1
|
Ciesla J, Huang KL, Wagner EJ, Munger J. A UL26-PIAS1 complex antagonizes anti-viral gene expression during Human Cytomegalovirus infection. PLoS Pathog 2024; 20:e1012058. [PMID: 38768227 PMCID: PMC11142722 DOI: 10.1371/journal.ppat.1012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/31/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Viral disruption of innate immune signaling is a critical determinant of productive infection. The Human Cytomegalovirus (HCMV) UL26 protein prevents anti-viral gene expression during infection, yet the mechanisms involved are unclear. We used TurboID-driven proximity proteomics to identify putative UL26 interacting proteins during infection to address this issue. We find that UL26 forms a complex with several immuno-regulatory proteins, including several STAT family members and various PIAS proteins, a family of E3 SUMO ligases. Our results indicate that UL26 prevents STAT phosphorylation during infection and antagonizes transcriptional activation induced by either interferon α (IFNA) or tumor necrosis factor α (TNFα). Additionally, we find that the inactivation of PIAS1 sensitizes cells to inflammatory stimulation, resulting in an anti-viral transcriptional environment similar to ΔUL26 infection. Further, PIAS1 is important for HCMV cell-to-cell spread, which depends on the presence of UL26, suggesting that the UL26-PIAS1 interaction is vital for modulating intrinsic anti-viral defense.
Collapse
Affiliation(s)
- Jessica Ciesla
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Kai-Lieh Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Eric J. Wagner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
2
|
The Human Cytomegalovirus Transmembrane Protein pUL50 Induces Loss of VCP/p97 and Is Regulated by a Small Isoform of pUL50. J Virol 2020; 94:JVI.00110-20. [PMID: 32321808 DOI: 10.1128/jvi.00110-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL50 gene encodes a transmembrane protein, pUL50, which acts as a core component of the nuclear egress complex (NEC) for nucleocapsids. Recently, pUL50 has been shown to have NEC-independent activities: downregulation of IRE1 to repress the unfolded protein response and degradation of UBE1L to inhibit the protein ISG15 modification pathway. Here, we demonstrate that a 26-kDa N-terminal truncated isoform of pUL50 (UL50-p26) is expressed from an internal methionine at amino acid position 199 and regulates the activity of pUL50 to induce the loss of valosin-containing protein (VCP/p97). A UL50(M199V) mutant virus expressing pUL50(M199V) but not UL50-p26 showed delayed growth at a low multiplicity of infection. There was also delayed accumulation of the viral immediate early 2 (IE2) protein in the mutant virus, and this correlated with the reduced expression of VCP/p97, which promotes IE2 expression. Infection with mutant virus did not significantly alter ISGylation levels. In transient expression assays, pUL50 induced VCP/p97 loss posttranscriptionally, and this was dependent on the presence of its transmembrane domain. In contrast, UL50-p26 did not destabilize VCP/p97 but, rather, inhibited pUL50-mediated VCP/p97 loss and the associated major IE gene suppression. Both pUL50 and UL50-p26 interacted with VCP/p97, although UL50-p26 did so more weakly than pUL50. UL50-p26 interacted with pUL50, and this interaction was much stronger than the pUL50 self-interaction. Furthermore, UL50-p26 was able to interfere with the pUL50-VCP/p97 interaction. Our study newly identifies UL50-p26 expression during HCMV infection and suggests a regulatory role for UL50-p26 in blocking pUL50-mediated VCP/p97 loss by associating with pUL50.IMPORTANCE Targeting the endoplasmic reticulum (ER) by viral proteins may affect ER-associated protein homeostasis. During human cytomegalovirus (HCMV) infection, pUL50 targets the ER through its transmembrane domain and moves to the inner nuclear membrane (INM) to form the nuclear egress complex (NEC), which facilitates capsid transport from the nucleus to the cytoplasm. Here, we demonstrate that pUL50 induces the loss of valosin-containing protein (VCP/p97), which promotes the expression of viral major immediate early gene products, in a manner dependent on its membrane targeting but that a small isoform of pUL50 is expressed to negatively regulate this pUL50 activity. This study reports a new NEC-independent function of pUL50 and highlights the fine regulation of pUL50 activity by a smaller isoform for efficient viral growth.
