1
|
Zimmermannová O, Velázquez D, Papoušková K, Průša V, Radová V, Falson P, Sychrová H. The Hydrophilic C-terminus of Yeast Plasma-membrane Na +/H + Antiporters Impacts Their Ability to Transport K . J Mol Biol 2024; 436:168443. [PMID: 38211892 DOI: 10.1016/j.jmb.2024.168443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Yeast plasma-membrane Na+/H+ antiporters (Nha/Sod) ensure the optimal intracellular level of alkali-metal cations and protons in cells. They are predicted to consist of 13 transmembrane segments (TMSs) and a large hydrophilic C-terminal cytoplasmic part with seven conserved domains. The substrate specificity, specifically the ability to recognize and transport K+ cations in addition to Na+ and Li+, differs among homologs. In this work, we reveal that the composition of the C-terminus impacts the ability of antiporters to transport particular cations. In the osmotolerant yeast Zygosaccharomyces rouxii, the Sod2-22 antiporter only efficiently exports Na+ and Li+, but not K+. The introduction of a negative charge or removal of a positive charge in one of the C-terminal conserved regions (C3) enabled ZrSod2-22 to transport K+. The same mutations rescued the low level of activity and purely Li+ specificity of ZrSod2-22 with the A179T mutation in TMS6, suggesting a possible interaction between this TMS and the C-terminus. The truncation or replacement of the C-terminal part of ZrSod2-22 with the C-terminus of a K+-transporting Nha/Sod antiporter (Saccharomyces cerevisiae Nha1 or Z. rouxii Nha1) also resulted in an antiporter with the capacity to export K+. In addition, in ScNha1, the replacement of three positively charged arginine residues 539-541 in the C3 region with alanine caused its inability to provide cells with tolerance to Li+. All our results demonstrate that the physiological functions of yeast Nha/Sod antiporters, either in salt tolerance or in K+ homeostasis, depend on the composition of their C-terminal parts.
Collapse
Affiliation(s)
- Olga Zimmermannová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Diego Velázquez
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Klára Papoušková
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Vojtěch Průša
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Viktorie Radová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Pierre Falson
- Drug Resistance Membrane Proteins Group, National Centre for Scientific Research and Lyon I University Laboratory n°5086, Institute of Biology and Chemistry of Proteins, Lyon, France.
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Papouskova K, Moravcova M, Masrati G, Ben-Tal N, Sychrova H, Zimmermannova O. C5 conserved region of hydrophilic C-terminal part of Saccharomyces cerevisiae Nha1 antiporter determines its requirement of Erv14 COPII cargo receptor for plasma-membrane targeting. Mol Microbiol 2020; 115:41-57. [PMID: 32864748 DOI: 10.1111/mmi.14595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/22/2020] [Indexed: 01/03/2023]
Abstract
Erv14, a conserved cargo receptor of COPII vesicles, helps the proper trafficking of many but not all transporters to the yeast plasma membrane, for example, three out of five alkali-metal-cation transporters in Saccharomyces cerevisiae. Among them, the Nha1 cation/proton antiporter, which participates in cell cation and pH homeostasis, is a large membrane protein (985 aa) possessing a long hydrophilic C-terminus (552 aa) containing six conserved regions (C1-C6) with unknown function. A short Nha1 version, lacking almost the entire C-terminus, still binds to Erv14 but does not need it to be targeted to the plasma membrane. Comparing the localization and function of ScNha1 variants shortened at its C-terminus in cells with or without Erv14 reveals that only ScNha1 versions possessing the complete C5 region are dependent on Erv14. In addition, our broad evolutionary conservation analysis of fungal Na+ /H+ antiporters identified new conserved regions in their C-termini, and our experiments newly show C5 and other, so far unknown, regions of the C-terminus, to be involved in the functionality and substrate specificity of ScNha1. Taken together, our results reveal that also relatively small hydrophilic parts of some yeast membrane proteins underlie their need to interact with the Erv14 cargo receptor.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Michaela Moravcova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
3
|
The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118534. [DOI: 10.1016/j.bbamcr.2019.118534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
|
4
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
5
|
Ariño J, Ramos J, Sychrova H. Monovalent cation transporters at the plasma membrane in yeasts. Yeast 2018; 36:177-193. [PMID: 30193006 DOI: 10.1002/yea.3355] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 01/08/2023] Open
Abstract
Maintenance of proper intracellular concentrations of monovalent cations, mainly sodium and potassium, is a requirement for survival of any cell. In the budding yeast Saccharomyces cerevisiae, monovalent cation homeostasis is determined by the active extrusion of protons through the Pma1 H+ -ATPase (reviewed in another chapter of this issue), the influx and efflux of these cations through the plasma membrane transporters (reviewed in this chapter), and the sequestration of toxic cations into the vacuoles. Here, we will describe the structure, function, and regulation of the plasma membrane transporters Trk1, Trk2, Tok1, Nha1, and Ena1, which play a key role in maintaining physiological intracellular concentrations of Na+ , K+ , and H+ , both under normal growth conditions and in response to stress.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Universidad de Córdoba, Córdoba, Spain
| | - Hana Sychrova
- Department of Membrane Transport, Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Kinclova-Zimmermannova O, Falson P, Cmunt D, Sychrova H. A Hydrophobic Filter Confers the Cation Selectivity of Zygosaccharomyces rouxii Plasma-Membrane Na+/H+ Antiporter. J Mol Biol 2015; 427:1681-94. [DOI: 10.1016/j.jmb.2015.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
|
8
|
Abstract
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.
