1
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
3
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
4
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
5
|
Abstract
2D-crystallization in combination with transmission electron microscopy (TEM) is one of the few methods for the structural analysis of membrane proteins in their native state. However, the parameters for the generation of large crystalline sheets are typically difficult to identify for a given protein. Many repetitive and time consuming screening steps by TEM are therefore necessary to find the best crystallization and preparation conditions. Although several software packages offer the possibility to control an electron microscope, none is completely adapted for a fully automated and completely integrated acquisition and analysis of 2D crystals. Here we report on the development of a fully automatic screening and on-line analysis software for the fast and automatic survey of large quantities of negatively stained EM samples for 2D crystallography.
Collapse
|
6
|
Loo SL, Siti W, Thiyagarajan M, Torres J, Wang R, Hu X. Reproducible Preparation of Proteopolymersomes via Sequential Polymer Film Hydration and Membrane Protein Reconstitution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12336-12343. [PMID: 28985471 DOI: 10.1021/acs.langmuir.7b02926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Film rehydration method is commonly used for membrane protein (MP) reconstitution into block copolymer (BCP), but the lack of control in the rehydration step formed a heterogeneous population of proteopolymersomes that interferes with the characterization and performance of devices incorporating them. To improve the self-assembly of polymersomes with simultaneous MP reconstitution, the study reported herein aimed to understand the effects of different variants of the rehydration procedure on the MP reconstitution into BCP membranes. The model MP used in this study was AquaporinZ (AqpZ), an α-helical MP that has been shown to have a high permeation rate exclusive to water molecules. Comparing four rehydration methods differing in the hydration time (i.e., brief wetting or full hydration) and medium (i.e., in buffer or AqpZ stock solution), prehydration with buffer prior to adding AqpZ was found to be most desirable and reproducible reconstitution method because it gave rise to the highest proportion of well-formed vesicles with intact AqpZ functionality as evidenced by the transmission electron microscopy images, dynamic light scattering, and stopped-flow analyses. The mechanisms by which effective AqpZ reconstitution takes place were also investigated and discussed. Small-angle X-ray scattering analysis shows that hydrating the initially dry multilamellar BCP films allows the separation of lamellae. This is anticipated to increase the membrane fluidity that facilitates a fast and spontaneous integration of AqpZ as the detergent concentration is considerably lowered below its critical micelle concentration. Dilution of detergent can result in precipitation of proteins in the absence of well-fluidized membranes for protein integration that underscores the importance of membrane fluidity in MP reconstitution.
Collapse
Affiliation(s)
- Siew-Leng Loo
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Winna Siti
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Monisha Thiyagarajan
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Jaume Torres
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Xiao Hu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| |
Collapse
|
7
|
Ritzmann N, Thoma J, Hirschi S, Kalbermatter D, Fotiadis D, Müller DJ. Fusion Domains Guide the Oriented Insertion of Light-Driven Proton Pumps into Liposomes. Biophys J 2017; 113:1181-1186. [PMID: 28697898 PMCID: PMC5607040 DOI: 10.1016/j.bpj.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
Abstract
One major objective of synthetic biology is the bottom-up assembly of minimalistic nanocells consisting of lipid or polymer vesicles as architectural scaffolds and of membrane and soluble proteins as functional elements. However, there is no reliable method to orient membrane proteins reconstituted into vesicles. Here, we introduce a simple approach to orient the insertion of the light-driven proton pump proteorhodopsin (PR) into liposomes. To this end, we engineered red or green fluorescent proteins to the N- or C-terminus of PR, respectively. The fluorescent proteins optically identified the PR constructs and guided the insertion of PR into liposomes with the unoccupied terminal end facing inward. Using the PR constructs, we generated proton gradients across the vesicle membrane along predefined directions such as are required to power (bio)chemical processes in nanocells. Our approach may be adapted to direct the insertion of other membrane proteins into vesicles.
