1
|
Sun C, Shen H, Cai H, Zhao Z, Gan G, Feng S, Chu P, Zeng M, Deng J, Ming F, Ma M, Jia J, He R, Cao D, Chen Z, Li J, Zhang L. Intestinal guard: Human CXCL17 modulates protective response against mycotoxins and CXCL17-mimetic peptides development. Biochem Pharmacol 2021; 188:114586. [PMID: 33932472 DOI: 10.1016/j.bcp.2021.114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination is an ongoing and growing issue that can create health risks and even cause death. Unfortunately, there is currently a lack of specific therapy against mycotoxins with few side effects. On the other hand, the strategic expression of CXCL17 in mucosal tissues suggests that it may be involved in immune response when exposed to mycotoxins, but the exact role of CXCL17 remains largely unknown. Using Caco-2 as a cell model of the intestinal epithelial barrier (the first line of defense against mycotoxins), we showed that a strong production of ROS-dependent CXCL17 was triggered by mycotoxins via p38 and JNK pathways. Under the mycotoxins stress, CXCL17 modulated enhanced immuno-protective response with a remission of inflammation and apoptosis through PI3K/AKT/mTOR. Based on our observed feedback of CXCL17 to the mycotoxins, we developed the CXCL17-mimetic peptides in silico (CX1 and CX2) that possessed the safety and the capability to ameliorate mycotoxins-inducible inflammation and apoptosis. In this study, the identification of detoxifying feature of CXCL17 is a prominent addition to the chemokine field, pointing out a new direction for curing the mycotoxins-caused damage.
Collapse
Affiliation(s)
- Chongjun Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guanhua Gan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinpin Chu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rongxiao He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ding Cao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhiyang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Cucci MA, Compagnone A, Daga M, Grattarola M, Ullio C, Roetto A, Palmieri A, Rosa AC, Argenziano M, Cavalli R, Simile MM, Pascale RM, Dianzani C, Barrera G, Pizzimenti S. Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med 2019; 141:205-219. [PMID: 31207288 DOI: 10.1016/j.freeradbiomed.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022]
Abstract
The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNE-induced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can post-translationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.
Collapse
Affiliation(s)
- Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Alessandra Compagnone
- Department of Oncology, University of Turin, Via Michelangelo 27, 10125, Turin, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Chiara Ullio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonietta Palmieri
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Maria Maddalena Simile
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa Maria Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
3
|
Xu M, Yu Q, Zhao Q, Chen W, Lin Y, Jin Y. Development and in vitro–in vivo evaluation of a water-in-oil microemulsion formulation for the oral delivery of troxerutin. Drug Dev Ind Pharm 2015; 42:280-7. [PMID: 26165244 DOI: 10.3109/03639045.2015.1047849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Man Xu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China and
- Department of Pharmacy, Lu'an People's Hospital, Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, People's Republic of China
| | - Qing Yu
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China and
| | - Qianru Zhao
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China and
| | - Wei Chen
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China and
| | - Yuanjie Lin
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China and
| | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China and
| |
Collapse
|
4
|
Fan X, Staitieh BS, Jensen JS, Mould KJ, Greenberg JA, Joshi PC, Koval M, Guidot DM. Activating the Nrf2-mediated antioxidant response element restores barrier function in the alveolar epithelium of HIV-1 transgenic rats. Am J Physiol Lung Cell Mol Physiol 2013; 305:L267-77. [PMID: 23748533 DOI: 10.1152/ajplung.00288.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The master transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of antioxidant and phase II-metabolizing enzymes by activating the antioxidant response element (ARE) and thereby protects cells and tissues from oxidative stress. Pulmonary complications remain the leading cause of death in human immunodeficiency virus (HIV)-1-infected individuals, who display systemic oxidative stress and glutathione deficiency that can be modeled in transgenic rats where HIV-1-related viral proteins decrease glutathione levels and cause epithelial barrier dysfunction within the alveolar space by as yet unknown mechanisms. We hypothesized that HIV-1-related proteins inhibit Nrf2-mediated antioxidant defenses and thereby disrupt the normally tight alveolar epithelial barrier. Nrf2 RNA silencing dampened Nrf2/ARE activity, decreased the expression of the tight junction proteins zonula occludens-1, occludin, and claudin-18, increased paracellular permeability of alveolar epithelial monolayers derived from wild-type rats, and therefore reproduced the effects of HIV-1 transgene expression on the epithelial barrier that we had previously described. In contrast, upregulating Nrf2 activity, either by plasmid-mediated overexpression or treatment with the Nrf2 activator sulforaphane, increased the expression of ARE-dependent antioxidants, including NAD(P)H dehydrogenase, quinone 1 and glutathione, improved the expression of tight junction proteins, and restored the ability to form tight barriers in alveolar epithelial cells from HIV-1 transgenic rats. Taken together, these new findings argue that HIV-1-related proteins downregulate Nrf2 expression and/or activity within the alveolar epithelium, which in turn impairs antioxidant defenses and barrier function, thereby rendering the lung susceptible to oxidative stress and injury. Furthermore, this study suggests that activating the Nrf2/ARE pathway with the dietary supplement sulforaphane could augment antioxidant defenses and lung health in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Xian Fan
- Division of Pulmonary, Allergy & Critical Care Medicine, Emory University School of Medicine, 615 Michael St., Ste. 205, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li Q, Thomson ABR, Clandinin MT. Cholesterol ester and free fatty acids are modulated by policosanol in CaCo-2 intestinal cells. J Am Coll Nutr 2012; 30:201-9. [PMID: 21896878 DOI: 10.1080/07315724.2011.10719961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate policosanol absorption by brush border membrane (BBM), metabolism in CaCo-2 enterocytes, and transport of policosanol metabolites across the basolateral membrane (BLM). It was hypothesized that policosanol is partially oxidized into fatty acids and then is incorporated into other lipids. METHODS Policosanol was emulsified with phosphatidylcholine in the culture medium. The viability of cells was assessed via an MTT (3-[4,5]dimethylthiazol-2-yl-2,5-diphenyltetrazolim) assay. Control cells received only the same amount of "vehicle" (phosphatidylcholine) without policosanol. CaCo-2 cell monolayer and medium were collected; lipid was extracted and analyzed by thin-layer chromatography (TLC) and gas liquid chromatography (GLC). RESULTS Eighty-six percent of policosanol added to the cell culture medium was absorbed after 48 hours' incubation. The amount of cholesterol ester fatty acid was significantly increased both in the cells and in the basolateral medium, and was reduced in the apical medium. Policosanol increased the quantity of free fatty acids in the basolateral medium and reduced the free fatty acid content of CaCo-2 cells. Further evaluation of lipid profiles indicated that policosanol modulated the fatty acid profile of cholesterol ester in the basolateral medium. CONCLUSION It was concluded that policosanol or policosanol metabolites may modulate lipid metabolism and/or transport following absorption by the BBM, partial oxidation by the intestinal epithelium, and transport of policosanol metabolites across the BLM.
