1
|
Bojarski KK, David A, Lecaille F, Samsonov SA. In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions. Carbohydr Res 2024; 543:109201. [PMID: 39013335 DOI: 10.1016/j.carres.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.
Collapse
Affiliation(s)
- Krzysztof K Bojarski
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, Gdansk, 80-233, Poland.
| | - Alexis David
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques dans l'Inflammation, Tours, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
2
|
Kogut MM, Danielsson A, Ricard-Blum S, Samsonov SA. Impact of calcium ions on the structural and dynamic properties of heparin oligosaccharides by computational analysis. Comput Biol Chem 2022; 99:107727. [PMID: 35841830 DOI: 10.1016/j.compbiolchem.2022.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022]
Abstract
Heparin (HP) belongs to glycosaminoglycans (GAGs), anionic linear polysaccharides composed of repetitive disaccharide units. They are key players in many biological processes occurring in the extracellular matrix and at the cell surface. GAGs are challenging molecules for computational research due to their high chemical heterogeneity, flexibility, periodicity, pseudosymmetry, predominantly electrostatics-driven nature of interactions with their protein partners and potential multipose binding. The molecular mechanisms underlying GAG interactions mediated by divalent ions, which are important for GAG binding to several proteins, are not well understood. The goal of this study was to characterize the binding of Ca2+ to two HP oligosaccharides of different lengths (dp10 and dp18, dp: degree of polymerization) and their impact on HP conformational space and their dynamic behavior with the use of molecular dynamics (MD)-based approaches with two Ca2+ parameter sets. MD data suggested that the flexibility of the monosaccharides, the glycosidic linkages and ring puckering were not affected by the presence of Ca2+, in contrast to H-bond propensities and the calculated Rg for a fraction of the oligosaccharide populations in both dp10 and dp18. Moreover, the essential differences in the data obtained by using two Ca2+ parameter sets were reported.
Collapse
Affiliation(s)
- Małgorzata M Kogut
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, Villeurbanne CEDEX F-69622, France
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, Gdańsk 80-308, Poland.
| |
Collapse
|
3
|
Modeling glycosaminoglycan–protein complexes. Curr Opin Struct Biol 2022; 73:102332. [DOI: 10.1016/j.sbi.2022.102332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
|
4
|
Kogut MM, Maszota-Zieleniak M, Marcisz M, Samsonov SA. Computational insights into the role of calcium ions in protein–glycosaminoglycan systems. Phys Chem Chem Phys 2021; 23:3519-3530. [DOI: 10.1039/d0cp05438k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prediction power of computational methodologies for studying the role of ions in protein–glycosaminoglycan interactions was critically assessed.
Collapse
|
5
|
Analysis of Procollagen C-Proteinase Enhancer-1/Glycosaminoglycan Binding Sites and of the Potential Role of Calcium Ions in the Interaction. Int J Mol Sci 2019; 20:ijms20205021. [PMID: 31658765 PMCID: PMC6829435 DOI: 10.3390/ijms20205021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we characterize the interactions between the extracellular matrix protein, procollagen C-proteinase enhancer-1 (PCPE-1), and glycosaminoglycans (GAGs), which are linear anionic periodic polysaccharides. We applied molecular modeling approaches to build a structural model of full-length PCPE-1, which is not experimentally available, to predict GAG binding poses for various GAG lengths, types and sulfation patterns, and to determine the effect of calcium ions on the binding. The computational data are analyzed and discussed in the context of the experimental results previously obtained using surface plasmon resonance binding assays. We also provide experimental data on PCPE-1/GAG interactions obtained using inhibition assays with GAG oligosaccharides ranging from disaccharides to octadecasaccharides. Our results predict the localization of GAG-binding sites at the amino acid residue level onto PCPE-1 and is the first attempt to describe the effects of ions on protein-GAG binding using modeling approaches. In addition, this study allows us to get deeper insights into the in silico methodology challenges and limitations when applied to GAG-protein interactions.
Collapse
|
6
|
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1016-1030. [PMID: 30184725 DOI: 10.1016/j.msec.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications. In case of drug delivery systems (DDS), there has been some successful proof of thermal-responsive grafted platforms on clinical trials such as ThermoDox®, BIND-014, Cynviloq IG-001, Genexol-PM, etc. This review would detail the recent progress and highlights of some temperature-responsive polymer-grafted nanomaterials or hydrogels in the 'smart' DDS that covered from synthetic polymers to nature-driven biomaterials and novel generations of some amphiphilic functional platforms. These approaches could produce several types of smart biomaterials for human health care in future.
