1
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 PMCID: PMC11533902 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
2
|
Yadav S, Garner K, Georgiev P, Li M, Gomez-Espinosa E, Panda A, Mathre S, Okkenhaug H, Cockcroft S, Raghu P. RDGBα, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction. J Cell Sci 2015. [PMID: 26203165 PMCID: PMC4582195 DOI: 10.1242/jcs.173476] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many membrane receptors activate phospholipase C (PLC) during signalling, triggering changes in the levels of several plasma membrane lipids including phosphatidylinositol (PtdIns), phosphatidic acid (PtdOH) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. It is widely believed that exchange of lipids between the plasma membrane and endoplasmic reticulum (ER) is required to restore lipid homeostasis during PLC signalling, yet the mechanism remains unresolved. RDGBα (hereafter RDGB) is a multi-domain protein with a PtdIns transfer protein (PITP) domain (RDGB-PITPd). We find that, in vitro, the RDGB-PITPd binds and transfers both PtdOH and PtdIns. In Drosophila photoreceptors, which experience high rates of PLC activity, RDGB function is essential for phototransduction. We show that binding of PtdIns to RDGB-PITPd is essential for normal phototransduction; however, this property is insufficient to explain the in vivo function because another Drosophila PITP (encoded by vib) that also binds PtdIns cannot rescue the phenotypes of RDGB deletion. In RDGB mutants, PtdIns(4,5)P2 resynthesis at the plasma membrane following PLC activation is delayed and PtdOH levels elevate. Thus RDGB couples the turnover of both PtdIns and PtdOH, key lipid intermediates during G-protein-coupled PtdIns(4,5)P2 turnover.
Collapse
Affiliation(s)
- Shweta Yadav
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Kathryn Garner
- Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6JJ, UK
| | - Plamen Georgiev
- Inositide Laboratory, Babraham Institute, Cambridge CB22 3AT, UK
| | - Michelle Li
- Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6JJ, UK
| | - Evelyn Gomez-Espinosa
- Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6JJ, UK
| | - Aniruddha Panda
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore, Karnataka 560065, India Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Swarna Mathre
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore, Karnataka 560065, India Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | | | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6JJ, UK
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore, Karnataka 560065, India Inositide Laboratory, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
3
|
Mesmin B, Antonny B, Drin G. Insights into the mechanisms of sterol transport between organelles. Cell Mol Life Sci 2013; 70:3405-21. [PMID: 23283302 PMCID: PMC11113184 DOI: 10.1007/s00018-012-1247-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions.
Collapse
Affiliation(s)
- Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 660 Route des lucioles, 06560 Valbonne, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 660 Route des lucioles, 06560 Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 660 Route des lucioles, 06560 Valbonne, France
| |
Collapse
|
4
|
van Dieren JM, Simons-Oosterhuis Y, Raatgeep HCR, Lindenbergh-Kortleve DJ, Lambers MEH, van der Woude CJ, Kuipers EJ, Snoek GT, Potman R, Hammad H, Lambrecht BN, Samsom JN, Nieuwenhuis EES. Anti-inflammatory actions of phosphatidylinositol. Eur J Immunol 2011; 41:1047-57. [PMID: 21360703 DOI: 10.1002/eji.201040899] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/11/2011] [Accepted: 01/20/2011] [Indexed: 01/02/2023]
Abstract
Chronic inflammatory T-cell-mediated diseases such as inflammatory bowel disease (IBD) are often treated with immunosuppressants including corticosteroids. In addition to the intended T-cell suppression, these farmacons give rise to many side effects. Recently, immunosuppressive phospholipids have been proposed as less-toxic alternatives. We aimed to investigate the immunoregulatory capacities of the naturally occurring phospholipid phosphatidylinositol (PI). Systemic PI treatment dramatically reduced disease severity and intestinal inflammation in murine 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis. Moreover, PI treatment inhibited the inflammatory T-cell response in these mice, as T cells derived from colon-draining LN of PI-treated mice secreted less IL-17 and IFN-γ upon polyclonal restimulation when compared to those of saline-treated mice. Further characterization of the suppressive capacity of PI revealed that the phospholipid suppressed Th cell differentiation in vitro irrespective of their cytokine profile by inhibiting proliferation and IL-2 release. In particular, PI diminished IL-2 mRNA expression and inhibited ERK1-, ERK-2-, p38- and JNK-phosphorylation. Crucially, PI did not ablate Treg differentiation or the antigen-presenting capacity of DCs in vitro. These data validate PI as a pluripotent inhibitor that can be applied mucosally as well as systemically. Its compelling functions render PI a promising novel physiological immune suppressant.
