1
|
Nishikino T, Takekawa N, Kishikawa JI, Hirose M, Kojima S, Homma M, Kato T, Imada K. Structural insight into sodium ion pathway in the bacterial flagellar stator from marine Vibrio. Proc Natl Acad Sci U S A 2025; 122:e2415713122. [PMID: 39793043 PMCID: PMC11725901 DOI: 10.1073/pnas.2415713122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure. Here, we determined the structures of the sodium-driven stator of Vibrio, namely PomAB, in the presence and absence of sodium ions and the structure with its specific inhibitor, phenamil, by cryo-electron microscopy. The structures and following functional analysis revealed the sodium ion pathway, the mechanism of ion selectivity, and the inhibition mechanism by phenamil. We propose a model of sodium ion flow coupled with the stator rotation based on the structures. This work provides insights into the molecular mechanisms of ion specificity and conversion of the electrochemical potential into mechanical functions.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, Suita565-0871, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya466-8555, Japan
- Optoenergy Technology Department, OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya466-8555, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| | - Jun-ichi Kishikawa
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, Suita565-0871, Japan
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto606-8585, Japan
| | - Mika Hirose
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, Suita565-0871, Japan
| | - Seiji Kojima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Michio Homma
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Takayuki Kato
- Division of Protein Structural Biology, Institute for Protein Research, Osaka University, Suita565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka560-0043, Japan
| |
Collapse
|
2
|
Wu H, Wu Z, Tian M, Zhang R, Yuan J. Torque-speed relationship of the flagellar motor with dual-stator systems in Pseudomonas aeruginosa. mBio 2024; 15:e0074524. [PMID: 39475228 PMCID: PMC11633141 DOI: 10.1128/mbio.00745-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
The single polar flagellar motor in Pseudomonas aeruginosa is equipped with two stator systems, MotAB and MotCD, both driven by H+ ions. The torque-speed relationship for flagellar motors with two stator systems has not been explored previously. In this study, we developed a method that utilizes optical trapping and fluorescence labeling to measure the torque-speed relationships for the wild-type P. aeruginosa motor with dual stators and mutant strains with a single stator system, revealing surprising differences in them. Moreover, we found that the MotAB stators exhibit slip-bond behavior in load dependence, contrasting with the catch-bond behavior of the MotCD stators and Escherichia coli stators. Further examination of the solvent isotope and pH effects on the torque-speed relationships of these stator systems provided additional insights into their dynamics. Interestingly, we discovered that the torque of the wild-type motor is similar to the combined torque of motors with MotAB or MotCD stators, indicating an additive contribution from the two stator types in the wild-type motors. These findings underscore the enhanced adaptability of P. aeruginosa to a wide range of external environments with varying load conditions.IMPORTANCEWe developed a novel method to measure the flagellar motor torque-speed relationship by trapping a swimming bacterium using optical tweezers. Using the P. aeruginosa flagellar motor as a model system to investigate motor dynamics with dual stator types, we measured the torque-speed relationships for wild-type motors with dual stator types and mutants with a single type. We found drastic differences that stem from the varying load dependencies of stator stability. These variations enable bacteria to rapidly adjust their stator composition in response to external load conditions. Interestingly, we observed that the torque of the wild-type motor is akin to the cumulative torque of motors with either stator type, indicating an additive contribution from the two stator types in wild-type motors. The methodology we established here can be readily employed to study motor dynamics in other flagellated bacteria.
Collapse
Affiliation(s)
- Haolin Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhengyu Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
- Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, Shandong, China
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Bodra N, Toh E, Nadeem A, Wai SN, Persson K. MakC and MakD are two proteins associated with a tripartite toxin of Vibrio cholerae. Front Microbiol 2024; 15:1457850. [PMID: 39421563 PMCID: PMC11484084 DOI: 10.3389/fmicb.2024.1457850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic serotypes of Vibrio cholerae, transmitted through contaminated water and food, are responsible for outbreaks of cholera, an acute diarrheal disease. While the cholera toxin is the primary virulence factor, V. cholerae also expresses other virulence factors, such as the tripartite toxin MakABE that is secreted via the bacterial flagellum. These three proteins are co-expressed with two accessory proteins, MakC and MakD, whose functions remain unknown. Here, we present the crystal structures of MakC and MakD, revealing that they are similar in both sequence and structure but lack other close structural relatives. Our study further investigates the roles of MakC and MakD, focusing on their impact on the expression and secretion of the components of the MakABE tripartite toxin. Through deletion mutant analysis, we found that individual deletions of makC or makD do not significantly affect MakA expression or secretion. However, the deletion of both makC and makD impairs the expression of MakB, which is directly downstream, and decreases the expression of MakE, which is separated from makCD by two genes. Conversely, MakA, encoded by the makA gene located between makB and makE, is expressed normally but its secretion is impaired. Additionally, our findings indicate that MakC, in contrast to MakD, exhibits strong interactions with other proteins. Furthermore, both MakC and MakD were observed to be localized within the cytosol of the bacterial cell. This study provides new insights into the regulatory mechanisms affecting the Mak protein family in V. cholerae and highlights the complex interplay between gene proximity and protein expression.
Collapse
Affiliation(s)
- Nandita Bodra
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Eric Toh
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Postle K, Kopp D, Jana B. In vivo tests of the E. coli TonB system working model-interaction of ExbB with unknown proteins, identification of TonB-ExbD transmembrane heterodimers and PMF-dependent ExbD structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602958. [PMID: 39554141 PMCID: PMC11566014 DOI: 10.1101/2024.07.10.602958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The TonB system of Escherichia coli resolves the dilemma posed by its outer membrane that protects it from a variety of external threats, but also constitutes a diffusion barrier to nutrient uptake. Our working model involves interactions among a set of cytoplasmic membrane-bound proteins: tetrameric ExbB that serves as a scaffold for a dimeric TonB complex (ExbB 4 -TonB 2 ), and also engages dimeric ExbD (ExbB 4 -ExbD 2 ). Through a set of synchronized conformational changes and movements these complexes are proposed to cyclically transduce cytoplasmic membrane protonmotive force to energize active transport of nutrients through TonB-dependent transporters in the outer membrane (described in Gresock et al. , J. Bacteriol. 197:3433). In this work, we provide experimental validation of three important aspects of the model. The majority of ExbB is exposed to the cytoplasm, with an ∼90-residue cytoplasmic loop and an ∼50 residue carboxy terminal tail. Here we found for the first time, that the cytoplasmic regions of ExbB served as in vivo contacts for three heretofore undiscovered proteins, candidates to move ExbB complexes within the membrane. Support for the model also came from visualization of in vivo PMF-dependent conformational transitions in ExbD. Finally, we also show that TonB forms homodimers and heterodimers with ExbD through its transmembrane domain in vivo . This trio of in vivo observations suggest how and why solved in vitro structures of ExbB and ExbD differ significantly from the in vivo results and submit that future inclusion of the unknown ExbB-binding proteins may bring solved structures into congruence with proposed in vivo energy transduction cycle intermediates.