Collapse
|
3
|
Zhang K, Lv DW, Li R. B Cell Receptor Activation and Chemical Induction Trigger Caspase-Mediated Cleavage of PIAS1 to Facilitate Epstein-Barr Virus Reactivation. Cell Rep 2018; 21:3445-3457. [PMID: 29262325 DOI: 10.1016/j.celrep.2017.11.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/21/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) in tumor cells is predominately in the latent phase, but the virus can undergo lytic reactivation in response to various stimuli. However, the cellular factors that control latency and lytic replication are poorly defined. In this study, we demonstrated that a cellular factor, PIAS1, restricts EBV lytic replication. PIAS1 depletion significantly facilitated EBV reactivation, while PIAS1 reconstitution had the opposite effect. Remarkably, we found that various lytic triggers promote caspase-dependent cleavage of PIAS1 to antagonize PIAS1-mediated restriction and that caspase inhibition suppresses EBV replication through blocking PIAS1 cleavage. We further demonstrated that a cleavage-resistant PIAS1 mutant suppresses EBV replication upon B cell receptor activation. Mechanistically, we demonstrated that PIAS1 acts as an inhibitor for transcription factors involved in lytic gene expression. Collectively, these results establish PIAS1 as a key regulator of EBV lytic replication and uncover a mechanism by which EBV exploits apoptotic caspases to antagonize PIAS1-mediated restriction.
Collapse
Affiliation(s)
- Kun Zhang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dong-Wen Lv
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Renfeng Li
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
4
|
Transmembrane Protein pUL50 of Human Cytomegalovirus Inhibits ISGylation by Downregulating UBE1L. J Virol 2018; 92:JVI.00462-18. [PMID: 29743376 DOI: 10.1128/jvi.00462-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that can be conjugated to proteins via an enzymatic cascade involving the E1, E2, and E3 enzymes. ISG15 expression and protein ISGylation modulate viral infection; however, the viral mechanisms regulating the function of ISG15 and ISGylation are not well understood. We recently showed that ISGylation suppresses the growth of human cytomegalovirus (HCMV) at multiple steps of the virus life cycle and that the virus-encoded pUL26 protein inhibits protein ISGylation. In this study, we demonstrate that the HCMV UL50-encoded transmembrane protein, a component of the nuclear egress complex, also inhibits ISGylation. pUL50 interacted with UBE1L, an E1-activating enzyme for ISGylation, and (to a lesser extent) with ISG15, as did pUL26. However, unlike pUL26, pUL50 caused proteasomal degradation of UBE1L. The UBE1L level induced in human fibroblast cells by interferon beta treatment or virus infection was reduced by pUL50 expression. This activity of pUL50 involved the transmembrane (TM) domain within its C-terminal region, although pUL50 could interact with UBE1L in a manner independent of the TM domain. Consistently, colocalization of pUL50 with UBE1L was observed in cells treated with a proteasome inhibitor. Furthermore, we found that RNF170, an endoplasmic reticulum (ER)-associated ubiquitin E3 ligase, interacted with pUL50 and promoted pUL50-mediated UBE1L degradation via ubiquitination. Our results demonstrate a novel role for the pUL50 transmembrane protein of HCMV in the regulation of protein ISGylation.IMPORTANCE Proteins can be conjugated covalently by ubiquitin or ubiquitin-like proteins, such as SUMO and ISG15. ISG15 is highly induced in viral infection, and ISG15 conjugation, termed ISGylation, plays important regulatory roles in viral growth. Although ISGylation has been shown to negatively affect many viruses, including human cytomegalovirus (HCMV), viral countermeasures that might modulate ISGylation are not well understood. In the present study, we show that the transmembrane protein encoded by HCMV UL50 inhibits ISGylation by causing proteasomal degradation of UBE1L, an E1-activating enzyme for ISGylation. This pUL50 activity requires membrane targeting. In support of this finding, RNF170, an ER-associated ubiquitin E3 ligase, interacts with pUL50 and promotes UL50-mediated UBE1L ubiquitination and degradation. Our results provide the first evidence, to our knowledge, that viruses can regulate ISGylation by directly targeting the ISGylation E1 enzyme.
