
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,University Carol Davila, Bucarest, Romania
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Justin Teissié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Batista Napotnik T, Bello G, Sinner EK, Miklavčič D. The Effect of Nanosecond, High-Voltage Electric Pulses on the Shape and Permeability of Polymersome GUVs. J Membr Biol 2017; 250:441-453. [PMID: 28735341 DOI: 10.1007/s00232-017-9968-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022]
Abstract
Polymersomes, vesicles composed of block copolymers, are promising candidates as membrane alternatives and functional containers, e.g., as potential carriers for functional molecules because of their stability and tunable membrane properties. In the scope of possible use for membrane protein delivery to cells by electrofusion, we investigated the cytotoxicity of such polymersomes as well as the effects of nanosecond electric pulses with variable repetition rate on the shape and permeability of polymersomes in buffers with different conductivities. The polymersomes did not show cytotoxic effects to CHO and B16-F1 cells in vitro in concentrations up to 250 µg/mL (for 48 h) or 1.35 mg/mL (for 60 min), which renders them suitable for interacting with living cells. We observed a significant effect of the pulse repetition rate on electrodeformation of the polymersomes. The electrodeformation was most pronounced in low conductivity buffer, which is favorable for performing electrofusion with cells. However, despite more pronounced deformation at higher pulse repetition rate, the electroporation performance of polymersomes was unaffected and remained in similar ranges both at 10 Hz and 10 kHz. This phenomenon is possibly due to the higher stability and rigidity of polymer vesicles, compared to liposomes, and can serve as an advantage (or disadvantage) depending on the aim in employing polymersomes such as stable membrane alternative architectures or drug vehicles.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Gianluca Bello
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11, 1190, Vienna, Austria
| | - Eva-Kathrin Sinner
- Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11, 1190, Vienna, Austria
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Rems L. Applicative Use of Electroporation Models. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2017. [DOI: 10.1016/bs.abl.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Exploring the Applicability of Nano-Poration for Remote Control in Smart Drug Delivery Systems. J Membr Biol 2016; 250:31-40. [PMID: 27561639 DOI: 10.1007/s00232-016-9922-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 08/16/2016] [Indexed: 12/25/2022]
Abstract
Smart drug delivery systems represent an interesting tool to significantly improve the efficiency and the precision in the treatment of a broad category of diseases. In this context, a drug delivery mediated by nanosecond pulsed electric fields seems a promising technique, allowing for a controlled release and uptake of drugs by the synergy between the electropulsation and nanocarriers with encapsulated drugs. The main concern about the use of electroporation for drug delivery applications is the difference in dimension between the liposome (nanometer range) and the cell (micrometer range). The choice of liposome dimension is not trivial. Liposomes larger than 500 nm of diameter could be recognized as pathogen agents by the immune system, while liposomes of smaller size would require external electric field of high amplitudes for the membrane electroporation that could compromise the cell viability. The aim of this work is to theoretically study the possibility of a simultaneous cell and liposomes electroporation. The numerical simulations reported the possibility to electroporate the cell and a significant percentage of liposomes with comparable values of external electric field, when a 12 nsPEF is used.
Collapse
|
9
|
The Effect of Millisecond Pulsed Electric Fields (msPEF) on Intracellular Drug Transport with Negatively Charged Large Nanocarriers Made of Solid Lipid Nanoparticles (SLN): In Vitro Study. J Membr Biol 2016; 249:645-661. [PMID: 27173678 PMCID: PMC5045845 DOI: 10.1007/s00232-016-9906-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Drug delivery technology is still a dynamically developing field of medicine. The main direction in nanotechnology research (nanocarriers, nanovehicles, etc.) is efficient drug delivery to target cells with simultaneous drug reduction concentration. However, nanotechnology trends in reducing the carrier sizes to several nanometers limit the volume of the loaded substance and may pose a danger of uncontrolled access into the cells. On the other hand, nanoparticles larger than 200 nm in diameter have difficulties to undergo rapid diffusional transport through cell membranes. The main advantage of large nanoparticles is higher drug encapsulation efficiency and the ability to deliver a wider array of drugs. Our present study contributes a new approach with large Tween 80 solid lipid nanoparticles SLN (i.e., hydrodynamic GM-SLN-glycerol monostearate, GM, as the lipid and ATO5-SLNs-glyceryl palmitostearate, ATO5, as the lipid) with diameters DH of 379.4 nm and 547 nm, respectively. They are used as drug carriers alone and in combination with electroporation (EP) induced by millisecond pulsed electric fields. We evaluate if EP can support the transport of large nanocarriers into cells. The study was performed with two cell lines: human colon adenocarcinoma LoVo and hamster ovarian fibroblastoid CHO-K1 with coumarin 6 (C6) as a fluorescent marker for encapsulation. The biological safety of the potential treatment procedure was evaluated with cell viability after their exposure to nanoparticles and EP. The EP efficacy was evaluated by FACS method. The impact on intracellular structure organization of cytoskeleton was visualized by CLSM method with alpha-actin and beta-tubulin. The obtained results indicate low cytotoxicity of both carrier types, free and loaded with C6. The evaluation of cytoskeleton proteins indicated no intracellular structure damage. The intracellular uptake and accumulation show that SLNs do not support transport of C6 coumarin. Only application of electroporation improved the transport of encapsulated and free C6 into both treated cell lines.