Collapse
|
5
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
6
|
Wang Y, Zhang L, Yuan X, Wang D. Treatment with paeoniflorin increases lifespan of Pseudomonas aeruginosa infected Caenorhabditis elegans by inhibiting bacterial accumulation in intestinal lumen and biofilm formation. Front Pharmacol 2023; 14:1114219. [PMID: 37050896 PMCID: PMC10083309 DOI: 10.3389/fphar.2023.1114219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Paeoniflorin is one of the important components in Paeoniaceae plants. In this study, we used Caenorhabditis elegans as a model host and Pseudomonas aeruginosa as a bacterial pathogen to investigate the possible role of paeoniflorin treatment against P. aeruginosa infection in the host and the underlying mechanisms. Posttreatment with 1.25–10 mg/L paeoniflorin could significantly increase the lifespan of P. aeruginosa infected nematodes. After the infection, the P. aeruginosa colony-forming unit (CFU) and P. aeruginosa accumulation in intestinal lumen were also obviously reduced by 1.25–10 mg/L paeoniflorin treatment. The beneficial effects of paeoniflorin treatment in increasing lifespan in P. aeruginosa infected nematodes and in reducing P. aeruginosa accumulation in intestinal lumen could be inhibited by RNAi of pmk-1, egl-1, and bar-1. In addition, paeoniflorin treatment suppressed the inhibition in expressions of pmk-1, egl-1, and bar-1 caused by P. aeruginosa infection in nematodes, suggesting that paeoniflorin could increase lifespan of P. aeruginosa infected nematode by activating PMK-1, EGL-1, and BAR-1. Moreover, although treatment with 1.25–10 mg/L paeoniflorin did not show obvious anti-P. aeruginosa activity, the P. aeruginosa biofilm formation and expressions of related virulence genes (pelA, pelB, phzA, lasB, lasR, rhlA, and rhlC) were significantly inhibited by paeoniflorin treatment. Treatment with 1.25–10 mg/L paeoniflorin could further decrease the levels of related virulence factors of pyocyanin, elastase, and rhamnolipid. In addition, 2.5–10 mg/L paeoniflorin treatment could inhibit the swimming, swarming, and twitching motility of P. aeruginosa, and treatment with 2.5–10 mg/L paeoniflorin reduced the cyclic-di-GMP (c-di-GMP) level. Therefore, paeoniflorin treatment has the potential to extend lifespan of P. aeruginosa infected hosts by reducing bacterial accumulation in intestinal lumen and inhibiting bacterial biofilm formation.
Collapse
|
7
|
Zhou D, Huang G, Xu G, Xiang L, Huang S, Chen X, Zhang Y, Wang D. CRISPRi-Mediated Gene Suppression Reveals Putative Reverse Transcriptase Gene PA0715 to Be a Global Regulator of Pseudomonas aeruginosa. Infect Drug Resist 2022; 15:7577-7599. [PMID: 36579125 PMCID: PMC9792118 DOI: 10.2147/idr.s384980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Pseudomonas aeruginosa is a common pathogen of infection in burn and trauma patients, and multi-drug resistant P. aeruginosa has become an increasingly important pathogen. Essential genes are key to the development of novel antibiotics. The PA0715 gene is a novel unidentified essential gene that has attracted our interest as a potential antibiotic target. Our study aims to determine the exact role of PA0715 in cell physiology and bacterial pathogenicity, providing important clues for antibiotic development. Patients and Methods The shuttle vector pHERD20T containing an arabinose inducible promoter was used to construct the CRISPRi system. Alterations in cellular physiology and bacterial pathogenicity of P. aeruginosa PAO1 after PA0715 inhibition were characterized. High-throughput RNA-seq was performed to gain more insight into the mechanisms by which PA0715 regulates the vital activity of P. aeruginosa. Results We found that down-regulation of PA0715 significantly reduced PAO1 growth rate, motility and chemotaxis, antibiotic resistance, pyocyanin and biofilm production. In addition, PA0715 inhibition reduced the pathogenicity of PAO1 to the greater galleria mellonella larvae. Transcriptional profiling identified 1757 genes including those related to amino acid, carbohydrate, ketone body and organic salt metabolism, whose expression was directly or indirectly controlled by PA0715. Unexpectedly, genes involved in oxidative phosphorylation also varied with PA0715 levels, and these findings support a hitherto unrecognized critical role for PA0715 in oxidative respiration in P. aeruginosa. Conclusion We identified PA0715 as a global regulator of the metabolic network that is indispensable for the survival and reproduction of P. aeruginosa. Our results provide a basis for future studies of potential antibiotic targets for P. aeruginosa and offer new ideas for P. aeruginosa infection control.
Collapse
Affiliation(s)
- Dapeng Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Guangchao Xu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Lijuan Xiang
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| | - Siyi Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xinchong Chen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Dali Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, People’s Republic of China
| |
Collapse
|
8
|
Nishikino T, Takekawa N, Tran DP, Kishikawa JI, Hirose M, Onoe S, Kojima S, Homma M, Kitao A, Kato T, Imada K. Structure of MotA, a flagellar stator protein, from hyperthermophile. Biochem Biophys Res Commun 2022; 631:78-85. [PMID: 36179499 DOI: 10.1016/j.bbrc.2022.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Many motile bacteria swim and swarm toward favorable environments using the flagellum, which is rotated by a motor embedded in the inner membrane. The motor is composed of the rotor and the stator, and the motor torque is generated by the change of the interaction between the rotor and the stator induced by the ion flow through the stator. A stator unit consists of two types of membrane proteins termed A and B. Recent cryo-EM studies on the stators from mesophiles revealed that the stator consists of five A and two B subunits, whereas the low-resolution EM analysis showed that purified hyperthermophilic MotA forms a tetramer. To clarify the assembly formation and factors enhancing thermostability of the hyperthermophilic stator, we determined the cryo-EM structure of MotA from Aquifex aeolicus (Aa-MotA), a hyperthermophilic bacterium, at 3.42 Å resolution. Aa-MotA forms a pentamer with pseudo C5 symmetry. A simulated model of the Aa-MotA5MotB2 stator complex resembles the structures of mesophilic stator complexes, suggesting that Aa-MotA can assemble into a pentamer equivalent to the stator complex without MotB. The distribution of hydrophobic residues of MotA pentamers suggests that the extremely hydrophobic nature in the subunit boundary and the transmembrane region is a key factor to stabilize hyperthermophilic Aa-MotA.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Duy Phuoc Tran
- School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sakura Onoe
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Akio Kitao
- School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
9
|
Homma M, Takekawa N, Fujiwara K, Hao Y, Onoue Y, Kojima S. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus. Genes Cells 2022; 27:568-578. [PMID: 35842835 DOI: 10.1111/gtc.12975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Marine bacterium Vibrio alginolyticus forms a single flagellum at a cell pole. In Vibrio, two proteins (GTPase FlhF and ATPase FlhG) regulate the number of flagella. We previously isolated the NMB155 mutant that forms multiple flagella despite the absence of mutations in flhF and flhG. Whole-genome sequencing of NMB155 identified an E9K mutation in FliM that is a component of C-ring in the flagellar rotor. Mutations in FliM result in defects in flagellar formation (fla) and flagellar rotation (che or mot); however, there are a few reports indicating that FliM mutations increase the number of flagella. Here, we determined that the E9K mutation confers the multi-flagellar phenotype and also the che phenotype. The co-expression of wild-type FliM and FliM-E9K indicated that they were competitive in regard to determining the flagellar number. The ATPase activity of FlhG has been correlated with the number of flagella. We observed that the ATPase activity of FlhG was increased by the addition of FliM but not by the addition of FliM-E9K in vitro. This indicates that FliM interacts with FlhG to increase its ATPase activity, and the E9K mutation may inhibit this interaction. FliM may control the ATPase activity of FlhG to properly regulate the number of the polar flagellum at the cell pole. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazushi Fujiwara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuxi Hao
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Xiong BJ, Stanley CE, Dusny C, Schlosser D, Harms H, Wick LY. pH Distribution along Growing Fungal Hyphae at Microscale. J Fungi (Basel) 2022; 8:599. [PMID: 35736082 PMCID: PMC9224906 DOI: 10.3390/jof8060599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Claire E. Stanley
- Department of Bioengineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, UK;
| | - Christian Dusny
- Helmholtz Centre for Environmental Research-UFZ, Department of Solar Materials, Permoserstraβe 15, 04318 Leipzig, Germany;
| | - Dietmar Schlosser
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| |
Collapse
|
11
|
Homma M, Kojima S. The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation. Front Microbiol 2022; 13:869187. [PMID: 35572622 PMCID: PMC9093738 DOI: 10.3389/fmicb.2022.869187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
The bacterial flagellar stator is a unique ion-conducting membrane protein complex composed of two kinds of proteins, the A subunit and the B subunit. The stator couples the ion-motive force across the membrane into rotational force. The stator becomes active only when it is incorporated into the flagellar motor. The periplasmic region of the B subunit positions the stator by using the peptidoglycan-binding (PGB) motif in its periplasmic C-terminal domain to attach to the cell wall. Functional studies based on the crystal structures of the C-terminal domain of the B subunit (MotBC or PomBC) reveal that a dramatic conformational change in a characteristic α-helix allows the stator to conduct ions efficiently and bind to the PG layer. The plug and the following linker region between the transmembrane (TM) and PG-binding domains of the B subunit function in regulating the ion conductance. In Vibrio spp., the transmembrane protein FliL and the periplasmic MotX and MotY proteins also contribute to the motor function. In this review, we describe the functional and structural changes which the stator units undergo to regulate the activity of the stator to drive flagellar rotation.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Mutations in the stator protein PomA affect switching of rotational direction in bacterial flagellar motor. Sci Rep 2022; 12:2979. [PMID: 35194097 PMCID: PMC8863984 DOI: 10.1038/s41598-022-06947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 12/03/2022] Open
Abstract
The flagellar motor rotates bi-directionally in counter-clockwise (CCW) and clockwise (CW) directions. The motor consists of a stator and a rotor. Recent structural studies have revealed that the stator is composed of a pentameric ring of A subunits and a dimer axis of B subunits. Highly conserved charged and neighboring residues of the A subunit interacts with the rotor, generating torque through a gear-like mechanism. The rotational direction is controlled by chemotaxis signaling transmitted to the rotor, with less evidence for the stator being involved. In this study, we report novel mutations that affect the switching of the rotational direction at the putative interaction site of the stator to generate rotational force. Our results highlight an aspect of flagellar motor function that appropriate switching of the interaction states between the stator and rotor is critical for controlling the rotational direction.