Collapse
|
5
|
Yu X, Chen H, Zuo C, Jin X, Yin Y, Wang H, Jin M, Ozato K, Xu S. Chromatin remodeling: demethylating H3K4me3 of type I IFNs gene by Rbp2 through interacting with Piasy for transcriptional attenuation. FASEB J 2018; 32:552-567. [PMID: 28970247 DOI: 10.1096/fj.201700088rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type I IFNs (IFNIs) are involved in the course of antiviral and antimicrobial activities; however, robust inductions of these can lead to host immunopathology. We have reported that the Pias (protein inhibitor of activated signal transducer and activator of transcription) family member, Piasy, possesses the ability to suppress IFNI transcriptions in mouse embryonic fibroblasts (MEFs), yet the specific molecular mechanism by which it acts remains elusive. Here, we identify that the H3K4me3 levels, one activation mark of genes, in MEFs that were stimulated by poly(I:C) were impaired by Piasy in the IFN-β gene. Piasy bound to the promoter region of the IFN-β gene in MEFs. Meanwhile, retinoblastoma binding protein 2 (Rbp2) was proven to be the only known and novel H3K4me3 demethylase that interacted with Piasy. Overexpression of Rbp2, but not its enzymatically inactive mutant Rbp2H483G/E485Q, retarded the transcription activities of IFNI, whereas small interfering RNA-mediated or short hairpin RNA-mediated knockdown of Rbp2 enhanced IFNI promoter responses. Above all, coexpression of Piasy and Rbp2 led to statistically less IFNI induction than overexpression of either Piasy or Rbp2 alone. Mechanistically, Piasy bound to the Jmjc domain (451-503 aa) of Rbp2 via its PINIT domain (101-218 aa), which is consistent with the domain required for their attenuation of transcription and H3K4me3 levels of IFNI genes. Our study demonstrates that Piasy may prevent exaggerated transcription of IFNI by Rbp2-mediated demethylation of H3K4me3 of IFNI, avoiding excessive immune responses.-Yu, X., Chen, H., Zuo, C., Jin, X., Yin, Y., Wang, H., Jin, M., Ozato, K., Xu, S. Chromatin remodeling: demethylating H3K4me3 of type I IFNs gene by Rbp2 through interacting with Piasy for transcriptional attenuation.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zuo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xi Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mei Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Keiko Ozato
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Songxiao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Darrah EJ, Stoltz KP, Ledwith M, Tarakanova VL. ATM supports gammaherpesvirus replication by attenuating type I interferon pathway. Virology 2017; 510:137-146. [PMID: 28732227 DOI: 10.1016/j.virol.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection.
Collapse
Affiliation(s)
- Eric J Darrah
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Kyle P Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Mitchell Ledwith
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
7
|
Ibata M, Iwasaki J, Fujioka Y, Nakagawa K, Darmanin S, Onozawa M, Hashimoto D, Ohba Y, Hatakeyama S, Teshima T, Kondo T. Leukemogenic kinase FIP1L1-PDGFRA and a small ubiquitin-like modifier E3 ligase, PIAS1, form a positive cross-talk through their enzymatic activities. Cancer Sci 2017; 108:200-207. [PMID: 27960034 PMCID: PMC5367148 DOI: 10.1111/cas.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
Abstract
Fusion tyrosine kinases play a crucial role in the development of hematological malignancies. FIP1L1‐PDGFRA is a leukemogenic fusion kinase that causes chronic eosinophilic leukemia. As a constitutively active kinase, FIP1L1‐PDGFRA stimulates downstream signaling molecules, leading to cellular proliferation and the generation of an anti‐apoptotic state. Contribution of the N‐terminal FIP1L1 portion is necessary for FIP1L1‐PDGFRA to exert its full transforming activity, but the underlying mechanisms have not been fully characterized. We identified PIAS1 as a FIP1L1‐PDGFRA association molecule by yeast two‐hybrid screening. Our analyses indicate that the FIP1L1 portion of FIP1L1‐PDGFRA is required for efficient association with PIAS1. As a consequence of the association, FIP1L1‐PDGFRA phosphorylates