Collapse
Affiliation(s)
- Noah Ritzmann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Johannes Thoma
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
8
|
Rosier P, Gélébart F, Dumesnil N, Esnot G, Dezi M, Morand M, Vénien-Bryan C. The CRACAM Robot: Two-Dimensional Crystallization of Membrane Protein. Methods Mol Biol 2017; 1635:303-316. [PMID: 28755376 DOI: 10.1007/978-1-4939-7151-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Membrane proteins are key cellular components that perform essential functions. They are major therapeutic targets. Electron crystallography can provide structural experimental information at atomic scale for membrane proteins forming two-dimensional (2D) crystals. There are two different methods to produce 2D crystals of membrane proteins. (1) either directly in the bulk of the solution (2) or under a lipid monolayer at the air-water interface. This extra lipid monolayer helps to pre-orient the proteins in order to facilitate the growth of 2D crystals. We present here these two methods for 2D crystallization of membrane proteins implemented in a fully automated robot called CRACAM. These methods require small volume of low concentration of proteins, making it possible to explore more conditions with the same amount of protein. These automated methods outperform traditional 2D crystallization approaches in terms of accuracy, flexibility, and throughput.
Collapse
Affiliation(s)
- Philippe Rosier
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France
| | - Frédéric Gélébart
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France
| | - Nicolas Dumesnil
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France
| | - Gauthier Esnot
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France
| | - Manuela Dezi
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France
| | - Marc Morand
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France
| | - Catherine Vénien-Bryan
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, UMR 7590 CNRS-UPMC-MNHN-IRD Case Courrier 115, 4 Place Jussieu, 75252, Paris, Cédex 05, France.
| |
Collapse
|
9
|
Stahlberg H, Biyani N, Engel A. 3D reconstruction of two-dimensional crystals. Arch Biochem Biophys 2015; 581:68-77. [PMID: 26093179 DOI: 10.1016/j.abb.2015.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
Electron crystallography of two-dimensional (2D) crystals determines the structure of membrane proteins in the lipid bilayer by imaging with cryo-electron microscopy and image processing. Membrane proteins can be packed in regular 2D arrays by their reconstitution in the presence of lipids at low lipid to protein weight-to-weight ratio. The crystal quality depends on the protein purity and homogeneity, its stability, and on the crystallization conditions. A 2D crystal presents the membrane protein in a functional and fully lipidated state. Electron crystallography determines the 3D structure even of small membrane proteins up to atomic resolution, but 3D density maps have a better resolution in the membrane plane than in the vertical direction. This problem can be partly eliminated by applying an iterative algorithm that exploits additional known constraints about the 2D crystal. 2D electron crystallography is particularly attractive for the structural analysis of membrane proteins that are too small for single particle analyses and too unstable to form 3D crystals. With the recent introduction of direct electron detector cameras, the routine determination of the atomic 3D structure of membrane-embedded membrane proteins is in reach.
Collapse
Affiliation(s)
- Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nikhil Biyani
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Waalsweg 8, 2628 CH Delft, The Netherlands; Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Wood Bldg 321D, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
10
|
Uddin YM, Schmidt-Krey I. Inducing two-dimensional crystallization of membrane proteins by dialysis for electron crystallography. Methods Enzymol 2015; 557:351-62. [PMID: 25950973 DOI: 10.1016/bs.mie.2014.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron crystallography is an electron cryo-microscopy (cryo-EM) method that is particularly suitable for structure-function studies of small membrane proteins, which are crystallized in two-dimensional (2D) arrays for subsequent cryo-EM data collection and image processing. This approach allows for structural analysis of membrane proteins in a close-to-native, phospholipid bilayer environment. The process of growing 2D crystals from purified membrane proteins by dialysis detergent removal is described in this chapter. A short section covers screening for and identifying 2D crystals by transmission electron microscopy, and in the last section, optimization of the purification to obtain crystals of higher quality is discussed.