Collapse
Affiliation(s)
- Phung Ngan Le
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam
| | - Chan Khon Huynh
- Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000, Viet Nam
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam.
| |
Collapse
|
7
|
Remko M, Broer R, Remková A, Van Duijnen PT. How strong are Ca2+–heparin and Zn2+–heparin interactions? Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Fredenburgh JC, Leslie BA, Stafford AR, Lim T, Chan HH, Weitz JI. Zn2+ mediates high affinity binding of heparin to the αC domain of fibrinogen. J Biol Chem 2013; 288:29394-402. [PMID: 23990470 DOI: 10.1074/jbc.m113.469916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn(2+) in this interaction because Zn(2+) is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn(2+) promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn(2+)-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn(2+)-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn(2+) is present. These results reveal the mechanism by which Zn(2+) augments the capacity of fibrinogen to impair the anticoagulant activity of heparin.
Collapse
|
9
|
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:5287-98. [PMID: 23891937 DOI: 10.1016/j.bbagen.2013.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Sulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD). METHODS Affinity-chromatography, AFM-single-molecule force spectroscopy (SMFS) and immunofluorescence on living cells were used to analyze specificity, kinetics and structural basis of this interaction. RESULTS Full-length Sulf1 interacts broadly with sulfated glycosaminoglycans (GAGs) showing, however, higher affinity toward HS and heparin than toward chondroitin sulfate or dermatan sulfate. Strong interaction depends on the presence of Sulf1-substrate groups, as Sulf1 bound significantly weaker to HS after enzymatic 6-O-desulfation by Sulf1 pretreatment, hence suggesting autoregulation of Sulf1/substrate association. In contrast, HD alone exhibited outstanding specificity toward HS and did not interact with chondroitin sulfate, dermatan sulfate or 6-O-desulfated HS. Dynamic SMFS revealed an off-rate of 0.04/s, i.e., ~500-fold higher than determined by surface plasmon resonance. SMFS allowed resolving the dynamics of single dissociation events in each force-distance curve. HD subdomain constructs revealed heparin interaction sites in the inner and C-terminal regions of HD. CONCLUSIONS Specific substrate binding of Sulf1 is mediated by HD and involves at least two separate HS-binding sites. Surface plasmon resonance KD-values reflect a high avidity resulting from multivalent HD/heparin interaction. While this ensures stable cell-surface HS association, the dynamic cooperation of binding sites at HD and also the catalytic domain enables processive action of Sulf1 along or across HS chains. GENERAL SIGNIFICANCE HD confers a novel and highly dynamic mode of protein interaction with HS.
Collapse
|
10
|
Gdalevitch M, Kasaai B, Alam N, Dohin B, Lauzier D, Hamdy RC. The effect of heparan sulfate application on bone formation during distraction osteogenesis. PLoS One 2013; 8:e56790. [PMID: 23457615 PMCID: PMC3574072 DOI: 10.1371/journal.pone.0056790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/15/2013] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are recognized for their ability to induce bone formation in vivo and in vitro. Their osteogenic and osteoinductive properties are tightly regulated by the secretion of specific BMP antagonists, which have been shown to physically bind and sometimes be blocked by the extracellular proteoglycan heparan sulphate side chains (from hereon referred to as HS). The purpose of this study was to investigate if local application of 5 µg of HS proteoglycan to a bone regenerate site in a mouse model of distraction osteogenesis (DO) can accelerate bone healing and affect the expression of key members of the BMP signaling pathway. DO was performed on the right tibia of 115 adult male wild-type mice. At mid-distraction (day 11), half the group was injected locally with 5 µg of HS, while the other half was injected with saline. The mice were sacrificed at 2 time-points: mid-consolidation (34 days) and full consolidation (51 days). The distracted tibial zone was then collected for analysis by μCT, radiology, biomechanical testing, immunohistochemistry, and histology. While μCT data showed no statistically significant difference in bone formation, the results of biomechanical testing in stiffness and ultimate force were significantly lower in the HS-injected bones at 51 days, compared to controls. Immunohistochemistry results also suggested a decrease in expression of several key members of the BMP signaling pathway at 34 days. Furthermore, wound dehiscence and infection rates were significantly elevated in the HS group compared to the controls, which resulted in a higher rate of euthanasia in the treatment group. Our findings demonstrate that exogenous application of 5 µg of HS in the distracted gap of a murine model had a negative impact on bone and wound healing.