PIAS1. Moreover, the kinase activity of FIP1L1‐PDGFRA stabilizes PIAS1. Therefore, PIAS1 is one of the downstream targets of FIP1L1‐PDGFRA. Moreover, we found that PIAS1, as a SUMO E3 ligase, sumoylates and stabilizes FIP1L1‐PDGFRA. In addition, suppression of PIAS1 activity by a knockdown experiment resulted in destabilization of FIP1L1‐PDGFRA. Therefore, FIP1L1‐PDGFRA and PIAS1 form a positive cross‐talk through their enzymatic activities. Suppression of sumoylation by ginkgolic acid, a small molecule compound inhibiting a SUMO E1‐activating enzyme, also destabilizes FIP1L1‐PDGFRA, and while the tyrosine kinase inhibitor imatinib suppresses FIP1L1‐PDGFRA‐dependent cell growth, ginkgolic acid or siRNA of PIAS1 has a synergistic effect with imatinib. In conclusion, our results suggest that sumoylation by PIAS1 is a potential target in the treatment of FIP1L1‐PDGFRA‐positive chronic eosinophilic leukemia.
Collapse
Affiliation(s)
- Makoto Ibata
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junko Iwasaki
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Nakagawa
- Department of Laboratory of Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, Sapporo, Japan
| | - Stephanie Darmanin
- Department of Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Kim YJ, Kim ET, Kim YE, Lee MK, Kwon KM, Kim KI, Stamminger T, Ahn JH. Consecutive Inhibition of ISG15 Expression and ISGylation by Cytomegalovirus Regulators. PLoS Pathog 2016; 12:e1005850. [PMID: 27564865 PMCID: PMC5001722 DOI: 10.1371/journal.ppat.1005850] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) encodes an ubiquitin-like protein that covalently conjugates protein. Protein modification by ISG15 (ISGylation) is known to inhibit the replication of many viruses. However, studies on the viral targets and viral strategies to regulate ISGylation-mediated antiviral responses are limited. In this study, we show that human cytomegalovirus (HCMV) replication is inhibited by ISGylation, but the virus has evolved multiple countermeasures. HCMV-induced ISG15 expression was mitigated by IE1, a viral inhibitor of interferon signaling, however, ISGylation was still strongly upregulated during virus infection. RNA interference of UBE1L (E1), UbcH8 (E2), Herc5 (E3), and UBP43 (ISG15 protease) revealed that ISGylation inhibits HCMV growth by downregulating viral gene expression and virion release in a manner that is more prominent at low multiplicity of infection. A viral regulator pUL26 was found to interact with ISG15, UBE1L, and Herc5, and be ISGylated. ISGylation of pUL26 regulated its stability and inhibited its activities to suppress NF-κB signaling and complement the growth of UL26-null mutant virus. Moreover, pUL26 reciprocally suppressed virus-induced ISGylation independent of its own ISGylation. Consistently, ISGylation was more pronounced in infections with the UL26-deleted mutant virus, whose growth was more sensitive to IFNβ treatment than that of the wild-type virus. Therefore, pUL26 is a viral ISG15 target that also counteracts ISGylation. Our results demonstrate that ISGylation inhibits HCMV growth at multiple steps and that HCMV has evolved countermeasures to suppress ISG15 transcription and protein ISGylation, highlighting the importance of the interplay between virus and ISGylation in productive viral infection. Type I IFN response is a front-line defense against virus infection. Activation of type I IFN signaling leads to expression of a subset of cellular proteins encoded by interferon-stimulated genes (ISGs). ISG15 encodes an ubiquitin-like protein that is covalently conjugated to protein lysine residues. ISG15 modification (ISGylation) of a protein causes changes of protein function. ISGylation is known to inhibit the replication of many viruses, although pro-viral effects of ISGylation are also reported. Given that ISG15 and the enzymes involved in ISGylation are strongly induced upon virus infection, understanding the interplay between virus and ISGylation is an important issue in virus-host interaction. Nevertheless, viral substrates of ISG15 and viral strategies to regulate ISGylation-mediated antiviral responses are limited to only a few examples. In this study we demonstrate that ISGylation suppresses human cytomegalovirus (HCMV) infection but the virus is armed with countermeasures that consecutively reduce ISG15 transcription and protein ISGylation. Interestingly, a viral ISG15 target is found to inhibit ISGylation. This study highlights that ISGylation is a critical innate immune response against HCMV infection and interfering with ISG15-mediated anti-viral immunity is critical for productive viral infection.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Myoung Kyu Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki Mun Kwon