Collapse
|
13
|
Signaling events that occur when cells of Escherichia coli encounter a glass surface. Proc Natl Acad Sci U S A 2022; 119:2116830119. [PMID: 35131853 PMCID: PMC8833168 DOI: 10.1073/pnas.2116830119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Microbial cells organized on solid surfaces are the most ancient form of biological communities. Yet how single cells interact with surfaces and integrate a variety of signals to establish a sessile lifestyle is poorly understood. We developed and used sensitive biosensors to determine the kinetics of second messengers’ responses to surface attachment. This allowed us to examine cell-by-cell variability of the initial signaling events and establish that some of these events depend on flagellar motor function while others do not. Environmentally determined factors, like the energetic status of the cell, can modulate all signaling events. The complex interplay between the surface interaction inputs and external conditions can now be studied using our system. Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein–based c-di-GMP–sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds’ timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes’ timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.
Collapse
|
14
|
Nishikino T, Sagara Y, Terashima H, Homma M, Kojima S. Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor. J Biochem 2022; 171:443-450. [PMID: 35015887 DOI: 10.1093/jb/mvac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio has a polar flagellum driven by sodium ions for swimming. The force-generating stator unit consists of PomA and PomB. PomA contains four-transmembrane regions and a cytoplasmic domain of approximately 100 residues which interacts with the rotor protein, FliG, to be important for the force generation of rotation. The three-dimensional structure of the stator shows that the cytosolic interface (CI) helix of PomA is located parallel to the inner membrane. In this study, we investigated the function of CI helix and its role as stator. Systematic proline mutagenesis showed that residues K64, F66, and M67 were important for this function. The mutant stators did not assemble around the rotor. Moreover, the growth defect caused by PomB plug deletion was suppressed by these mutations. We speculate that the mutations affect the structure of the helices extending from TM3 and TM4 and reduce the structural stability of the stator complex. This study suggests that the helices parallel to the inner membrane play important roles in various processes, such as the hoop-like function in securing the stability of the stator complex and the ion conduction pathway, which may lead to the elucidation of the ion permeation and assembly mechanism of the stator.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Institute for protein research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yugo Sagara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.,Department of bacteriology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
15
|
Wang B, Niu Y, Zhang R, Yuan J. Dynamics of Switching at Stall Reveals Nonequilibrium Mechanism in the Allosteric Regulation of the Bacterial Flagellar Switch. PHYSICAL REVIEW LETTERS 2021; 127:268101. [PMID: 35029477 DOI: 10.1103/physrevlett.127.268101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Behavior of the bacterial flagellar motor depends sensitively on the external loads it drives. Motor switching, which provides the basis for the run-and-tumble behavior of flagellated bacteria, has been studied for motors under zero to high loads, revealing a nonequilibrium effect that is proportional to the motor torque. However, behavior of the motor switching at stall (with maximum torque) remains unclear. An extrapolation from previous studies would suggest the maximum nonequilibrium effect for motor switching at stall. Here, we stalled the motor using optical tweezers and studied the motor switching with a high time resolution of about 2 ms. Surprisingly, our results showed exponentially distributed counterclockwise (CCW) and clockwise (CW) intervals, indicating that motor switching at stall is probably an equilibrium process. Combined with previous experiments at other loads, our result suggested that the nonequilibrium effect in motor switching arises from the asymmetry of the torque generation in the CCW and CW directions. By including this nonequilibrium effect in the general Ising-type conformation spread model of the flagellar switch, we consistently explained the motor switching over the whole range of load conditions. We expect to see a similar mechanism of nonequilibrium regulation in other molecular machines.
Collapse
Affiliation(s)
- Bin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuhui Niu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
"Take It or Leave It"-Factors Regulating Competence Development and DNA Uptake in Campylobacter jejuni. Int J Mol Sci 2021; 22:ijms221810169. [PMID: 34576332 PMCID: PMC8468864 DOI: 10.3390/ijms221810169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Campylobacter jejuni has a large adaptive potential due to enormous genetic exchange. Factors regulating natural transformation in this food-borne pathogen are largely unknown but of interest for the application of sustained reduction strategies in the food-processing industry. Using a single cell DNA uptake assay, we visualized that recognition of methylated C. jejuni DNA was essential for the first step of DNA uptake into a DNase resistant state. Transformation rates using a resistance marker correlated with the fraction of competent bacteria, harboring one to maximally four locations of active DNA uptake, not necessarily being located at the cell pole. Competence developed with rising pH between 6.5 and 7.5 under microaerobic conditions and was nearly insensitive towards growth temperatures between 32 °C and 42 °C, CO2 concentrations ranging from 0 to 50% and growth rates. However, competence development was abolished at pH 5 or under aerobic stress conditions, in which the bacteria ceased growth but fully survived. The DNA uptake machinery in competent bacteria shut down at slightly acidic pH and was reversibly switched on upon neutralization. It was dependent on the proton motive force and, in contrast to competence development, slightly enhanced under aerobic conditions. The results suggest that natural transformation in C. jejuni occurs in the neutral and microaerobic intestinal environment for enhanced genetic diversity and pre-adaption before host switch. In addition, highly competent bacteria might be shed into the environment, still able to acquire genetic material for increased survival.