Collapse
|
9
|
Sodium or potassium efflux ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1841-53. [DOI: 10.1016/j.bbamem.2010.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 12/20/2022]
|
10
|
Maresová L, Hosková B, Urbánková E, Chaloupka R, Sychrová H. New applications of pHluorin--measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast 2010; 27:317-25. [PMID: 20148390 DOI: 10.1002/yea.1755] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
pHluorin is a pH-sensitive variant of green fluorescent protein for measuring intracellular pH (pH(in)) in living cells. We constructed a new pHluorin plasmid with the dominant selection marker KanMX. This plasmid allows pH measurements in cells without auxotrophic mutations and/or grown in chemically indefinite media. We observed differing values of pH(in) for three prototrophic wild-types. The new construct was also used to determine the pH(in) in strains differing in the activity of the plasma membrane Pma1 H(+)-ATPase and the influence of glucose on pH(in). We describe in detail pHluorin measurements performed in a microplate reader, which require much less hands-on time and much lower cell culture volumes compared to standard cuvettes measurements. We also utilized pHluorin in a new method of measuring the buffering capacity of yeast cell cytosol in vivo, shown to be ca. 52 mM/pH for wild-type yeast and moderately decreased in mutants with affected potassium transport.
Collapse
Affiliation(s)
- Lydie Maresová
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
12
|
Xu K, Zhang H, Blumwald E, Xia T. A novel plant vacuolar Na+/H+ antiporter gene evolved by DNA shuffling confers improved salt tolerance in yeast. J Biol Chem 2010; 285:22999-3006. [PMID: 20457597 DOI: 10.1074/jbc.m109.073783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plant vacuolar Na(+)/H(+) antiporters play important roles in maintaining cellular ion homeostasis and mediating the transport of Na(+) out of the cytosol and into the vacuole. Vacuolar antiporters have been shown to play significant roles in salt tolerance; however the relatively low V(max) of the Na(+)/H(+) exchange of the Na(+)/H(+) antiporters identified could limit its application in the molecular breeding of salt tolerant crops. In this study, we applied DNA shuffling methodology to generate and recombine the mutations of Arabidopsis thaliana vacuolar Na(+)/H(+) antiporter gene AtNHX1. Screening using a large scale yeast complementation system identified AtNHXS1, a novel Na(+)/H(+) antiporter. Expression of AtNHXS1 in yeast showed that the antiporter localized to the vacuolar membrane and that its expression improved the tolerance of yeast to NaCl, KCl, LiCl, and hygromycin B. Measurements of the ion transport activity across the intact yeast vacuole demonstrated that the AtNHXS1 protein showed higher Na(+)/H(+) exchange activity and a slightly improved K(+)/H(+) exchange activity.
Collapse
Affiliation(s)
- Kai Xu
- Department of Biochemistry and Molecular Biology, School of Life Science, East China Normal University, Shanghai 200062, China
| | | | | | | |
Collapse
|
13
|
Snowdon C, Schierholtz R, Poliszczuk P, Hughes S, van der Merwe G. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol. FEMS Yeast Res 2009; 9:372-80. [PMID: 19416103 DOI: 10.1111/j.1567-1364.2009.00497.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae has the ability to use a variety of different carbon sources to support its growth. Abundant fermentable sugars such as glucose and fructose are metabolized to ethanol that accumulates in the environment. Upon glucose depletion, nonfermentable carbon sources, such as ethanol and glycerol, are sufficient to support growth. However, high ethanol concentrations inhibit yeast growth and can become toxic to the cell. Here we show that YHL010c, a previously uncharacterized gene of S. cerevisiae, is needed by the yeast to adapt to ethanol, either as a sole carbon source or as a stressor. We named the gene ETP1 (Ethanol Tolerance Protein 1) and show that the etp1Delta strain has a growth defect in the presence of ethanol, ETP1 is needed for the ethanol-induced transcriptional activation of the ENA1 promoter and heat shock protein genes (HSP12 and HSP26), and plays a role in ethanol-induced turnover of the low-affinity hexose transporter Hxt3p. In addition, the hypersensitivity of etp1Delta to ethanol stress is partly due to the inability of the mutant to control the level of the cation/H(+) antiporter Nha1p in the cell.