Collapse
Affiliation(s)
- Marie Gdalevitch
- Division of Orthopedics, Shriners Hospital for Children, Montréal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
Chan HH, Leslie BA, Stafford AR, Roberts RS, Al-Aswad NN, Fredenburgh JC, Weitz JI. By Increasing the Affinity of Heparin for Fibrin, Zn2+ Promotes the Formation of a Ternary Heparin–Thrombin–Fibrin Complex That Protects Thrombin from Inhibition by Antithrombin. Biochemistry 2012; 51:7964-73. [DOI: 10.1021/bi301046b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Howard H. Chan
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Beverly A. Leslie
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Alan R. Stafford
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Robin S. Roberts
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Nadine N. Al-Aswad
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - James C. Fredenburgh
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Jeffrey I. Weitz
- Departments of Medicine, ‡Biochemistry and Biomedical Sciences, and §Clinical Epidemiology & Biostatistics, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Wang SF, Lee J, Wang W, Si YX, Li C, Kim TR, Yang JM, Yin SJ, Qian GY. The effect of Zn(2+) on Pelodiscus sinensis creatine kinase: unfolding and aggregation studies. J Biomol Struct Dyn 2012; 31:572-90. [PMID: 22888913 DOI: 10.1080/07391102.2012.706074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We studied the effects of Zn(2+) on creatine kinase from the Chinese soft-shelled turtle, Pelodiscus sinensis (PSCK). Zn(2+) inactivated the activity of PSCK (IC(50) = .079 ± .004 mM) following first-order kinetics consistent with multiple phases. The spectrofluorimetry results showed that Zn(2+) induced significant tertiary structural changes of PSCK with exposure to hydrophobic surfaces and that Zn(2+) directly induced PSCK aggregation. The addition of osmolytes such as glycine, proline, and liquaemin successfully blocked PSCK aggregation, recovering the conformation and activity of PSCK. We measured the ORF gene sequence of PSCK by rapid amplification of cDNA end and simulated the 3D structure of PSCK. The results of molecular dynamics simulations showed that eight Zn(2+) bind to PSCK and one Zn(2+) is predicted to bind in a plausible active site of creatine and ATP. The interaction of Zn(2+) with the active site could mostly block the activity of PSCK. Our study provides important insight into the action of Zn(2+) on PSCK as well as more insights into the PSCK folding and ligand-binding mechanisms, which could provide important insight into the metabolic enzymes of P. sinensis.
Collapse
Affiliation(s)
- Su-Fang Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation. Biochem Biophys Res Commun 2012; 425:794-9. [PMID: 22884801 DOI: 10.1016/j.bbrc.2012.07.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/27/2012] [Indexed: 11/22/2022]
Abstract
The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled β-rich amyloid by far UV circular dichroism (increased β-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 °C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.
Collapse
|
14
|
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cultures, motoneuron-like NSC34 cells, and primary astroglia cultures as model systems, we here demonstrate that angiogenin is a neuronally secreted factor that is endocytosed by astroglia and mediates neuroprotection in paracrine. We show that wild-type angiogenin acts unidirectionally to induce RNA cleavage in astroglia, while the ALS-associated K40I mutant is also secreted and endocytosed, but fails to induce RNA cleavage. Angiogenin uptake into astroglia requires heparan sulfate proteoglycans, and engages clathrin-mediated endocytosis. We show that this uptake mechanism exists for mouse and human angiogenin, and delivers a functional RNase output. Moreover, we identify syndecan 4 as the angiogenin receptor mediating the selective uptake of angiogenin into astroglia. Our data provide new insights into the paracrine activities of angiogenin in the nervous system, and further highlight the critical role of non-neuronal cells in the pathogenesis of ALS.
Collapse
|
15
|
Seo Y, Schenauer MR, Leary JA. Biologically Relevant Metal-Cation Binding Induces Conformational Changes in Heparin Oligosaccharides as Measured by Ion Mobility Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 303:191-198. [PMID: 21731426 PMCID: PMC3124288 DOI: 10.1016/j.ijms.2011.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Heparin interacts with many proteins and is involved in biological processes such as anticoagulation, angiogenesis, and antitumorigenic activities. These heparin-protein interactions can be influenced by the binding of various metal ions to these complexes. In particular, physiologically relevant metal cations influence heparin-protein conformations through electronic interactions inherent to this polyanion. In this study, we employed ion mobility mass spectrometry (IMMS) to observe conformational changes that occur in fully-sulfated heparin octasaccharides after the successive addition of metal ions. Our results indicate that binding of positive counter ions causes a decrease in collision cross section (CCS) measurements, thus promoting a more compact octasaccharide structure.