Collapse
Affiliation(s)
- Qun Li
- Department of Agricultural, Food and Nutritional Science, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, AB T6G 2R1, Canada
| | | | | |
Collapse
|
6
|
Mannery YO, Ziegler TR, Hao L, Shyntum Y, Jones DP. Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 299:G523-30. [PMID: 20466942 PMCID: PMC2928529 DOI: 10.1152/ajpgi.00359.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Control of extracellular thiol-disulfide redox potential (E(h)) is necessary to protect cell surface proteins from external oxidative and reductive stresses. Previous studies show that human colonic epithelial Caco-2 cells, which grow in cell culture with the apical surface exposed to the medium, regulate extracellular cysteine/cystine E(h) to physiological values (approximately -80 mV) observed in vivo. The present study tested whether extracellular E(h) regulation occurs on the basal surface of Caco-2 cells and investigated relevant mechanisms. Experiments were performed with confluent, differentiated cells grown on a permeable membrane surface. Cells were exposed to an oxidizing potential (0 mV) using a fixed cysteine-to-cystine ratio, and culture medium was sampled over time for change in E(h). Regulation of extracellular thiol-disulfide E(h) on the basal domain was faster, and the extent of change at 24 h was greater than on the apical surface. Mechanistic studies showed that redox regulation on the basal surface was partially sodium dependent and inhibited by extracellular lysine, a competitive inhibitor of cystine transport by the y(+)L system and by quisqualic acid, an inhibitor of the x(c)(-) system. Studies using the thiol-reactive alkylating agent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and the glutathione synthesis inhibitor buthionine sulfoximine showed that extracellular redox regulation was not attributable to plasma membrane cysteine/cystine interconversion or intracellular glutathione, respectively. Thus the data show that redox regulation occurs at different rates on the apical and basal surfaces of the polarized Caco-2 epithelial cell line and that the y(+)L and x(c)(-) systems function in extracellular cysteine/cystine redox regulation on the basal surface.
Collapse
Affiliation(s)
- Yanci O. Mannery
- 1Graduate Program in Molecular and Systems Pharmacology, Department of Medicine,
| | | | - Li Hao
- 2Division of Endocrinology, Metabolism and Lipids, and
| | - Yvonne Shyntum
- 1Graduate Program in Molecular and Systems Pharmacology, Department of Medicine,
| | - Dean P. Jones
- 3Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Jakubíková J, Sedlák J, Bod'o J, Bao Y. Effect of isothiocyanates on nuclear accumulation of NF-kappaB, Nrf2, and thioredoxin in caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1656-62. [PMID: 16506816 DOI: 10.1021/jf052717h] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Early effects (only 1 h of exposure) of three isothiocyanates (benzyl, phenylethyl, and sulforaphane) on nuclear accumulation of thioredoxin, APE/Ref-1, and transcription factors NF-kappaB and Nrf2, as well as production of reactive oxygen species (ROS) and reduced glutathione levels were examined in human adenocarcinoma Caco-2 cells. Nuclear increase of NF-kappaB, Nrf2, and thioredoxin contents was observed in all isothiocyanate-treated cells, whereas the nuclear Ref-1 and cytoplasmic Keap1 contents were not changed. Sulforaphane was the most potent inducer of Nrf2 nuclear accumulation (10 microM, 1.9-fold) and NF-kappaB nuclear accumulation at higher concentration (25 microM, 6.3-fold). In contrast, benzyl isothiocyanate induced more thioredoxin nuclear accumulation (10 microM, 2.9-fold), increased production of ROS, and gave the greatest induction of thioredoxin reductase 1 mRNA (10 microM, 10.2-fold), whereas phenylethyl isothiocyanate was more potent in the depletion of reduced glutathione levels. These results show that different individual isothiocyanates may possess some different activities in nuclear accumulation of thioredoxin, NF-kappaB, Nrf2, and production of ROS.
Collapse
Affiliation(s)
- Jana Jakubíková
- Laboratory of Tumor Immunology, Cancer Research Institute, Vlarska 7, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|