Collapse
|
17
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Kojima S, Kajino H, Hirano K, Inoue Y, Terashima H, Homma M. Role of the N- and C-terminal regions of FliF, the MS ring component in Vibrio flagellar basal body. J Bacteriol 2021; 203:JB.00009-21. [PMID: 33619151 PMCID: PMC8092156 DOI: 10.1128/jb.00009-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
The MS ring is a part of the flagellar basal body and formed by 34 subunits of FliF, which consists of a large periplasmic region and two transmembrane segments connected to the N- and C-terminal regions facing the cytoplasm. A cytoplasmic protein, FlhF, which determines the position and number of the basal body, supports MS ring formation in the membrane in Vibrio species. In this study, we constructed FliF deletion mutants that lack 30 or 50 residues from the N-terminus (ΔN30 and ΔN50), and 83 (ΔC83) or 110 residues (ΔC110) at the C-terminus. The N-terminal deletions were functional and conferred motility of Vibrio cells, whereas the C-terminal deletions were nonfunctional. The mutants were expressed in Escherichia coli to determine whether an MS ring could still be assembled. When co-expressing ΔN30FliF or ΔN50FliF with FlhF, fewer MS rings were observed than with the expression of wild-type FliF, in the MS ring fraction, suggesting that the N-terminus interacts with FlhF. MS ring formation is probably inefficient without FlhF. The deletion of the C-terminal cytoplasmic region did not affect the ability of FliF to form an MS ring because a similar number of MS rings were observed for ΔC83FliF as with wild-type FliF, although further deletion of the second transmembrane segment (ΔC110FliF) abolished it. These results suggest that the terminal regions of FliF have distinct roles; the N-terminal region for efficient MS ring formation and the C-terminal region for MS ring function. The second transmembrane segment is indispensable for MS ring assembly.ImportanceThe bacterial flagellum is a supramolecular architecture involved in cell motility. At the base of the flagella, a rotary motor that begins to construct an MS ring in the cytoplasmic membrane comprises 34 transmembrane proteins (FliF). Here, we investigated the roles of the N and C terminal regions of FliF, which are MS rings. Unexpectedly, the cytoplasmic regions of FliF are not indispensable for the formation of the MS ring, but the N-terminus appears to assist in ring formation through recruitment of FlhF, which is essential for flagellar formation. The C-terminus is essential for motor formation or function.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Hiroki Kajino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Keiichi Hirano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuna Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
19
|
Xu Z, Liu Z, Soteyome T, Hua J, Zhang L, Yuan L, Ye Y, Cai Z, Yang L, Chen L, Harro JM, Kjellerup BV, Liu J, Li Y. Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiol 2021; 98:103785. [PMID: 33875213 DOI: 10.1016/j.fm.2021.103785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/30/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cronobacter sakazakii is an emerging opportunistic foodborne pathogen causing rare but severe infections in neonates. Furthermore, the formation of biofilm allows C. sakazakii to persist in different environments. We have demonstrated that the mutator phenotype ascribed to deficiency of the pmrA gene results in more biomass in the first 24 h but less during the post maturation stage (7-14 d) compared with BAA 894. The present study aimed to investigate the regulatory mechanism modulating biofilm formation due to pmrA mutation. The transcriptomic analyses of BAA 894 and s-3 were performed by RNA-sequencing on planktonic and biofilm cells collected at different time points. According to the results, when comparing biofilm to planktonic cells, expression of genes encoding outer membrane proteins, lysozyme, etc. were up-regulated, with LysR family transcriptional regulators, periplasmic proteins, etc. down-regulated. During biofilm formation, cellulose synthase operon genes, flagella-related genes, etc. played essential roles in different stages. Remarkably, pmrA varies the expression of a number of genes related to motility, biofilm formation, and antimicrobial resistance, including srfB, virK, mviM encoding virulence factor, flgF, fliN, etc. encoding flagellar assembly, and marA, ramA, etc. encoding AraC family transcriptional regulators in C. sakazakii. This study provides valuable insights into transcriptional regulation of C. sakazakii pmrA mutant during biofilm formation.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38103, USA; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand; National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China
| | - Ziqi Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | - Jingjing Hua
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA
| | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yanyan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
20
|
Abstract
There is growing interest in the use of associative, plant growth-promoting bacteria (PGPB) as biofertilizers to serve as a sustainable alternative for agriculture application. While a variety of mechanisms have been proposed to explain bacterial plant growth promotion, the molecular details of this process remain unclear. The plant rhizosphere harbors a diverse population of microorganisms, including beneficial plant growth-promoting bacteria (PGPB), that colonize plant roots and enhance growth and productivity. In order to specifically define bacterial traits that contribute to this beneficial interaction, we used high-throughput transposon mutagenesis sequencing (TnSeq) in two model root-bacterium systems associated with Setaria viridis: Azoarcus olearius DQS4T and Herbaspirillum seropedicae SmR1. This approach identified ∼100 significant genes for each bacterium that appeared to confer a competitive advantage for root colonization. Most of the genes identified specifically in A. olearius encoded metabolism functions, whereas genes identified in H. seropedicae were motility related, suggesting that each strain requires unique functions for competitive root colonization. Genes were experimentally validated by site-directed mutagenesis, followed by inoculation of the mutated bacteria onto S. viridis roots individually, as well as in competition with the wild-type strain. The results identify key bacterial functions involved in iron uptake, polyhydroxybutyrate metabolism, and regulation of aromatic metabolism as important for root colonization. The hope is that by improving our understanding of the molecular mechanisms used by PGPB to colonize plants, we can increase the adoption of these bacteria in agriculture to improve the sustainability of modern cropping systems.
Collapse
|
21
|
Zhuang XY, Lo CJ. Construction and Loss of Bacterial Flagellar Filaments. Biomolecules 2020; 10:E1528. [PMID: 33182435 PMCID: PMC7696725 DOI: 10.3390/biom10111528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
The bacterial flagellar filament is an extracellular tubular protein structure that acts as a propeller for bacterial swimming motility. It is connected to the membrane-anchored rotary bacterial flagellar motor through a short hook. The bacterial flagellar filament consists of approximately 20,000 flagellins and can be several micrometers long. In this article, we reviewed the experimental works and models of flagellar filament construction and the recent findings of flagellar filament ejection during the cell cycle. The length-dependent decay of flagellar filament growth data supports the injection-diffusion model. The decay of flagellar growth rate is due to reduced transportation of long-distance diffusion and jamming. However, the filament is not a permeant structure. Several bacterial species actively abandon their flagella under starvation. Flagellum is disassembled when the rod is broken, resulting in an ejection of the filament with a partial rod and hook. The inner membrane component is then diffused on the membrane before further breakdown. These new findings open a new field of bacterial macro-molecule assembly, disassembly, and signal transduction.
Collapse
Affiliation(s)
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan City 32001, Taiwan;
| |
Collapse
|
22
|
Kolbe U, Yi B, Poth T, Saunders A, Boutin S, Dalpke AH. Early Cytokine Induction Upon Pseudomonas aeruginosa Infection in Murine Precision Cut Lung Slices Depends on Sensing of Bacterial Viability. Front Immunol 2020; 11:598636. [PMID: 33250899 PMCID: PMC7673395 DOI: 10.3389/fimmu.2020.598636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Breathing allows a multitude of airborne microbes and microbial compounds to access the lung. Constant exposure of the pulmonary microenvironment to immunogenic particles illustrates the need for proper control mechanisms ensuring the differentiation between threatening and harmless encounters. Discrimination between live and dead bacteria has been suggested to be such a mechanism. In this study, we performed infection studies of murine precision cut lung slices (PCLS) with live or heat-killed P. aeruginosa, in order to investigate the role of viability for induction of an innate immune response. We demonstrate that PCLS induce a robust transcriptomic rewiring upon infection with live but not heat-killed P. aeruginosa. Using mutants of the P. aeruginosa clinical isolate CHA, we show that the viability status of P. aeruginosa is assessed in PCLS by TLR5-independent sensing of flagellin and recognition of the type three secretion system. We further demonstrate that enhanced cytokine expression towards live P. aeruginosa is mediated by uptake of viable but not heat-killed bacteria. Finally, by using a combined approach of receptor blockage and genetically modified PCLS we report a redundant involvement of MARCO and CD200R1 in the uptake of live P. aeruginosa in PCLS. Altogether, our results show that PCLS adapt the extent of cytokine expression to the viability status of P. aeruginosa by specifically internalizing live bacteria.
Collapse
Affiliation(s)
- Ulrike Kolbe
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amy Saunders
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Structural Conservation and Adaptation of the Bacterial Flagella Motor. Biomolecules 2020; 10:biom10111492. [PMID: 33138111 PMCID: PMC7693769 DOI: 10.3390/biom10111492] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.