Collapse
Affiliation(s)
- Christopher Snowdon
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | | |
Collapse
|
14
|
Pribylova L, Papouskova K, Sychrova H. The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2–22p) playing different roles in cation homeostasis and cell physiology. Fungal Genet Biol 2008; 45:1439-47. [DOI: 10.1016/j.fgb.2008.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
15
|
Krauke Y, Sychrova H. Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species. BMC Microbiol 2008; 8:80. [PMID: 18492255 PMCID: PMC2424070 DOI: 10.1186/1471-2180-8-80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/20/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far. RESULTS The tolerance/sensitivity of four pathogenic Candida species to alkali metal cations was tested and the role of one of the cation transporters in that tolerance (presumed to be the plasma-membrane Na+/H+ antiporter) was studied. The genes encoding these antiporters in the most and least salt sensitive species, C. dubliniensis and C. parapsilosis respectively, were identified, cloned and functionally expressed in the plasma membranes of Saccharomyces cerevisiae cells lacking their own cation exporters. Both CpCnh1 and CdCnh1 antiporters had broad substrate specificity and transported Na+, K+, Li+, and Rb+. Their activity in S. cerevisiae cells differed; CpCnh1p provided cells with a much higher salt tolerance than the CdCnh1 antiporter. The observed difference in activity was confirmed by direct measurements of sodium and potassium efflux mediated by these antiporters. CONCLUSION We have cloned two genes encoding putative Na+/H+ antiporters in C. parapsilosis and C. dubliniensis, and characterized the transport properties of encoded proteins. Our results show that the activity of plasma-membrane Na+/H+ antiporters is one of the factors determining the tolerance of pathogenic Candida species to high external concentrations of alkali metal cations.
Collapse
Affiliation(s)
- Yannick Krauke
- Department of Membrane Transport, Institute of Physiology AS CR, v,v,i,, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | |
Collapse
|
16
|
Pribylová L, Papousková K, Zavrel M, Souciet JL, Sychrová H. Exploration of yeast alkali metal cation/H+ antiporters: Sequence and structure comparison. Folia Microbiol (Praha) 2006; 51:413-24. [PMID: 17176761 DOI: 10.1007/bf02931585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Saccharomyces cerevisiae genome contains three genes encoding alkali metal cation/H+ antiporters (Nha1p, Nhx1p, Kha1p) that differ in cell localization, substrate specificity and physiological function. Systematic genome sequencing of other yeast species revealed highly conserved homologous ORFs in all of them. We compared the yeast sequences both at DNA and protein levels. The subfamily of yeast endosomal/prevacuolar Nhx1 antiporters is closely related to mammalian plasma membrane NHE proteins and to both plasma membrane and vacuolar plant antiporters. The high sequence conservation within this subfamily of yeast antiporters suggests that Nhx1p is of great importance in cell physiology. Yeast Kha1 proteins probably belong to the same subfamily as bacterial antiporters, whereas Nhal proteins form a distinct subfamily.
Collapse
Affiliation(s)
- L Pribylová
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | | | | | |
Collapse
|
17
|
Kinclova-Zimmermannova O, Gaskova D, Sychrova H. The Na+,K+/H+-antiporter Nha1 influences the plasma membrane potential ofSaccharomyces cerevisiae. FEMS Yeast Res 2006; 6:792-800. [PMID: 16879429 DOI: 10.1111/j.1567-1364.2006.00062.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There are three different sodium transport systems (Ena1-4p, Nha1p, Nhx1p) in Saccharomyces cerevisiae. The effect of their absence on the tolerance to alkali-metal cations and on the membrane potential was studied. All three sodium transporters were found to participate in the maintenance of Na+, Li+, K+ and Cs+ homeostasis. Measurements of the distribution of a fluorescent potentiometric probe (diS-C3(3) assay) in cell suspensions showed that the lack of all three transporters depolarizes the plasma membrane. The overexpression of the Na+,K+/H+ antiporter Nha1 resulted in the hyperpolarization of the plasma membrane and consequently increased the sensitivity to Cs+, Tl+ and hygromycin B. This is the first evidence that the activity of a Na+,K+/H+ antiporter could play a role in the homeostatic regulation of the plasma membrane potential in yeast cells.