Collapse
Affiliation(s)
- Jolanda M van Dieren
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wyckoff GJ, Solidar A, Yoden MD. Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses. ACTA ACUST UNITED AC 2010; 3:65-77. [PMID: 27429707 DOI: 10.4236/jbise.2010.31010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol transfer proteins (PITP) are a family of monomeric proteins that bind and transfer phosphatidylinositol and phosphatidylcholine between membrane compartments. They are required for production of inositol and diacylglycerol second messengers, and are found in most metazoan organisms. While PITPs are known to carry out crucial cell-signaling roles in many organisms, the structure, function and evolution of the majority of family members remains unexplored; primarily because the ubiquity and diversity of the family thwarts traditional methods of global alignment. To surmount this obstacle, we instead took a novel approach, using MEME and a parsimony-based analysis to create a cladogram of conserved sequence motifs in 56 PITP family proteins from 26 species. In keeping with previous functional annotations, three clades were supported within our evolutionary analysis; two classes of soluble proteins and a class of membrane-associated proteins. By, focusing on conserved regions, the analysis allowed for in depth queries regarding possible functional roles of PITP proteins in both intra- and extra- cellular signaling.
Collapse
Affiliation(s)
- Gerald J Wyckoff
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, USA
| | | | - Marilyn D Yoden
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, USA.
| |
Collapse
|
6
|
Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J Lipid Res 2006; 47:2614-30. [PMID: 16990645 DOI: 10.1194/jlr.m600232-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic acute regulatory protein-related lipid transfer (StART) domains are ubiquitously involved in intracellular lipid transport and metabolism and other cell-signaling events. In this work, we use a flexible docking algorithm, comparative modeling, and molecular dynamics (MD) simulations to generate plausible three-dimensional atomic models of the StART domains of human metastatic lymph node 64 (MLN64) and steroidogenic acute regulatory protein (StAR) proteins in complex with cholesterol. Our results show that cholesterol can adopt a similar conformation in the binding cavity in both cases and that the main contribution to the protein-ligand interaction energy derives from hydrophobic contacts. However, hydrogen-bonding and water-mediated interactions appear to be important in the fine-tuning of the binding affinity and the position of the ligand. To gain insights into the mechanism of binding, we carried out steered MD simulations in which cholesterol was gradually extracted from within the StAR model. These simulations indicate that a transient opening of loop Omega1 may be sufficient for uptake and release, and they also reveal a pathway of intermediate states involving residues known to be crucial for StAR activity. Based on these observations, we suggest specific mutagenesis targets for binding studies of cholesterol and its derivatives that could improve our understanding of the structural determinants for ligand binding by sterol carrier proteins.
Collapse
Affiliation(s)
- Marta Murcia
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
7
|
Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR, Stout CD. Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 2005; 281:5973-81. [PMID: 16373351 DOI: 10.1074/jbc.m511464200] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand ligand-induced structural transitions in cytochrome P450 2B4, protein-ligand interactions were investigated using a bulky inhibitor. Bifonazole, a broad spectrum antifungal agent, inhibits monooxygenase activity and induces a type II binding spectrum in 2B4dH(H226Y), a modified enzyme previously crystallized in the presence of 4-(4-chlorophenyl)imidazole (CPI). Isothermal titration calorimetry and tryptophan fluorescence quenching indicate no significant burial of protein apolar surface nor altered accessibility of Trp-121 upon bifonazole binding, in contrast to recent results with CPI. A 2.3 A crystal structure of 2B4-bifonazole reveals a novel open conformation with ligand bound in the active site, which is significantly different from either the U-shaped cleft of ligand-free 2B4 or the small active site pocket of 2B4-CPI. The O-shaped active site cleft of 2B4-bifonazole is widely open in the middle but narrow at the top. A bifonazole molecule occupies the bottom of the active site cleft, where helix I is bent approximately 15 degrees to accommodate the bulky ligand. The structure also defines unanticipated interactions between helix C residues and bifonazole, suggesting an important role of helix C in azole recognition by mammalian P450s. Comparison of the ligand-free 2B4 structure, the 2B4-CPI structure, and the 2B4-bifonazole structure identifies structurally plastic regions that undergo correlated conformational changes in response to ligand binding. The most plastic regions are putative membrane-binding motifs involved in substrate access or substrate binding. The results allow us to model the membrane-associated state of P450 and provide insight into how lipophilic substrates access the buried active site.