Collapse
|
24
|
Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC, Erhardt M, Taylor NM. Structure and Function of Stator Units of the Bacterial Flagellar Motor. Cell 2020; 183:244-257.e16. [DOI: 10.1016/j.cell.2020.08.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
|
25
|
Carroll BL, Nishikino T, Guo W, Zhu S, Kojima S, Homma M, Liu J. The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. eLife 2020; 9:61446. [PMID: 32893817 PMCID: PMC7505661 DOI: 10.7554/elife.61446] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022] Open
Abstract
The bacterial flagellar motor switches rotational direction between counterclockwise (CCW) and clockwise (CW) to direct the migration of the cell. The cytoplasmic ring (C-ring) of the motor, which is composed of FliG, FliM, and FliN, is known for controlling the rotational sense of the flagellum. However, the mechanism underlying rotational switching remains elusive. Here, we deployed cryo-electron tomography to visualize the C-ring in two rotational biased mutants in Vibrio alginolyticus. We determined the C-ring molecular architectures, providing novel insights into the mechanism of rotational switching. We report that the C-ring maintained 34-fold symmetry in both rotational senses, and the protein composition remained constant. The two structures show FliG conformational changes elicit a large conformational rearrangement of the rotor complex that coincides with rotational switching of the flagellum. FliM and FliN form a stable spiral-shaped base of the C-ring, likely stabilizing the C-ring during the conformational remodeling.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Shiwei Zhu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States.,Microbial Sciences Institute, Yale University, West Haven, United States
| |
Collapse
|
26
|
Structure and Energy-Conversion Mechanism of the Bacterial Na+-Driven Flagellar Motor. Trends Microbiol 2020; 28:719-731. [DOI: 10.1016/j.tim.2020.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
|
27
|
Liu R, Zheng R, Liu G, Sun C. The cyclic lipopeptides suppress the motility of Vibrio alginolyticus via targeting the Na + -driven flagellar motor component MotX. Environ Microbiol 2020; 22:4424-4437. [PMID: 32608186 DOI: 10.1111/1462-2920.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 01/17/2023]
Abstract
In our previous study, we found that pumilacidin-like cyclic lipopeptides (CLPs) derived from marine bacterium Bacillus sp. strain 176 significantly suppressed the mobile capability and virulence of Vibrio alginolyticus. Here, to further disclose the mechanism of CLPs inhibiting the motility of V. alginolyticus, we first applied transcriptomic analysis to V. alginolyticus treated with or without CLPs. The transcriptomic results showed that the expression of several important components of the Na+ -driven flagellar motor closely related to bacterial motility were markedly suppressed, suggesting that the structure and function of Na+ -driven flagellar motor might be disabled by CLPs. The transcriptomic data were further analysed by the protein-protein interaction network, and the results supported that MotX, one of the essential components of Na+ -driven flagellar motor was most likely the action target of CLPs. In combination of gene knockout, electrophoretic mobility shift assay and immunoblotting techniques, CLPs were demonstrated to affect the rotation of flagella of Vibrio alginolyticus via direct interacting with the Na+ -driven flagellar motor component MotX, which eventually inhibited the bacterial motility. Interestingly, homologues of MotX were found broadly distributed and highly conserved in different pathogenic species, which extends the application range of CLPs as an antibacterial drug targeting bacterial motility in many pathogens.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rikuan Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Wang R, Chen Q, Zhang R, Yuan J. Measurement of the Internal Frictional Drag of the Bacterial Flagellar Motor by Fluctuation Analysis. Biophys J 2020; 118:2718-2725. [PMID: 32392462 DOI: 10.1016/j.bpj.2020.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
The bacterial flagellar motor generates the torque that drives the rotation of bacterial flagellar filaments. The torque it generates depends sensitively on the frictional viscous drag on the motor, which includes the frictional viscous drag on the filaments (external load) and the internal frictional viscous drag on the rotor (internal load). The internal load was roughly estimated previously by modeling it as a sphere of a radius of 20 nm rotating in a lipid of viscosity of 100 cp but was never measured experimentally. Here, we measured the internal load by fluctuation analysis of the motor velocity traces. A similar approach should be applicable to other molecular motors.
Collapse
Affiliation(s)
- Renjie Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiaopeng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
29
|
Lam WWL, Sun K, Zhang H, Au SWN. Crystal Structure of Flagellar Export Chaperone FliS in Complex With Flagellin and HP1076 of Helicobacter pylori. Front Microbiol 2020; 11:787. [PMID: 32508757 PMCID: PMC7248283 DOI: 10.3389/fmicb.2020.00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Functional flagella formation is a widespread virulence factor that plays a critical role in survival and host colonization. Flagellar synthesis is a complex and highly coordinated process. The assembly of the axial structure beyond the cell membrane is mediated by export chaperone proteins that transport their cognate substrates to the export gate complex. The export chaperone FliS interacts with flagellin, the basic component used to construct the filament. Unlike enterobacteria, the gastric pathogen Helicobacter pylori produces two different flagellins, FlaA and FlaB, which exhibit distinct spatial localization patterns in the filament. Previously, we demonstrated a molecular interaction between FliS and an uncharacterized protein, HP1076, in H. pylori. Here, we present the crystal structure of FliS in complex with both the C-terminal D0 domain of FlaB and HP1076. Although this ternary complex reveals that FliS interacts with flagellin using a conserved binding mode demonstrated previously in Aquifex aeolicus, Bacillus subtilis, and Salmonella enterica serovar Typhimurium, the helical conformation of FlaB in this complex was different. Moreover, HP1076 and the D1 domain of flagellin share structural similarity and interact with the same binding interface on FliS. This observation was further validated through competitive pull-down assays and kinetic binding analyses. Interestingly, we did not observe any detrimental flagellation or motility phenotypes in an hp1076-null strain. Our localization studies suggest that HP1076 is a membrane-associated protein with a cellular localization independent of FliS. As HP1076 is uniquely expressed in H. pylori and related species, we propose that this protein may contribute to the divergence of the flagellar system, although its relationship with FliS remains incompletely elucidated.
Collapse
Affiliation(s)
- Wendy Wai-Ling Lam
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kailei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Huawei Zhang
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Wing-Ngor Au
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
30
|
Tao A, Zhang R, Yuan J. Characterization of Photophysical Properties of Photoactivatable Fluorescent Proteins for Super-Resolution Microscopy. J Phys Chem B 2020; 124:1892-1897. [PMID: 32065748 DOI: 10.1021/acs.jpcb.9b11028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoactivatable fluorescent proteins (PA-FPs) are widely used in photoactivated localization microscopy (PALM), and information about their blinking properties is important for precise assembling of PALM images and for quantitative molecular counting with PALM. As the photophysical properties of fluorescent proteins depend sensitively on the local physiochemical environment, we developed a series of procedures to characterize the properties of the PA-FPs in fixed cells. As an example, we characterized the properties of Dendra2 in Escherichia coli and found that they are appreciably different from those in vitro. This highlights the importance of characterizing the photophysical properties of PA-FPs under the same experimental conditions as subsequent PALM imaging or molecular counting experiments. Other PA-FPs could be characterized using this strategy.
Collapse
Affiliation(s)
- Antai Tao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
31
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
32
|
Nishikino T, Iwatsuki H, Mino T, Kojima S, Homma M. Characterization of PomA periplasmic loop and sodium ion entering in stator complex of sodium-driven flagellar motor. J Biochem 2019; 167:389-398. [DOI: 10.1093/jb/mvz102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Abstract
The bacterial flagellar motor is a rotary nanomachine driven by ion flow. The flagellar stator complex, which is composed of two proteins, PomA and PomB, performs energy transduction in marine Vibrio. PomA is a four transmembrane (TM) protein and the cytoplasmic region between TM2 and TM3 (loop2–3) interacts with the rotor protein FliG to generate torque. The periplasmic regions between TM1 and TM2 (loop1–2) and TM3 and TM4 (loop3–4) are candidates to be at the entrance to the transmembrane ion channel of the stator. In this study, we purified the stator complex with cysteine replacements in the periplasmic loops and assessed the reactivity of the protein with biotin maleimide (BM). BM easily modified Cys residues in loop3–4 but hardly labelled Cys residues in loop1–2. We could not purify the plug deletion stator (ΔL stator) composed of PomBΔ41–120 and WT-PomA but could do the ΔL stator with PomA-D31C of loop1–2 or with PomB-D24N of TM. When the ion channel is closed, PomA and PomB interact strongly. When the ion channel opens, PomA interacts less tightly with PomB. The plug and loop1–2 region regulate this activation of the stator, which depends on the binding of sodium ion to the D24 residue of PomB.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Taira Mino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Mino T, Nishikino T, Iwatsuki H, Kojima S, Homma M. Effect of sodium ions on conformations of the cytoplasmic loop of the PomA stator protein of Vibrio alginolyticus. J Biochem 2019; 166:331-341. [PMID: 31147681 DOI: 10.1093/jb/mvz040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
The sodium driven flagellar stator of Vibrio alginolyticus is a hetero-hexamer membrane complex composed of PomA and PomB, and acts as a sodium ion channel. The conformational change in the cytoplasmic region of PomA for the flagellar torque generation, which interacts directly with a rotor protein, FliG, remains a mystery. In this study, we introduced cysteine mutations into cytoplasmic charged residues of PomA, which are highly conserved and interact with FliG, to detect the conformational change by the reactivity of biotin maleimide. In vivo labelling experiments of the PomA mutants revealed that the accessibility of biotin maleimide at position of E96 was reduced with sodium ions. Such a reduction was also seen in the D24N and the plug deletion mutants of PomB, and the phenomenon was independent in the presence of FliG. This sodium ions specific reduction was also detected in Escherichia coli that produced PomA and PomB from a plasmid, but not in the purified stator complex. These results demonstrated that sodium ions cause a conformational change around the E96 residue of loop2-3 in the biological membrane.