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten, Erlangen, Germany
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:967-78. [DOI: 10.1016/j.bbapap.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
|
10
|
Kim ET, Kim YE, Kim YJ, Lee MK, Hayward GS, Ahn JH. Analysis of human cytomegalovirus-encoded SUMO targets and temporal regulation of SUMOylation of the immediate-early proteins IE1 and IE2 during infection. PLoS One 2014; 9:e103308. [PMID: 25050850 PMCID: PMC4106884 DOI: 10.1371/journal.pone.0103308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of proteins by members of the small ubiquitin-like modifier (SUMO) is involved in diverse cellular functions. Many viral proteins are SUMO targets and also interact with the cellular SUMOylation system. During human cytomegalovirus (HCMV) infection, the immediate-early (IE) proteins IE1 and IE2 are covalently modified by SUMO. IE2 SUMOylation promotes its transactivation activity, whereas the role of IE1 SUMOylation is not clear. We performed in silico, genome-wide analysis to identify possible SUMOylation sites in HCMV-encoded proteins and evaluated their modification using the E. coli SUMOylation system and in vitro assays. We found that only IE1 and IE2 are substantially modified by SUMO in E. coli, although US34A was also identified as a possible SUMO target in vitro. We also found that SUMOylation of IE1 and IE2 is temporally regulated during viral infection. Levels of SUMO-modified form of IE1 were increased during the early phase of infection, but decreased in the late phase when IE2 and its SUMO-modified forms were expressed at high levels. IE2 expression inhibited IE1 SUMOylation in cotransfection assays. As in IE2 SUMOylation, PIAS1, a SUMO E3 ligase, interacted with IE1 and enhanced IE1 SUMOylation. In in vitro assays, an IE2 fragment that lacked covalent and non-covalent SUMO attachment sites, but was sufficient for PIAS1 binding, effectively inhibited PIAS1-mediated SUMOylation of IE1, indicating that IE2 expression negatively regulates IE1 SUMOylation. We also found that the IE2-mediated downregulation of IE1 SUMOylation correlates with the IE1 activity to repress the promoter containing the interferon stimulated response elements. Taken together, our data demonstrate that IE1 and IE2 are the main viral SUMO targets in HCMV infection and that temporal regulation of their SUMOylation may be important in the progression of this infection.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ye Ji Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Myoung Kyu Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Gary S. Hayward
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
11
|
Everett RD, Boutell C, Hale BG. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 2013; 11:400-11. [PMID: 23624814 DOI: 10.1038/nrmicro3015] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modification by members of the small ubiquitin-like modifier (SUMO) family of proteins is important for the regulation of many cellular proteins and pathways. As obligate parasites, viruses must engage with the host cell throughout their replication cycles, and it is therefore unsurprising that there are many examples of interplay between viral proteins and the host sumoylation system. This article reviews recent advances in this field, summarizing information on sumoylated viral proteins, the varied ways in which viruses engage with SUMO-related pathways, and the consequences of these interactions for viral replication and engagement with innate and intrinsic immunity.