Collapse
Affiliation(s)
- Yusuf M Uddin
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ingeborg Schmidt-Krey
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
11
|
Lasala R, Coudray N, Abdine A, Zhang Z, Lopez-Redondo M, Kirshenbaum R, Alexopoulos J, Zolnai Z, Stokes DL, Ubarretxena-Belandia I. Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. J Struct Biol 2014; 189:123-34. [PMID: 25478971 DOI: 10.1016/j.jsb.2014.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
Abstract
Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization.
Collapse
Affiliation(s)
- R Lasala
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - N Coudray
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - A Abdine
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Z Zhang
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA
| | - M Lopez-Redondo
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - R Kirshenbaum
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - J Alexopoulos
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Z Zolnai
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - D L Stokes
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA; Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - I Ubarretxena-Belandia
- New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA; Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
12
|
Abstract
Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.
Collapse
|
13
|
Pfreundschuh M, Hensen U, Müller DJ. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. NANO LETTERS 2013; 13:5585-5593. [PMID: 24079830 DOI: 10.1021/nl403232z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Elucidating the mechanisms by which proteins translocate small molecules and ions through transmembrane pores and channels is of great interest in biology, medicine, and nanotechnology. However, the characterization of pore forming proteins in their native state lacks suitable methods that are capable of high-resolution imaging (~1 nm) while simultaneously mapping physical and chemical properties. Here we report how force-distance (FD) curve-based atomic force microscopy (AFM) imaging can be applied to image the native pore forming outer membrane protein F (OmpF) at subnanometer resolution and to quantify the electrostatic field and potential generated by the transmembrane pore. We further observe the electrostatic field and potential of the OmpF pore switching "on" and "off" in dependence of the electrolyte concentration. Because electrostatic field and potential select for charged molecules and ions and guide them to the transmembrane pore the insights are of fundamental importance to understand the pore function. These experimental results establish FD-based AFM as a unique tool to image biological systems to subnanometer resolution and to quantify their electrostatic properties.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Nannenga BL, Iadanza MG, Vollmar BS, Gonen T. Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.15. [PMID: 23546618 PMCID: PMC3850493 DOI: 10.1002/0471140864.ps1715s72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.
Collapse
Affiliation(s)
- Brent L Nannenga
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.
Collapse
|
16
|
Wisedchaisri G, Reichow SL, Gonen T. Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 2012; 19:1381-93. [PMID: 22000511 DOI: 10.1016/j.str.2011.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 12/27/2022]
Abstract
Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | | |
Collapse
|
17
|
Müller SA, Engel A. Looking back at a quarter-century of research at the Maurice E. Müller Institute for Structural Biology. J Struct Biol 2011; 177:3-13. [PMID: 22115996 DOI: 10.1016/j.jsb.2011.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
The Maurice E. Müller Institute, embedded in the infrastructure of the Biozentrum, University of Basel, was founded in 1985 and financed by the Maurice E. Müller Foundation of Switzerland. For 26 years its two founders, Ueli Aebi and Andreas Engel, pursued the vision of integrated structural biology. This paper reviews selected publications issuing from the Maurice E. Müller Institute for Structural Biology and marks the end of this era.
Collapse
Affiliation(s)
- Shirley A Müller
- Center for Cellular Imaging and Nano Analytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
18
|
Preparation of 2D Crystals of Membrane Proteins for High-Resolution Electron Crystallography Data Collection. Methods Enzymol 2010; 481:25-43. [DOI: 10.1016/s0076-6879(10)81001-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Schenk AD, Hite RK, Engel A, Fujiyoshi Y, Walz T. Electron crystallography and aquaporins. Methods Enzymol 2010; 483:91-119. [PMID: 20888471 DOI: 10.1016/s0076-6879(10)83005-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electron crystallography of two-dimensional (2D) crystals can provide information on the structure of membrane proteins at near-atomic resolution. Originally developed and used to determine the structure of bacteriorhodopsin (bR), electron crystallography has recently been applied to elucidate the structure of aquaporins (AQPs), a family of membrane proteins that form pores mostly for water but also other solutes. While electron crystallography has made major contributions to our understanding of the structure and function of AQPs, structural studies on AQPs, in turn, have fostered a number of technical developments in electron crystallography. In this contribution, we summarize the insights electron crystallography has provided into the biology of AQPs, and describe technical advancements in electron crystallography that were driven by structural studies on AQP 2D crystals. In addition, we discuss some of the lessons that were learned from electron crystallographic work on AQPs.