Collapse
Affiliation(s)
- Yonghong Zhao
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Vordtriede PB, Doan CN, Tremblay JM, Helmkamp GM, Yoder MD. Structure of PITPβ in Complex with Phosphatidylcholine: Comparison of Structure and Lipid Transfer to Other PITP Isoforms,. Biochemistry 2005; 44:14760-71. [PMID: 16274224 DOI: 10.1021/bi051191r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol transfer protein (PITP) is a ubiquitous eukaryotic protein that preferentially binds either phosphatidylinositol or phosphatidylcholine and catalyzes the exchange of these lipids between membranes. Mammalian cytosolic PITPs include the ubiquitously expressed PITPalpha and PITPbeta isoforms (269-270 residues). The crystal structure of rat PITPbeta complexed to dioleoylphosphatidylcholine was determined to 2.18 A resolution with molecular replacement using rat PITPalpha (77% sequence identify) as the phasing model. A structure comparison of the alpha and beta isoforms reveals minimal differences in protein conformation, differences in acyl conformation in the two isoforms, and remarkable conservation of solvent structure around the bound lipid. A comparison of transfer activity by human and rat PITPs, using small unilamellar vesicles with carefully controlled phospholipid composition, indicates that the beta isoforms have minimal differences in transfer preference between PtdIns and PtdCho when donor vesicles contain predominantly PtdCho. When PtdCho and PtdIns are present in equivalent concentrations in donor vesicles, PtdIns transfer occurs at approximately 3-fold the rate of PtdCho. The rat PITPbeta isoform clearly has the most diminished transfer rate of the four proteins studied. With the two rat isoforms, site-directed mutations of two locations within the lipid binding cavity that possess differing biochemical properties were characterized: I84alpha/F83beta and F225alpha/L224beta. The 225/224 locus is more critical in determining substrate specificity. Following the mutation of this locus to the other amino acid, the PtdCho transfer specific activity became PITPalpha (F225L) approximately PITPbeta and PITPbeta (L224F) approximately PITPalpha. The 225alpha/224beta locus plays a modest role in the specificity of both isoforms toward CerPCho.
Collapse
Affiliation(s)
- Paul B Vordtriede
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | | | |
Collapse
|
9
|
Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat Cell Biol 2005; 7:225-34. [PMID: 15723057 DOI: 10.1038/ncb1221] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/19/2005] [Indexed: 01/05/2023]
Abstract
The level of diacylglycerol (DAG) in the Golgi apparatus is crucial for protein transport to the plasma membrane. Studies in budding yeast indicate that Sec14p, a phosphatidylinositol (PI)-transfer protein, is involved in regulating DAG homeostasis in the Golgi complex. Here, we show that Nir2, a peripheral Golgi protein containing a PI-transfer domain, is essential for maintaining the structural and functional integrity of the Golgi apparatus in mammalian cells. Depletion of Nir2 by RNAi leads to substantial inhibition of protein transport from the trans-Golgi network to the plasma membrane, and causes a reduction in the DAG level in the Golgi apparatus. Remarkably, inactivation of cytidine [corrected] 5'-diphosphate (CDP)-choline pathway for phosphatidylcholine biosynthesis restores both effects. These results indicate that Nir2 is involved in maintaining a critical DAG pool in the Golgi apparatus by regulating its consumption via the CDP-choline pathway, demonstrating the interface between secretion from the Golgi and lipid homeostasis.
Collapse
Affiliation(s)
- Vladimir Litvak
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
10
|
Snoek GT, Van Tiel CM, Egmond MR. Structure–function relationships of phosphatidylinositol transfer proteins: involvement of phosphorylation sites. Biochimie 2004; 86:857-64. [DOI: 10.1016/j.biochi.2004.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 09/27/2004] [Indexed: 11/15/2022]
|
11
|
Komatsu H, Westerman J, Snoek GT, Taraschi TF, Janes N. L-alpha-glycerylphosphorylcholine inhibits the transfer function of phosphatidylinositol transfer protein alpha. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1635:67-74. [PMID: 14729069 DOI: 10.1016/j.bbalip.2003.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphatidylinositol transfer protein alpha (PITP-alpha) is a bifunctional phospholipid transfer protein that is highly selective for phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho). Polar lipid metabolites, including L-alpha-glycerylphosphorylcholine (GroPCho), increasingly have been linked to changes in cellular function and to disease. In this study, polar lipid metabolites of PtdIns and PtdCho were tested for their ability to influence PITP-alpha activity. GroPCho inhibited the ability of PITP-alpha to transfer PtdIns or PtdCho between liposomes. The IC(50) of both processes was dependent on membrane composition. D-myo-inositol 1-phosphate and glycerylphosphorylinositol modestly enhanced PITP-alpha-mediated phospholipid transfer. Choline, phosphorylcholine (PCho), CDP-choline, glyceryl-3-phosphate, myo-inositol and D-myo-inositol 1,4,5-trisphosphate had little effect. Membrane surface charge was a strong determinant of the GroPCho inhibition with the inhibition being greatest for highly anionic membranes. GroPCho was shown to enhance the binding of PITP-alpha to anionic vesicles. In membranes of low surface charge, phosphatidylethanolamine (PtdEtn) was a determinant enabling the GroPCho inhibition. Anionic charge and PtdEtn content appeared to increase the strength of PITP-alpha-membrane interactions. The GroPCho-enhanced PITP-alpha-membrane binding was sufficient to cause inhibition, but not sufficient to account for the extent of inhibition observed. Processes associated with strengthened PITP-alpha-membrane binding in the presence of GroPCho appeared to impair the phospholipid insertion/extraction process.