Collapse
Affiliation(s)
- Youjin Seo
- Departments of Chemistry and Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
16
|
Frese MA, Milz F, Dick M, Lamanna WC, Dierks T. Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. J Biol Chem 2009; 284:28033-28044. [PMID: 19666466 DOI: 10.1074/jbc.m109.035808] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular sulfatases Sulf1 and Sulf2 remodel the 6O-sulfation state of heparan sulfate proteoglycans on the cell surface, thereby modulating growth factor signaling. Different from all other sulfatases, the Sulfs contain a unique, positively charged hydrophilic domain (HD) of about 320 amino acid residues. Using various HD deletion mutants and glutathione S-transferase (GST)-HD fusion proteins, this study demonstrates that the HD is required for enzymatic activity and acts as a high affinity heparin/heparan sulfate interaction domain. Association of the HD with the cell surface is sensitive to heparinase treatment, underlining specificity toward heparan sulfate chains. Correspondingly, isolated GST-HD binds strongly to both heparin and heparan sulfate in vitro and also to living cells. Surface plasmon resonance studies indicate nanomolar affinity of GST-HD toward immobilized heparin. The comparison of different mutants reveals that especially the outer regions of the HD mediate heparan sulfate binding, probably involving "tandem" interactions. Interestingly, binding to heparan sulfate depends on the presence of 6O-sulfate substrate groups, suggesting that substrate turnover facilitates release of the enzyme from its substrate. Deletion of the inner, less conserved region of the HD drastically increases Sulf1 secretion without affecting enzymatic activity or substrate specificity, thus providing a tool for the in vitro modulation of HS-dependent signaling as demonstrated here for the signal transduction of fibroblast growth factor 2. Taken together, the present study shows that specific regions of the HD influence different aspects of HS binding, cellular localization, and enzyme function.
Collapse
Affiliation(s)
- Marc-André Frese
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Fabian Milz
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Marina Dick
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - William C Lamanna
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany
| | - Thomas Dierks
- Fakultät für Chemie, Biochemie I, Universität Bielefeld, 33615 Bielefeld, Germany.
| |
Collapse
|
17
|
Ricard-Blum S, Beraud M, Raynal N, Farndale RW, Ruggiero F. Structural Requirements for Heparin/Heparan Sulfate Binding to Type V Collagen. J Biol Chem 2006; 281:25195-204. [PMID: 16815843 DOI: 10.1074/jbc.m603096200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Claude Bernard Lyon 1, Institut Féderatif de Recherche 128 BioSciences Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, Lyon, France
| | | | | | | | | |
Collapse
|
18
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
19
|
Brinkmeyer S, Eckert R, Ragg H. Reformable intramolecular cross-linking of the N-terminal domain of heparin cofactor II. ACTA ACUST UNITED AC 2004; 271:4275-83. [PMID: 15511233 DOI: 10.1111/j.1432-1033.2004.04367.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of a heparin cofactor II (HCII)-thrombin Michaelis complex has revealed extensive contacts encompassing the N-terminal domain of HCII and exosite I of the proteinase. In contrast, the location of the N-terminal extension in the uncomplexed inhibitor was unclear. Using a disulfide cross-linking strategy, we demonstrate that at least three different sites (positions 52, 54 and 68) within the N terminus may be tethered in a reformable manner to position 195 in the loop region between helix D and strand s2A of the HCII molecule, suggesting that the N-terminal domain may interact with the inhibitor scaffold in a permissive manner. Cross-linking of the N terminus to the HCII body does not strongly affect the inhibition of alpha-chymotrypsin, indicating that the reactive site loop sequences of the engineered inhibitor variants, required for interaction with one of the HCII target enzymes, are normally accessible. In contrast, intramolecular tethering of the N-terminal extension results in a drastic decrease of alpha-thrombin inhibitory activity, both in the presence and in the absence of glycosaminoglycans. Treatment with dithiothreitol and iodoacetamide restores activity towards alpha-thrombin, suggesting that release of the N terminus of HCII is an important component of the multistep interaction between the inhibitor and alpha-thrombin.
Collapse
Affiliation(s)
- Stephan Brinkmeyer
- Department of Biotechnology, Faculty of Technology, University of Bielefeld, Germany
| | | | | |
Collapse
|