Collapse
Affiliation(s)
- Andreas D Schenk
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
20
|
Ubarretxena-Belandia I, Stokes DL. Present and future of membrane protein structure determination by electron crystallography. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 81:33-60. [PMID: 21115172 DOI: 10.1016/b978-0-12-381357-2.00002-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins.
Collapse
Affiliation(s)
- Iban Ubarretxena-Belandia
- Department of Structural and Chemical Biology, Mt. Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
21
|
Shi C, Han F, Xiong Y, Tian C. A gas chromatography–mass spectrometry method to monitor detergents removal from a membrane protein sample. Protein Expr Purif 2009; 68:221-5. [DOI: 10.1016/j.pep.2009.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/30/2022]
|
22
|
Raunser S, Walz T. Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Annu Rev Biophys 2009; 38:89-105. [PMID: 19416061 DOI: 10.1146/annurev.biophys.050708.133649] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The native environment of integral membrane proteins is a lipid bilayer. The structure of a membrane protein is thus ideally studied in a lipidic environment. In the first part of this review we describe some membrane protein structures that revealed the surrounding lipids and provide a brief overview of the techniques that can be used to study membrane proteins in a lipidic environment. In the second part of this review we focus on electron crystallography of two-dimensional crystals as potentially the most suitable technique for such studies. We describe the individual steps involved in the electron crystallographic determination of a membrane protein structure and discuss current challenges that need to be overcome to transform electron crystallography into a technique that can be routinely used to analyze the structure of membrane proteins embedded in a lipid bilayer.
Collapse
Affiliation(s)
- Stefan Raunser
- Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| | | |
Collapse
|
23
|
Neves P, Lopes SCDN, Sousa I, Garcia S, Eaton P, Gameiro P. Characterization of membrane protein reconstitution in LUVs of different lipid composition by fluorescence anisotropy. J Pharm Biomed Anal 2008; 49:276-81. [PMID: 19121912 DOI: 10.1016/j.jpba.2008.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 09/30/2008] [Accepted: 11/10/2008] [Indexed: 11/24/2022]
Abstract
A major requirement to perform structural studies with membrane proteins is not only to define efficient reconstitution protocols, that assure a high incorporation degree in preformed liposomes, but also a protein directionality and topology that mimics its in vivo conditions. For this kind of studies, protein reconstitution in membranes systems via a detergent-mediated pathway is usually successfully adopted, since detergents are generally used in the initial isolation and purification of membrane proteins. In this study we report the reconstitution of OmpF in preformed DMPC and E. coli liposomes using two different techniques for detergent removal: (1) exclusion chromatography and (2) incubation with detergent-adsorbing beads. The incorporation degree was determined by bicinchoninic acid assay and fluorescence anisotropy was used to determine OmpF effect on the structural order of membrane lipids. These results show that protein insertion in membranes depends both on the technique used to remove detergent and on the lipids used to prepare the liposomes. Furthermore, it is possible to state that although the insertion is directly related to the size distributions of proteoliposomes, it could be efficiently recognized by steady-state fluorescence anisotropy. This technique, more popular among cell biologists, can be a very practical and straightforward alternative to DLS to confirm membrane protein insertion.
Collapse
Affiliation(s)
- Patrícia Neves
- Requimte, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
24
|
Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr Opin Colloid Interface Sci 2008. [DOI: 10.1016/j.cocis.2007.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Müller SA, Aebi U, Engel A. What transmission electron microscopes can visualize now and in the future. J Struct Biol 2008; 163:235-45. [PMID: 18614377 DOI: 10.1016/j.jsb.2008.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/21/2008] [Indexed: 11/18/2022]
Abstract
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.