Collapse
Affiliation(s)
- Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK.
| | | | | |
Collapse
|
12
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
13
|
Sudharsan R, Azuma Y. The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J Cell Sci 2012; 125:5819-29. [PMID: 22976298 DOI: 10.1242/jcs.110825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) ligase PIAS1 (Protein Inhibitor of Activated Stat-1) has been shown to play a role in cellular stress response by SUMOylating several proteins that are involved in DNA repair, apoptosis and transcription. In this paper, we show that PIAS1 regulates ultraviolet (UV)-induced apoptosis by recruiting Death-associated protein 6 (Daxx) to PIAS1-generated SUMO-foci. Cells that ectopically express PIAS1, but not other PIASes, show increased sensitivity to UV irradiation, suggesting that PIAS1 has a distinct function in UV-dependent apoptosis. Domain analysis of PIAS1 indicates that both PIAS1 SUMO-ligase activity and the specific localization of PIAS1 through its N-terminal and C-terminal domains are essential for UV-induced cell death. Daxx colocalizes with PIAS1-generated SUMOylated foci, and the reduction of Daxx using RNAi alleviates UV-induced apoptosis in PIAS1-expressing cells. PIAS1-mediated recruitment of Daxx and apoptosis following UV irradiation are dependent upon the Daxx C-terminal SUMO-interacting motif (SIM). Overall, our data suggest that the pro-apoptotic protein Daxx specifically interacts with one or more substrates SUMOylated by PIAS1 and this interaction leads to apoptosis following UV irradiation.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Haworth Hall, Rm. 3037, Lawrence, KS 66045, USA
| | | |
Collapse
|
14
|
Wilson VG. Sumoylation at the host-pathogen interface. Biomolecules 2012; 2:203-27. [PMID: 23795346 PMCID: PMC3685863 DOI: 10.3390/biom2020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/11/2022] Open
Abstract
Many viral proteins have been shown to be sumoylated with corresponding regulatory effects on their protein function, indicating that this host cell modification process is widely exploited by viral pathogens to control viral activity. In addition to using sumoylation to regulate their own proteins, several viral pathogens have been shown to modulate overall host sumoylation levels. Given the large number of cellular targets for SUMO addition and the breadth of critical cellular processes that are regulated via sumoylation, viral modulation of overall sumoylation presumably alters the cellular environment to ensure that it is favorable for viral reproduction and/or persistence. Like some viruses, certain bacterial plant pathogens also target the sumoylation system, usually decreasing sumoylation to disrupt host anti-pathogen responses. The recent demonstration that Listeria monocytogenes also disrupts host sumoylation, and that this is required for efficient infection, extends the plant pathogen observations to a human pathogen and suggests that pathogen modulation of host sumoylation may be more widespread than previously appreciated. This review will focus on recent aspects of how pathogens modulate the host sumoylation system and how this benefits the pathogen.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX 77807-1359
| |
Collapse
|
15
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
16
|
Kim YE, Lee JH, Kim ET, Shin HJ, Gu SY, Seol HS, Ling PD, Lee CH, Ahn JH. Human cytomegalovirus infection causes degradation of Sp100 proteins that suppress viral gene expression. J Virol 2011; 85:11928-37. [PMID: 21880768 PMCID: PMC3209270 DOI: 10.1128/jvi.00758-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/18/2011] [Indexed: 01/02/2023] Open
Abstract
The interferon-inducible Sp100 proteins are thought to play roles in the chromatin pathway and in transcriptional regulation. Sp100A, the smallest isoform, is one of the major components of PML nuclear bodies (NBs) that exhibit intrinsic antiviral activity against several viruses. Since PML NBs are disrupted by the immediate-early 1 (IE1) protein during human cytomegalovirus (HCMV) infection, the modulation of Sp100 protein expression or activity during infection has been suggested. Here, we show that Sp100 proteins are lost largely in the late stages of HCMV infection. This event required viral gene expression and involved posttranscriptional control. The mutant virus with deletion of the sequence for IE1 (CR208) did not have Sp100 loss. In CR208 infection, PML depletion by RNA interference abrogated the accumulation of SUMO-modified Sp100A and of certain high-molecular-weight Sp100 isoforms but did not significantly affect unmodified Sp100A, suggesting that the IE1-induced disruption of PML NBs is not sufficient for the complete loss of Sp100 proteins. Sp100A loss was found to require proteasome activity. Depletion of all Sp100 proteins by RNA silencing enhanced HCMV replication and major IE (MIE) gene expression. Sp100 knockdown enhanced the acetylation level of histones associated with the MIE promoter, demonstrating that the repressive effect of Sp100 proteins may involve, at least in part, the epigenetic control of the MIE promoter. Sp100A was found to interact directly with IE1 through the N-terminal dimerization domain. These findings indicate that the IE1-dependent loss of Sp100 proteins during HCMV infection may represent an important requirement for efficient viral growth.