Collapse
Affiliation(s)
- Taira Mino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Hiroto Iwatsuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cyo, Nagoya, Japan
| |
Collapse
|
34
|
Ethanol Decreases Pseudomonas aeruginosa Flagellar Motility through the Regulation of Flagellar Stators. J Bacteriol 2019; 201:JB.00285-19. [PMID: 31109994 DOI: 10.1128/jb.00285-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa frequently encounters microbes that produce ethanol. Low concentrations of ethanol reduced P. aeruginosa swim zone area by up to 45% in soft agar. The reduction of swimming by ethanol required the flagellar motor proteins MotAB and two PilZ domain proteins (FlgZ and PilZ). PilY1 and the type 4 pilus alignment complex (comprising PilMNOP) were previously implicated in MotAB regulation in surface-associated cells and were required for ethanol-dependent motility repression. As FlgZ requires the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) to represses motility, we screened mutants lacking genes involved in c-di-GMP metabolism and found that mutants lacking diguanylate cyclases SadC and GcbA were less responsive to ethanol. The double mutant was resistant to its effects. As published previously, ethanol also represses swarming motility, and the same genes required for ethanol effects on swimming motility were required for its regulation of swarming. Microscopic analysis of single cells in soft agar revealed that ethanol effects on swim zone area correlated with ethanol effects on the portion of cells that paused or stopped during the time interval analyzed. Ethanol increased c-di-GMP in planktonic wild-type cells but not in ΔmotAB or ΔsadC ΔgcbA mutants, suggesting c-di-GMP plays a role in the response to ethanol in planktonic cells. We propose that ethanol produced by other microbes induces a regulated decrease in P. aeruginosa motility, thereby promoting P. aeruginosa colocalization with ethanol-producing microbes. Furthermore, some of the same factors involved in the response to surface contact are involved in the response to ethanol.IMPORTANCE Ethanol is an important biologically active molecule produced by many bacteria and fungi. It has also been identified as a potential marker for disease state in cystic fibrosis. In line with previous data showing that ethanol promotes biofilm formation by Pseudomonas aeruginosa, here we report that ethanol reduces swimming motility using some of the same proteins involved in surface sensing. We propose that these data may provide insight into how microbes, via their metabolic byproducts, can influence P. aeruginosa colocalization in the context of infection and in other polymicrobial settings.
Collapse
|
35
|
Thompson MA, Onyeziri MC, Fuqua C. Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment. Curr Top Microbiol Immunol 2019; 418:143-184. [PMID: 29998422 PMCID: PMC6330146 DOI: 10.1007/82_2018_96] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agrobacterium tumefaciens attaches stably to plant host tissues and abiotic surfaces. During pathogenesis, physical attachment to the site of infection is a prerequisite to infection and horizontal gene transfer to the plant. Virulent and avirulent strains may also attach to plant tissue in more benign plant associations, and as with other soil microbes, to soil surfaces in the terrestrial environment. Although most A. tumefaciens virulence functions are encoded on the tumor-inducing plasmid, genes that direct general surface attachment are chromosomally encoded, and thus this process is not obligatorily tied to virulence, but is a more fundamental capacity. Several different cellular structures are known or suspected to contribute to the attachment process. The flagella influence surface attachment primarily via their propulsive activity, but control of their rotation during the transition to the attached state may be quite complex. A. tumefaciens produces several pili, including the Tad-type Ctp pili, and several plasmid-borne conjugal pili encoded by the Ti and At plasmids, as well as the so-called T-pilus, involved in interkingdom horizontal gene transfer. The Ctp pili promote reversible interactions with surfaces, whereas the conjugal and T-pili drive horizontal gene transfer (HGT) interactions with other cells and tissues. The T-pilus is likely to contribute to physical association with plant tissues during DNA transfer to plants. A. tumefaciens can synthesize a variety of polysaccharides including cellulose, curdlan (β-1,3 glucan), β-1,2 glucan (cyclic and linear), succinoglycan, and a localized polysaccharide(s) that is confined to a single cellular pole and is called the unipolar polysaccharide (UPP). Lipopolysaccharides are also in the outer leaflet of the outer membrane. Cellulose and curdlan production can influence attachment under certain conditions. The UPP is required for stable attachment under a range of conditions and on abiotic and biotic surfaces. Other factors that have been reported to play a role in attachment include the elusive protein called rhicadhesin. The process of surface attachment is under extensive regulatory control and can be modulated by environmental conditions, as well as by direct responses to surface contact. Complex transcriptional and post-transcriptional control circuitry underlies much of the production and deployment of these attachment functions.
Collapse
Affiliation(s)
- Melene A Thompson
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
36
|
Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions. Sci Rep 2019; 9:3845. [PMID: 30846802 PMCID: PMC6405996 DOI: 10.1038/s41598-019-40655-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial chemotaxis signaling may be interesting for the development of rapid biosensor assays, but is difficult to quantify. Here we explore two potential fluorescent readouts of chemotactically active Escherichia coli cells. In the first, we probed interactions between the chemotaxis signaling proteins CheY and CheZ by fusing them individually with non-fluorescent parts of stable or unstable ‘split’-Green Fluorescent Protein. Wild-type chemotactic cells but not mutants lacking the CheA kinase produced distinguishable fluorescence foci, two-thirds of which localize at the cell poles with the chemoreceptors and one-third at motor complexes. Fluorescent foci based on stable split-eGFP displayed small fluctuations in cells exposed to attractant or repellent, but those based on an unstable ASV-tagged eGFP showed a higher dynamic behaviour both in the foci intensity changes and the number of foci per cell. For the second readout, we expressed the pH-sensitive fluorophore pHluorin in the cyto- and periplasm of chemotactically active E. coli. Calibrations of pHluorin fluorescence as a function of pH demonstrated that cells accumulating near a chemo-attractant temporally increase cytoplasmic pH while decreasing periplasmic pH. Both readouts thus show promise for biosensor assays based on bacterial chemotaxis activity.
Collapse
|
37
|
Shi H, Ma S, Zhang R, Yuan J. A hidden state in the turnover of a functioning membrane protein complex. SCIENCE ADVANCES 2019; 5:eaau6885. [PMID: 30906857 PMCID: PMC6426456 DOI: 10.1126/sciadv.aau6885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Most membrane proteins exist in complexes that carry out critical cellular functions and exhibit rich dynamics. The bacterial flagellar motor, a large membrane-spanning ion-driven rotary motor that propels the bacteria to swim, provides a canonical example. Rotation of the motor is driven by multiple torque-generating units (stators). Turnover of the stators has been shown previously, demonstrating the exchange of stator units between the motor and a membrane pool. But the details of the turnover kinetics remain unclear. Here, we directly measured the kinetics of stator turnover in individual motors via analysis of a large dataset of long-term high-resolution recordings of motor speed at high load. We found that the dwell time distribution of the stator units exhibits a multi-exponential shape, suggesting the existence of a hidden state in the turnover of the stators.