Collapse
Affiliation(s)
- Shirley A Müller
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
26
|
Abstract
![]()
The objective of molecular electron microscopy (EM) is to use electron
microscopes to visualize the structure of biological molecules. This
Review provides a brief overview of the methods used in molecular
EM, their respective strengths and successes, and current developments
that promise an even more exciting future for molecular EM in the
structural investigation of proteins and macromolecular complexes,
studied in isolation or in the context of cells and tissues.
Collapse
Affiliation(s)
- Henning Stahlberg
- Molecular and Cellular Biology,
College of Biological Sciences, University of California at Davis,
Briggs Hall, 1 Shields Avenue, Davis, California 95616
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
27
|
Müller DJ, Wu N, Palczewski K. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 2008; 60:43-78. [PMID: 18321962 DOI: 10.1124/pr.107.07111] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function.
Collapse
Affiliation(s)
- Daniel J Müller
- Biotechnology Center, University of Technology, Dresden, Germany
| | | | | |
Collapse
|
28
|
Liang H, Whited G, Nguyen C, Okerlund A, Stucky GD. Inherently tunable electrostatic assembly of membrane proteins. NANO LETTERS 2008; 8:333-339. [PMID: 18052232 DOI: 10.1021/nl0729173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Membrane proteins are a class of nanoscopic entities that control the matter, energy, and information transport across cellular boundaries. Electrostatic interactions are shown to direct the rapid co-assembly of proteorhodopsin (PR) and lipids into long-range crystalline arrays. The roles of inherent charge variations on lipid membranes and PR variants with different compositions are examined by tuning recombinant PR variants with different extramembrane domain sizes and charged amino acid substitutions, lipid membrane compositions, and lipid-to-PR stoichiometric ratios. Rational control of this predominantly electrostatic assembly for PR crystallization is demonstrated, and the same principles should be applicable to the assembly and crystallization of other integral membrane proteins.
Collapse
Affiliation(s)
- Hongjun Liang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
29
|
Gipson B, Zeng X, Stahlberg H. 2dx_merge: data management and merging for 2D crystal images. J Struct Biol 2007; 160:375-84. [PMID: 17967545 DOI: 10.1016/j.jsb.2007.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 08/29/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
Electron crystallography of membrane proteins determines the structure of membrane-reconstituted and two-dimensionally (2D) crystallized membrane proteins by low-dose imaging with the transmission electron microscope, and computer image processing. We have previously presented the software system 2dx, for user-friendly image processing of 2D crystal images. Its central component 2dx_image is based on the MRC program suite, and allows the optionally fully automatic processing of one 2D crystal image. We present here the program 2dx_merge, which assists the user in the management of a 2D crystal image processing project, and facilitates the merging of the data from multiple images. The merged dataset can be used as a reference to re-process all images, which usually improves the resolution of the final reconstruction. Image processing and merging can be applied iteratively, until convergence is reached. 2dx is available under the GNU General Public License at http://2dx.org.
Collapse
Affiliation(s)
- Bryant Gipson
- Molecular and Cellular Biology, Briggs Hall, College of Biological Sciences, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
30
|
A high-throughput strategy to screen 2D crystallization trials of membrane proteins. J Struct Biol 2007; 160:295-304. [PMID: 17951070 DOI: 10.1016/j.jsb.2007.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/23/2022]
Abstract
Electron microscopy of two-dimensional (2D) crystals has demonstrated potential for structure determination of membrane proteins. Technical limitations in large-scale crystallization screens have, however, prevented a major breakthrough in the routine application of this technology. Dialysis is generally used for detergent removal and reconstitution of the protein into a lipid bilayer, and devices for testing numerous conditions in parallel are not readily available. Furthermore, the small size of resulting 2D crystals requires electron microscopy to evaluate the results and automation of the necessary steps is essential to achieve a reasonable throughput. We have designed a crystallization block, using standard microplate dimensions, by which 96 unique samples can be dialyzed simultaneously against 96 different buffers and have demonstrated that the rate of detergent dialysis is comparable to those obtained with conventional dialysis devices. A liquid-handling robot was employed to set up 2D crystallization trials with the membrane proteins CopA from Archaeoglobus fulgidus and light-harvesting complex II (LH2) from Rhodobacter sphaeroides. For CopA, 1 week of dialysis yielded tubular crystals and, for LH2, large and well-ordered vesicular 2D crystals were obtained after 24 h, illustrating the feasibility of this approach. Combined with a high-throughput procedure for preparation of EM-grids and automation of the subsequent negative staining step, the crystallization block offers a novel pipeline that promises to speed up large-scale screening of 2D crystallization and to increase the likelihood of producing well-ordered crystals for analysis by electron crystallography.