Collapse
|
10
|
Content Delivery of Lipidic Nanovesicles in Electropermeabilized Cells. J Membr Biol 2015; 248:849-55. [DOI: 10.1007/s00232-015-9789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 12/29/2022]
|
11
|
Raz-Ben Aroush D, Yehudai-Resheff S, Keren K. Electrofusion of giant unilamellar vesicles to cells. Methods Cell Biol 2015; 125:409-22. [DOI: 10.1016/bs.mcb.2014.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
12
|
Pascal D, Valérie R, Stefan W, Remy O, Louise CM, Pauline H, Alain M, Justin T. Targeted Macromolecules Delivery by Large Lipidic Nanovesicles Electrofusion with Mammalian Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.225063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Chiang B, Essick E, Ehringer W, Murphree S, Hauck MA, Li M, Chien S. Enhancing skin wound healing by direct delivery of intracellular adenosine triphosphate. Am J Surg 2007; 193:213-8. [PMID: 17236849 PMCID: PMC1850226 DOI: 10.1016/j.amjsurg.2006.08.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/28/2006] [Accepted: 08/02/2006] [Indexed: 01/09/2023]
Abstract
BACKGROUND A new intracellular adenosine triphosphate (ATP) delivery technique has been developed and was tested for skin wound care. METHODS Eleven pairs of adult nude mice were used. ATP-vesicles were applied in 11 mice, and another 11 mice were treated with lipid vesicles only. RESULTS The group treated with ATP-encapsulated fusogenic small, unilamellar lipid vesicles healed faster than the group treated with only lipid vesicles. Histologic study indicated better developed granular tissue and re-epithelialization in the study group, and wound tissue vascular endothelial growth factor expressions were also higher in ATP-vesicles treated mice. CONCLUSIONS This intracellular ATP delivery system may provide a new hope for wound healing as well as the treatment of medical conditions in which ischemia is involved.
Collapse
Affiliation(s)
- Benjamin Chiang
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Eric Essick
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - William Ehringer
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Sidney Murphree
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA
| | - Mary Anne Hauck
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Ming Li
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Sufan Chien
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA
- *Corresponding and reprint author: Sufan Chien, MD, Department of Surgery, University of Louisville, Louisville, KY 40202, Telephone: 502-852-4418, Fax: 502-852-1795,
| |
Collapse
|
14
|
Teissie J, Golzio M, Rols MP. Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta Gen Subj 2005; 1724:270-80. [PMID: 15951114 DOI: 10.1016/j.bbagen.2005.05.006] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
Cell electropulsation is routinely used in cell Biology for protein, RNA or DNA transfer. Its clinical applications are under development for targeted drug delivery and gene therapy. Nevertheless, the molecular mechanisms supporting the induction of permeabilizing defects in the membrane assemblies remain poorly understood. This minireview describes the present state of the investigations concerning the different steps in the reversible electropermeabilization process. The different hypotheses, which were proposed to give a molecular description of the membrane events, are critically discussed. Other possibilities are then given. The need for more basic research on the associated loss of cohesion of the membrane appears as a conclusion.
Collapse
Affiliation(s)
- J Teissie
- IPBS UMR 5089 CNRS, 205 route de Narbonne, 31077 Toulouse, France.
| | | | | |
Collapse
|
15
|
Tieleman DP. The molecular basis of electroporation. BMC BIOCHEMISTRY 2004; 5:10. [PMID: 15260890 PMCID: PMC489962 DOI: 10.1186/1471-2091-5-10] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Accepted: 07/19/2004] [Indexed: 11/11/2022]
Abstract
Background Electroporation is a common method to introduce foreign molecules into cells, but its molecular basis is poorly understood. Here I investigate the mechanism of pore formation by direct molecular dynamics simulations of phospholipid bilayers of a size of 256 and of more than 2000 lipids as well as simulations of simpler interface systems with applied electric fields of different strengths. Results In a bilayer of 26 × 29 nm multiple pores form independently with sizes of up to 10 nm on a time scale of nanoseconds with an applied field of 0.5 V/nm. Pore formation is accompanied by curving of the bilayer. In smaller bilayers of ca. 6 × 6 nm, a single pore forms on a nanosecond time scale in lipid bilayers with applied fields of at least 0.4 V/nm, corresponding to transmembrane voltages of ca. 3 V. The presence of 1 M salt does not seem to change the mechanism. In an even simpler system, consisting of a 3 nm thick octane layer, pores also form, despite the fact that there are no charged headgroups and no salt in this system. In all cases pore formation begins with the formation of single-file like water defects penetrating into the bilayer or octane. Conclusions The simulations suggest that pore formation is driven by local electric field gradients at the water/lipid interface. Water molecules move in these field gradients, which increases the probability of water defects penetrating into the bilayer interior. Such water defects cause a further increase in the local electric field, accelerating the process of pore formation. The likelihood of pore formation appears to be increased by local membrane defects involving lipid headgroups. Simulations with and without salt show little difference in the observed pore formation process. The resulting pores are hydrophilic, lined by phospholipid headgroups.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Dr, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|