Collapse
|
38
|
Wang Y, Wang F, Wang C, Li X, Fu L. Positive Regulation of Spoilage Potential and Biofilm Formation in Shewanella baltica OS155 via Quorum Sensing System Composed of DKP and Orphan LuxRs. Front Microbiol 2019; 10:135. [PMID: 30804914 PMCID: PMC6370745 DOI: 10.3389/fmicb.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
The spoilage potential and biofilm formation of Shewanella baltica are reported to be regulated by Quorum sensing (QS) system from the phenotype point of view, but the specific mechanism is not fully understood. In the present study, the QS autoinducers were detected by UHPLC-MS/MS, cell density-dependent luxR-type genes were obtained through autoregulation experiments among a series of candidates in S. baltica OS155 (The SSO of large yellow croaker). The direct interaction between cyclo-(L-Pro-L-Phe) (PP) and LuxR01 as well as LuxR02 proteins was revealed via in vitro binding assay. Deletion of luxR-type genes (luxR01 and luxR02) impaired spoilage potential and biofilm formation of S. baltica OS155 in various degrees. Transcriptional analysis and qRT-PCR validation showed that spoilage and biofilm-related genes torS, speF, and pomA were down-regulated in luxR01 and luxR02 deletion strains. In addition, exogenous PP promoted spoilage potential and biofilm formation, which could be attenuated by luxR01 or luxR02 deletion. Our results revealed an explicit QS system employing PP as autoinducer and two orphan LuxRs as receptors which positively regulated spoilage capacity and biofilm formation via transcriptional regulation of corresponding genes in S. baltica OS155, which provides potential specific targets for seafood preservation involving QS system.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
39
|
Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio. Sci Rep 2018; 8:17793. [PMID: 30542147 PMCID: PMC6290876 DOI: 10.1038/s41598-018-35902-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
FliG, which is composed of three distinctive domains, N-terminal (N), middle (M), and C-terminal (C), is an essential rotor component that generates torque and determines rotational direction. To determine the role of FliG in determining flagellar rotational direction, we prepared rotational biased mutants of fliG in Vibrio alginolyticus. The E144D mutant, whose residue is belonging to the EHPQR-motif in FliGM, exhibited an increased number of switching events. This phenotype generated a response similar to the phenol-repellent response in chemotaxis. To clarify the effect of E144D mutation on the rotational switching, we combined the mutation with other che mutations (G214S, G215A and A282T) in FliG. Two of the double mutants suppressed the rotational biased phenotype. To gain structural insight into the mutations, we performed molecular dynamic simulations of the FliGMC domain, based on the crystal structure of Thermotoga maritima FliG and nuclear magnetic resonance analysis. Furthermore, we examined the swimming behavior of the fliG mutants lacking CheY. The results suggested that the conformation of FliG in E144D mutant was similar to that in the wild type. However, that of G214S and G215A caused a steric hindrance in FliG. The conformational change in FliGM triggered by binding CheY may lead to a rapid change of direction and may occur in both directional states.
Collapse
|
40
|
Multiple Flagellin Proteins Have Distinct and Synergistic Roles in Agrobacterium tumefaciens Motility. J Bacteriol 2018; 200:JB.00327-18. [PMID: 30201783 DOI: 10.1128/jb.00327-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/01/2018] [Indexed: 11/20/2022] Open
Abstract
Rotary flagella propel bacteria through liquid and across semisolid environments. Flagella are composed of the basal body that constitutes the motor for rotation, the curved hook that connects to the basal body, and the flagellar filament that propels the cell. Flagellar filaments can be composed of a single flagellin protein, such as in Escherichia coli, or made up of multiple flagellins, such as in Agrobacterium tumefaciens The four distinct flagellins FlaA, FlaB, FlaC, and FlaD produced by wild-type A. tumefaciens are not redundant in function but have specific properties. FlaA and FlaB are much more abundant than FlaC and FlaD and are readily observable in mature flagellar filaments, when either FlaA or FlaB is fluorescently labeled. Cells producing FlaA with any one of the other three flagellins can generate functional filaments and thus are motile, but FlaA alone cannot constitute a functional filament. In flaA mutants that manifest swimming deficiencies, there are multiple ways by which these mutations can be phenotypically suppressed. These suppressor mutations primarily occur within or upstream of the flaB flagellin gene or in the transcription factor sciP regulating flagellin expression. The helical conformation of the flagellar filament appears to require a key asparagine residue present in FlaA and absent in other flagellins. However, FlaB can be spontaneously mutated to render helical flagella in the absence of FlaA, reflecting their overall similarity and perhaps the subtle differences in the specific functions they have evolved to fulfill.IMPORTANCE Flagellins are abundant bacterial proteins comprising the flagellar filaments that propel bacterial movement. Several members of the alphaproteobacterial group express multiple flagellins, in contrast to model systems, such as with Escherichia coli, which has one type of flagellin. The plant pathogen Agrobacterium tumefaciens has four flagellins, the abundant and readily detected FlaA and FlaB, and lower levels of FlaC and FlaD. Mutational analysis reveals that FlaA requires at least one of the other flagellins to function, as flaA mutants produce nonhelical flagella and cannot swim efficiently. Suppressor mutations can rescue this swimming defect through mutations in the remaining flagellins, including structural changes imparting helical shape to the flagella, and putative regulators. Our findings shed light on how multiple flagellins contribute to motility.
Collapse
|
41
|
Bacterial flagellar switching: a molecular mechanism directed by the logic of an electric motor. J Mol Model 2018; 24:280. [DOI: 10.1007/s00894-018-3819-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/30/2018] [Indexed: 11/27/2022]
|
42
|
Yang P, Oliveira da Rocha Calixto R, van Elsas JD. Migration of Paraburkholderia terrae BS001 Along Old Fungal Hyphae in Soil at Various pH Levels. MICROBIAL ECOLOGY 2018; 76:443-452. [PMID: 29322230 PMCID: PMC6061471 DOI: 10.1007/s00248-017-1137-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/27/2017] [Indexed: 05/08/2023]
Abstract
The movement of bacterial cells along with fungal hyphae in soil (the mycosphere) has been reported in several previous studies. However, how local soil conditions affect bacterial migration direction in the mycosphere has not been extensively studied. Here, we investigated the influence of two soil parameters, pH and soil moisture content, on the migration, and survival, of Paraburkholderia terrae BS001 in the mycosphere of Lyophyllum sp. strain Karsten in microcosms containing a loamy sand soil. The data showed that bacterial movement along the hyphal networks took place in both the "forward" and the "backward" directions. Low soil pH strongly restricted bacterial survival, as well as dispersal in both directions, in the mycosphere. The backward movement was weakly correlated with the amount of fungal tissue formed in the old mycelial network. The initial soil moisture content, set at 12 versus 17% (corresponding to 42 and 60% of the soil water holding capacity), also significantly affected the bacterial dispersal along the fungal hyphae. Overall, the presence of fungal hyphae was found to increase the soil pH (under conditions of acidity), which possibly exerted protective effects on the bacterial cells. Finally, we provide a refined model that describes the bacterial migration patterns with fungal hyphae based on the new findings in this study.
Collapse
Affiliation(s)
- Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Renata Oliveira da Rocha Calixto
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
43
|
Lin TS, Zhu S, Kojima S, Homma M, Lo CJ. FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy. Sci Rep 2018; 8:11172. [PMID: 30042401 PMCID: PMC6057877 DOI: 10.1038/s41598-018-29447-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022] Open
Abstract
Bacterial flagellar motor (BFM) is a protein complex used for bacterial motility and chemotaxis that involves in energy transformation, torque generation and switching. FliL is a single-transmembrane protein associated with flagellar motor function. We performed biochemical and biophysical approaches to investigate the functional roles of FliL associated with stator-units. Firstly, we found the periplasmic region of FliL is crucial for its polar localization. Also, the plug mutation in stator-unit affected the polar localization of FliL implying the activation of stator-unit is important for FliL recruitment. Secondly, we applied single-molecule fluorescent microscopy to study the role of FliL in stator-unit assembly. Using molecular counting by photobleaching, we found the stoichiometry of stator-unit and FliL protein would be 1:1 in a functional motor. Moreover, the turnover time of stator-units are slightly increased in the absence of FliL. By further investigation of protein dynamics on membrane, we found the diffusions of stator-units and FliL are independent. Surprisingly, the FliL diffusion rate without stator-units is unexpectedly slow indicating a protein-complex forming event. Our results suggest that FliL plays a supporting role to the stator in the BFM.