Collapse
|
31
|
Hite RK, Raunser S, Walz T. Revival of electron crystallography. Curr Opin Struct Biol 2007; 17:389-95. [PMID: 17723294 PMCID: PMC2040057 DOI: 10.1016/j.sbi.2007.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/13/2007] [Indexed: 11/21/2022]
Abstract
Since the structure determination of bacteriorhodopsin in 1990, much progress has been made in the further development and use of electron crystallography. In this review, we provide a concise overview of the new developments in electron crystallography concerning 2D crystallization, data collection and data processing. Based on electron crystallographic work on bacteriorhodopsin, the acetylcholine receptor and aquaporins, we highlight the unique advantages and future perspectives of electron crystallography for the structural study of membrane proteins. These advantages include the visualization of membrane proteins in their native environment without detergent-induced artifacts, the trapping of different states in a reaction pathway by time-resolved experiments, the study of non-specific protein-lipid interactions and the characterization of the charge state of individual residues in membrane proteins.
Collapse
Affiliation(s)
- Richard K Hite
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
32
|
Signorell GA, Chami M, Condemine G, Schenk AD, Philippsen A, Engel A, Remigy HW. Projection maps of three members of the KdgM outer membrane protein family. J Struct Biol 2007; 160:395-403. [PMID: 17919922 DOI: 10.1016/j.jsb.2007.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/09/2007] [Accepted: 08/16/2007] [Indexed: 11/16/2022]
Abstract
We present the projection structures of the three outer membrane porins KdgM and KdgN from Erwinia chrysanthemi and NanC from Escherichia coli, based on 2D electron crystallography. A wide screening of 2D crystallization conditions yielded tubular crystals of a suitable size and quality to perform high-resolution electron microscopy. Data processing of untilted samples allowed us to separate the information of the two crystalline layers and resulted in projection maps to a resolution of up to 7A. All three proteins exhibit a similar putative beta-barrel structure and the three crystal forms have the same symmetry. However, there are differences in the packing arrangements of the monomers as well as the densities of the projections. To interpret these projections, secondary structure prediction was performed using beta-barrel specific prediction algorithms. The predicted transmembrane beta-barrels have a high similarity in the arrangement of the putative beta-strands and the loops, but do not match those of OmpG, a related protein porin whose structure was solved.
Collapse
Affiliation(s)
- Gian A Signorell
- Maurice E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Signorell GA, Kaufmann TC, Kukulski W, Engel A, Rémigy HW. Controlled 2D crystallization of membrane proteins using methyl-β-cyclodextrin. J Struct Biol 2007; 157:321-8. [PMID: 16979348 DOI: 10.1016/j.jsb.2006.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/26/2022]
Abstract
High-resolution structural data of membrane proteins can be obtained by studying 2D crystals by electron crystallography. Finding the right conditions to produce these crystals is one of the major bottlenecks encountered in 2D crystallography. Many reviews address 2D crystallization techniques in attempts to provide guidelines for crystallographers. Several techniques including new approaches to remove detergent like the biobeads technique and the development of dedicated devices have been described (dialysis and dilution machines). In addition, 2D crystallization at interfaces has been studied, the most prominent method being the 2D crystallization at the lipid monolayer. A new approach based on detergent complexation by cyclodextrins is presented in this paper. To prove the ability of cyclodextrins to remove detergent from ternary mixtures (lipid, detergent and protein) in order to get 2D crystals, this method has been tested with OmpF, a typical beta-barrel protein, and with SoPIP2;1, a typical alpha-helical protein. Experiments over different time ranges were performed to analyze the kinetic effects of detergent removal with cyclodextrins on the formation of 2D crystals. The quality of the produced crystals was assessed with negative stain electron microscopy, cryo-electron microscopy and diffraction. Both proteins yielded crystals comparable in quality to previous crystallization reports.