Collapse
Affiliation(s)
- Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Jin-Hyoung Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Hye Jin Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Su Yeon Gu
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Hyang Sook Seol
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Chan Hee Lee
- Division of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon
| |
Collapse
|
17
|
Cuchet-Lourenço D, Boutell C, Lukashchuk V, Grant K, Sykes A, Murray J, Orr A, Everett RD. SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog 2011; 7:e1002123. [PMID: 21779164 PMCID: PMC3136452 DOI: 10.1371/journal.ppat.1002123] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/03/2011] [Indexed: 12/12/2022] Open
Abstract
Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100 and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO conjugates and PIAS2β, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular defence against invading pathogen DNA that is regulated through the SUMO modification pathway.
Collapse
Affiliation(s)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Vera Lukashchuk
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Kyle Grant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Amanda Sykes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Jill Murray
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Roger D. Everett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
18
|
Alm-Kristiansen AH, Lorenzo PI, Molværsmyr AK, Matre V, Ledsaak M, Sæther T, Gabrielsen OS. PIAS1 interacts with FLASH and enhances its co-activation of c-Myb. Mol Cancer 2011; 10:21. [PMID: 21338522 PMCID: PMC3050860 DOI: 10.1186/1476-4598-10-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/21/2011] [Indexed: 11/15/2022] Open
Abstract
Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci.
Collapse
|
19
|
Functional properties of the human cytomegalovirus IE86 protein required for transcriptional regulation and virus replication. J Virol 2010; 84:8839-48. [PMID: 20554773 DOI: 10.1128/jvi.00327-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Collapse
|
20
|
Role of the specific interaction of UL112-113 p84 with UL44 DNA polymerase processivity factor in promoting DNA replication of human cytomegalovirus. J Virol 2010; 84:8409-21. [PMID: 20538862 DOI: 10.1128/jvi.00189-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL112-113 region encodes four phosphoproteins with common amino termini (p34, p43, p50, and p84) via alternative splicing and is thought to be required for efficient viral DNA replication. We have previously shown that interactions among the four UL112-113 proteins regulate their intranuclear targeting and enable the recruitment of the UL44 DNA polymerase processivity factor to viral prereplication foci. Here, we show that in virus-infected cells, the UL112-113 proteins form a complex with UL44 and other replication proteins, such as UL84 and IE2. In vitro assays showed that all four phosphoproteins interacted with UL44. Interestingly, p84 required both the shared amino-terminal region and the specific near-carboxy-terminal region for UL44 binding. UL44 required both the carboxy-terminal region and the central region, including the dimerization domain for p84 binding. The production of recombinant virus from mutant Towne bacterial artificial chromosome (BAC) DNA, which encodes intact p34, p43, and p50 and a carboxy-terminally truncated p84 defective in UL44 binding, was severely impaired compared to wild-type BAC DNA. A similar defect was observed when mutant BAC DNA encoded a carboxy-terminally truncated UL44 defective in p84 binding. In cotransfection replication assays using six replication core proteins, UL84, IE2, and UL112-113, the efficient replication of an HCMV oriLyt-containing plasmid required the regions of p84 and UL44 necessary for their interaction. Our data suggest that the UL112-113 proteins form a complex with other replication proteins such as UL44, UL84, and IE2 and that the specific interaction of UL112-113 p84 with UL44 is necessary for efficient viral DNA replication.