Collapse
Affiliation(s)
- Tsai-Shun Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China
| | - Shiwei Zhu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, 06536, USA
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, 32001, Republic of China.
| |
Collapse
|
44
|
Cheng C, Wang H, Ma T, Han X, Yang Y, Sun J, Chen Z, Yu H, Hang Y, Liu F, Fang W, Jiang L, Cai C, Song H. Flagellar Basal Body Structural Proteins FlhB, FliM, and FliY Are Required for Flagellar-Associated Protein Expression in Listeria monocytogenes. Front Microbiol 2018; 9:208. [PMID: 29487588 PMCID: PMC5816908 DOI: 10.3389/fmicb.2018.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is a food-associated bacterium that is responsible for food-related illnesses worldwide. In the L. monocytogenes EGD-e genome, FlhB, FliM, and FliY (encoded by lmo0679, lmo0699, and lmo0700, respectively) are annotated as putative flagella biosynthesis factors, but their functions remain unknown. To explore whether FlhB, FliM, and FliY are involved in Listeria flagella synthesis, we constructed flhB, fliM, fliY, and other flagellar-related gene deletion mutants using a homologous recombination strategy. Then, we analyzed the motility, flagella synthesis, and protein expression of these mutant strains. Motility and flagella synthesis were completely abolished in the absence of flhB, fliM, or fliY. These impaired phenotypes were fully restored in the complemented strains CΔflhB, CΔfliM, and CΔfliY. The transcriptional levels of flagellar-related genes, including flaA, fliM, fliY, lmo0695, lmo0698, fliI, and fliS, were downregulated markedly in the absence of flhB, fliM, or fliY. Deletion of flhB resulted in the complete abolishment of FlaA expression, while it decreased FliM and FliY expression. The expression of FlaA was abolished completely in the absence of fliM or fliY. No significant changes were found in the expression of FlhF and two flagella synthesis regulatory factors, MogR and GmaR. We demonstrate for the first time that FlhB, FliM, and FliY not only mediate Listeria motility, but also are involved in regulating flagella synthesis. This study provides novel insights that increase our understanding of the roles played by FlhB, FliM, and FliY in the flagellar type III secretion system in L. monocytogenes.
Collapse
Affiliation(s)
- Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Hang Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Tiantian Ma
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Xiao Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Yongchun Yang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Zhongwei Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Huifei Yu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Yi Hang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Fengdan Liu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Lingli Jiang
- Department of Health Services and Management, Ningbo College of Health Sciences, Ningbo, China
| | - Chang Cai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.,School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China
| |
Collapse
|
45
|
Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units. Proc Natl Acad Sci U S A 2017; 114:12478-12482. [PMID: 29109285 DOI: 10.1073/pnas.1713655114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rotation of the bacterial flagellar motor is driven by multiple torque-generating units (stator elements). The torque-generating dynamics can be understood in terms of the "duty ratio" of the stator elements, that is, the fraction of time a stator element engages with the rotor during its mechanochemical cycle. The dependence of the limiting speed (zero-load speed) of the motor on the number of stator elements is the determining test of the duty ratio, which has been controversial experimentally and theoretically over the past decade. Here, we developed a method combining laser dark-field microscopy and optical trapping to resolve this controversy. We found that the zero-load speed is independent of the number of stator elements for the bacterial flagellar motor in Escherichia coli, demonstrating that these elements have a duty ratio close to 1.
Collapse
|
46
|
Seoudi RS, Mechler A. Design Principles of Peptide Based Self-Assembled Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:51-94. [DOI: 10.1007/978-3-319-66095-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Mechanism of Stator Assembly and Incorporation into the Flagellar Motor. Methods Mol Biol 2017. [PMID: 28389951 DOI: 10.1007/978-1-4939-6927-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In many cases, conformational changes in proteins are related to their functions, and thereby inhibiting those changes causes functional defects. One way to perturb such conformational changes is to covalently link the regions where the changes are induced. Here, I introduce an example in which an intramolecular disulfide crosslink in the stator protein of PomB, introduced based on its crystal structure, reversibly inhibits the rotation of the flagellar motor, and I detail how we analyzed that phenotype. In this Chapter, first I describe how we monitor the motility inhibition and restoration by controlling disulfide bridge formation, and secondly how we detect intramolecular disulfide crosslinks, which are sometimes difficult to monitor by mobility shifts on SDS-PAGE gels.
Collapse
|
48
|
Berg HC. The flagellar motor adapts, optimizing bacterial behavior. Protein Sci 2016; 26:1249-1251. [PMID: 27679984 DOI: 10.1002/pro.3055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022]
Abstract
A short review is given of recent work showing that the flagellar rotary motor of the bacterium Escherichia coli remodels to match its operating point (the fraction of time that it spins clockwise) to the requirements of the chemotaxis signaling network, and to provide the torque necessary to operate at different viscous loads.
Collapse
Affiliation(s)
- Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138.,Department of Physics, Harvard University, Cambridge, Massachusetts, 02138.,Rowland Institute at Harvard, Cambridge, Massachusetts, 02142
| |
Collapse
|
49
|
Onoue Y, Abe-Yoshizumi R, Gohara M, Nishino Y, Kobayashi S, Asami Y, Homma M. Domain-based biophysical characterization of the structural and thermal stability of FliG, an essential rotor component of the Na +-driven flagellar motor. Biophys Physicobiol 2016; 13:227-233. [PMID: 27924278 PMCID: PMC5113609 DOI: 10.2142/biophysico.13.0_227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023] Open
Abstract
Many bacteria move using their flagellar motor, which generates torque through the interaction between the stator and rotor. The most important component of the rotor for torque generation is FliG. FliG consists of three domains: FliGN, FliGM, and FliGC. FliGC contains a site(s) that interacts with the stator. In this study, we examined the physical properties of three FliG constructs, FliGFull, FliGMC, and FliGC, derived from sodium-driven polar flagella of marine Vibrio. Size exclusion chromatography revealed that FliG changes conformational states under two different pH conditions. Circular dichroism spectroscopy also revealed that the contents of α-helices in FliG slightly changed under these pH conditions. Furthermore, we examined the thermal stability of the FliG constructs using differential scanning calorimetry. Based on the results, we speculate that each domain of FliG denatures independently. This study provides basic information on the biophysical characteristics of FliG, a component of the flagellar motor.
Collapse
Affiliation(s)
- Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Rei Abe-Yoshizumi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Gohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuuki Nishino
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shiori Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yasuo Asami
- TA Instruments Japan Inc., Gotanda, Shinagawa-ku, Tokyo 141-0031, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
50
|
Kojima S. Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation. Nihon Saikingaku Zasshi 2016; 71:185-97. [PMID: 27581279 DOI: 10.3412/jsb.71.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many motile bacteria have the motility organ, the flagellum. It rotates by the rotary motor driven by the ion-motive force and is embedded in the cell surface at the base of each flagellar filament. Many researchers have been studying its rotary mechanism for years, but most of the energy conversion processes have been remained in mystery. We focused on the flagellar stator, which works at the core process of energy conversion, and found that the periplasmic region of the stator changes its conformation to be activated only when the stator units are incorporated into the motor and anchored at the cell wall. Meanwhile, the physiologically important supramolecular complex is localized in the cell at the right place and the right time with a proper amount. How the cell achieves such a proper localization is the fundamental question for life science, and we undertake this problem by analyzing the mechanism for biogenesis of a single polar flagellum of Vibrio alginolyticus. Here I describe the molecular mechanism of how the flagellum is generated at the specific place with a proper number, and also how the flagellar stator is incorporated into the motor to complete the functional motor assembly, based on our studies.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|