Collapse
Affiliation(s)
- Hiroaki Komatsu
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
12
|
Miller EC, Helmkamp GM. Exposure of Phosphatidylinositol Transfer Proteins to Sphingomyelin−Cholesterol Membranes Suggests Transient but Productive Interactions with Raft-Like, Liquid-Ordered Domains. Biochemistry 2003; 42:13250-9. [PMID: 14609336 DOI: 10.1021/bi034616n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both isoforms of rat phosphatidylinositol transfer protein (PITP) mediate the intermembrane transfer of sphingomyelin (CerPCho). In the plasma membrane, CerPCho often segregates with cholesterol into microdomains such as lipid rafts and caveolae. To test the hypothesis that PITP exhibits a preference for CerPCho- and cholesterol-rich membranes, we prepared unilamellar vesicles containing variable amounts of these two lipids. We also used CerPCho species with different acyl composition and treated vesicles with agents known to sequester and remove cholesterol. We observed that the beta isoform of rat PITP was more sensitive to membrane cholesterol than was the alpha isoform, as shown by increases in specific activities of lipid transfer of 2-6-fold. A relatively high membrane content of cholesterol (mole fraction > 0.4) was required to elicit such enhancements. Treatment of cholesterol-rich membranes with a series of beta cyclodextrins demonstrated that, upon depletion of cholesterol from participating membranes, the PITPbeta activity changes were fully reversible. We finally noted that the mechanism by which cholesterol enhances the activity of PITPbeta appeared to involve a decreased affinity of the protein for the membrane surface, in a manner that was independent of vesicle size and membrane microviscosity. We conclude that PITPbeta interacts transiently but productively with the liquid-ordered phase formed by CerPCho and cholesterol and discuss the possibility of PITP interactions in vivo with sphingolipid- and cholesterol-rich membrane microdomains.
Collapse
Affiliation(s)
- Elizabeth C Miller
- Department of Biochemistry and Molecular Biology, Mail Stop 3030, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160-7421, USA
| | | |
Collapse
|
13
|
Meier R, Tomizaki T, Schulze-Briese C, Baumann U, Stocker A. The molecular basis of vitamin E retention: structure of human alpha-tocopherol transfer protein. J Mol Biol 2003; 331:725-34. [PMID: 12899840 DOI: 10.1016/s0022-2836(03)00724-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Alpha-tocopherol transfer protein (alpha-TTP) is a liver protein responsible for the selective retention of alpha-tocopherol from dietary vitamin E, which is a mixture of alpha, beta, gamma, and delta-tocopherols and the corresponding tocotrienols. The alpha-TTP-mediated transfer of alpha-tocopherol into nascent VLDL is the major determinant of plasma alpha-tocopherol levels in humans. Mutations in the alpha-TTP gene have been detected in patients suffering from low plasma alpha-tocopherol and ataxia with isolated vitamin E deficiency (AVED). The crystal structure of alpha-TTP reveals two conformations. In its closed tocopherol-charged form, a mobile helical surface segment seals the hydrophobic binding pocket. In the presence of detergents, an open conformation is observed, which probably represents the membrane-bound form. The selectivity of alpha-TTP for RRR-alpha-tocopherol is explained from the van der Waals contacts occurring in the lipid-binding pocket. Mapping the known mutations leading to AVED onto the crystal structure shows that no mutations occur directly in the binding pocket.
Collapse
Affiliation(s)
- Reto Meier
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|