Collapse
Affiliation(s)
- Gian A Signorell
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Abstract
Electron crystallography studies the structure of two-dimensional crystals of membrane proteins or other crystalline arrays. This method has been used to determine the atomic structures of six membrane proteins and tubulin, as well as several other structures at a slightly lower resolution, where secondary structure motifs could be identified. To preserve the high-resolution structure of 2D crystals, the meticulous sample preparation for electron crystallography is of outmost importance. Charge-induced specimen drift and lack of specimen flatness can severely affect the resolution of images for tilted samples. However, sample preparations that sandwich the two-dimensional crystals between symmetrical carbon films reduce the charge-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol. Data collection in the cryoelectron microscope using either the imaging or the electron diffraction mode has to be performed after low-dose procedures. Spot scanning further reduces the charge-induced specimen drift.
Collapse
Affiliation(s)
- Hui-Ting Chou
- Molecular & Cellular Biology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
35
|
Renault L, Chou HT, Chiu PL, Hill RM, Zeng X, Gipson B, Zhang ZY, Cheng A, Unger V, Stahlberg H. Milestones in electron crystallography. J Comput Aided Mol Des 2006; 20:519-27. [PMID: 17103018 PMCID: PMC2194810 DOI: 10.1007/s10822-006-9075-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Electron crystallography determines the structure of membrane embedded proteins in the two-dimensionally crystallized state by cryo-transmission electron microscopy imaging and computer structure reconstruction. Milestones on the path to the structure are high-level expression, purification of functional protein, reconstitution into two-dimensional lipid membrane crystals, high-resolution imaging, and structure determination by computer image processing. Here we review the current state of these methods. We also created an Internet information exchange platform for electron crystallography, where guidelines for imaging and data processing method are maintained. The server (http://2dx.org) provides the electron crystallography community with a central information exchange platform, which is structured in blog and Wiki form, allowing visitors to add comments or discussions. It currently offers a detailed step-by-step introduction to image processing with the MRC software program. The server is also a repository for the 2dx software package, a user-friendly image processing system for 2D membrane protein crystals.
Collapse
Affiliation(s)
- Ludovic Renault
- Molecular and Cellular Biology, College of Biological Sciences, University of California at Davis, Briggs Hall, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
A fast and precise method for detergent concentration determination is presented. (Patent applications for the method described here have been submitted (EP05011904 and US60/702,261). Depending on the interest of the scientific community, the system will be commercialized. (For further information contact Hervé-W. Rémigy at the e-mail address below.) A small droplet of the detergent solution is deposited on a piece of Parafilm M and side views are recorded by two orthogonally arranged TV cameras. The droplet contours are then approximated by ellipses to determine the contact angles. Comparison of the observed contact angle values to calibrated standard curves of known detergent concentrations gives the concentration of the detergent assessed. A range of commonly used detergents was studied to demonstrate the reproducibility and precision of this simple method. As a first application, the detergent binding capacity of the Escherichia coli galactose/proton symporter (GalP) was assessed. Aggregation of GalP was observed when <260 +/- 5 dodecyl-beta,D-maltoside molecules were bound to one GalP molecule. These measurements document the efficacy of the drop-shape based detergent concentration determination described.
Collapse
Affiliation(s)
- Thomas C Kaufmann
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|