Collapse
|
18
|
Mitsui K, Yasui H, Nakamura N, Kanazawa H. Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: Implications for its antiporter activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:125-36. [PMID: 16360116 DOI: 10.1016/j.bbamem.2005.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 11/04/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
The Na(+)/H(+) antiporter (Nha1p) from the budding yeast Saccharomyces cerevisiae plays an important role in intracellular pH and Na(+) homeostasis. Here, we show by co-precipitation of differently tagged Nha1p proteins expressed in the same cell that the yeast Nha1p l forms an oligomer. In vitro cross-linking experiments then revealed that Nha1p-FLAG is present in the membranes as a dimer. Differently tagged Nha1p proteins were also co-precipitated from sec18-1 mutant cells in which ER-to-Golgi traffic is blocked under non-permissive temperatures, suggesting that Nha1p may already dimerize in the ER membrane. When we over-expressed a mutant Nha1p with defective antiporter activity in cells that also express the wild-type Nha1p-EGFP fusion protein, we found impaired cell growth in highly saline conditions, even though the wild-type protein was appropriately expressed and localized correctly. Co-immunoprecipitation assays then showed the inactive Nha1p-FLAG mutant interacted with the wild-type Nha1p-EGFP protein. These results support the notion that Nha1p exists in membranes as a dimer and that the interaction of its monomers is important for its antiporter activity.
Collapse
Affiliation(s)
- Keiji Mitsui
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka City, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
19
|
Manlandro CMA, Haydon DH, Rosenwald AG. Ability of Sit4p to promote K+ efflux via Nha1p is modulated by Sap155p and Sap185p. EUKARYOTIC CELL 2005; 4:1041-9. [PMID: 15947196 PMCID: PMC1151994 DOI: 10.1128/ec.4.6.1041-1049.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate here that SAP155 encodes a negative modulator of K+ efflux in the yeast Saccharomyces cerevisiae. Overexpression of SAP155 decreases efflux, whereas deletion increases efflux. In contrast, a homolog of SAP155, called SAP185, encodes a positive modulator of K+ efflux: overexpression of SAP185 increases efflux, whereas deletion decreases efflux. Two other homologs, SAP4 and SAP190, are without effect on K+ homeostasis. Both SAP155 and SAP185 require the presence of SIT4 for function, which encodes a PP2A-like phosphatase important for the G1-S transition through the cell cycle. Overexpression of either the outwardly rectifying K+ channel, Tok1p, or the putative plasma membrane K+/H+ antiporter, Kha1p, increases efflux in both wild-type and sit4Delta strains. However, overexpression of the Na+-K+/H+ antiporter, Nha1p, is without effect in a sit4Delta strain, suggesting that Sit4p signals to Nha1p. In summary, the combined activities of Sap155p and Sap185p appear to control the function of Nha1p in K+ homeostasis via Sit4p.
Collapse
Affiliation(s)
- Cara Marie A Manlandro
- Department of Biology, Georgetown University, 406 Reiss Science Center, Box 571229, Washington, DC 20057-1229, USA.
| | | | | |
Collapse
|
20
|
Ohgaki R, Nakamura N, Mitsui K, Kanazawa H. Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1712:185-96. [PMID: 15950597 DOI: 10.1016/j.bbamem.2005.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/25/2005] [Accepted: 03/28/2005] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
21
|
Brett CL, Donowitz M, Rao R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 2005; 288:C223-39. [PMID: 15643048 DOI: 10.1152/ajpcell.00360.2004] [Citation(s) in RCA: 402] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
More than 200 genes annotated as Na+/H+ hydrogen exchangers (NHEs) currently reside in bioinformation databases such as GenBank and Pfam. We performed detailed phylogenetic analyses of these NHEs in an effort to better understand their specific functions and physiological roles. This analysis initially required examining the entire monovalent cation proton antiporter (CPA) superfamily that includes the CPA1, CPA2, and NaT-DC families of transporters, each of which has a unique set of bacterial ancestors. We have concluded that there are nine human NHE (or SLC9A) paralogs as well as two previously unknown human CPA2 genes, which we have named HsNHA1 and HsNHA2. The eukaryotic NHE family is composed of five phylogenetically distinct clades that differ in subcellular location, drug sensitivity, cation selectivity, and sequence length. The major subgroups are plasma membrane (recycling and resident) and intracellular (endosomal/TGN, NHE8-like, and plant vacuolar). HsNHE1, the first cloned eukaryotic NHE gene, belongs to the resident plasma membrane clade. The latter is the most recent to emerge, being found exclusively in vertebrates. In contrast, the intracellular clades are ubiquitously distributed and are likely precursors to the plasma membrane NHE. Yeast endosomal ScNHX1 was the first intracellular NHE to be described and is closely related to HsNHE6, HsNHE7, and HsNHE9 in humans. Our results link the appearance of NHE on the plasma membrane of animal cells to the use of the Na+/K(+)-ATPase to generate the membrane potential. These novel observations have allowed us to use comparative biology to predict physiological roles for the nine human NHE paralogs and to propose appropriate model organisms in which to study the unique properties of each NHE subclass.
Collapse
Affiliation(s)
- Christopher L Brett
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
22
|
Current awareness on yeast. Yeast 2003; 20:1309-16. [PMID: 14664230 DOI: 10.1002/yea.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|