Collapse
|
21
|
Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. J Virol 2010; 84:8111-23. [PMID: 20519406 DOI: 10.1128/jvi.00459-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The 86-kDa immediate-early 2 (IE2) protein of human cytomegalovirus (HCMV) is a promiscuous transactivator essential for viral gene expression. IE2 is covalently modified by SUMO at two lysine residues (K175 and K180) and also interacts noncovalently with SUMO. Although SUMOylation of IE2 has been shown to enhance its transactivation activity, the role of SUMO binding is not clear. Here we showed that SUMO binding by IE2 is necessary for its efficient transactivation function and for viral growth. IE2 bound physically to SUMO-1 through a SUMO-interacting motif (SIM). Mutations in SIM (mSIM) or in both SUMOylation sites and SIM (KR/mSIM), significantly reduced IE2 transactivation effects on viral early promoters. The replication of IE2 SIM mutant viruses (mSIM or KR/mSIM) was severely depressed in normal human fibroblasts. Analysis of viral growth curves revealed that the replication defect of the mSIM virus correlated with low-level accumulation of SUMO-modified IE2 and of viral early and late proteins. Importantly, both the formation of viral transcription domains and the association of IE2 with viral promoters in infected cells were significantly reduced in IE2 SIM mutant virus infection. Furthermore, IE2 was found to interact with the SUMO-modified form of TATA-binding protein (TBP)-associated factor 12 (TAF12), a component of the TFIID complex, in a SIM-dependent manner, and this interaction enhanced the transactivation activity of IE2. Our data demonstrate that the interaction of IE2 with SUMO-modified proteins plays an important role for the progression of the HCMV lytic cycle, and they suggest a novel viral mechanism utilizing the cellular SUMO system.
Collapse
|
22
|
Chang TH, Kubota T, Matsuoka M, Jones S, Bradfute SB, Bray M, Ozato K. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog 2009; 5:e1000493. [PMID: 19557165 PMCID: PMC2696038 DOI: 10.1371/journal.ppat.1000493] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 05/28/2009] [Indexed: 12/12/2022] Open
Abstract
Ebola Zaire virus is highly pathogenic for humans, with case fatality rates approaching 90% in large outbreaks in Africa. The virus replicates in macrophages and dendritic cells (DCs), suppressing production of type I interferons (IFNs) while inducing the release of large quantities of proinflammatory cytokines. Although the viral VP35 protein has been shown to inhibit IFN responses, the mechanism by which it blocks IFN production has not been fully elucidated. We expressed VP35 from a mouse-adapted variant of Ebola Zaire virus in murine DCs by retroviral gene transfer, and tested for IFN transcription upon Newcastle Disease virus (NDV) infection and toll-like receptor signaling. We found that VP35 inhibited IFN transcription in DCs following these stimuli by disabling the activity of IRF7, a transcription factor required for IFN transcription. By yeast two-hybrid screens and coimmunoprecipitation assays, we found that VP35 interacted with IRF7, Ubc9 and PIAS1. The latter two are the host SUMO E2 enzyme and E3 ligase, respectively. VP35, while not itself a SUMO ligase, increased PIAS1-mediated SUMOylation of IRF7, and repressed Ifn transcription. In contrast, VP35 did not interfere with the activation of NF-κB, which is required for induction of many proinflammatory cytokines. Our findings indicate that Ebola Zaire virus exploits the cellular SUMOylation machinery for its advantage and help to explain how the virus overcomes host innate defenses, causing rapidly overwhelming infection to produce a syndrome resembling fulminant septic shock. Ebola Zaire virus causes severe hemorrhagic fever in humans that is fatal in almost 90% of cases. The rapid spread of the virus to macrophages and dendritic cells results in the release of high levels of inflammatory cytokines, causing shock and bleeding. The ability of Ebola virus to overwhelm host defenses is believed to result from its suppression of the type I interferon (IFN) response. The Ebola viral protein VP35 is known to block IFN responses, but the precise mechanisms have not been identified. We expressed VP35 in mouse dendritic cells and found that the cells failed to develop a normal IFN response when infected with Newcastle Disease virus. By a yeast two-hybrid system and other biochemical experiments, we showed that the blockade resulted from the conjugation of a Small Ubiquitin-like Modifier (SUMO) protein to IRF-7, the principal cellular factor required for IFN gene expression. However, the cells were still able to activate NF-κB, a transcription factor responsible for the release of proinflammatory cytokines. Our findings provide a first example where a virus hijacks the host SUMO system to undermine innate immunity, and help to explain how Ebola virus spreads rapidly in lymphoid tissues to cause a lethal inflammatory syndrome.
Collapse
Affiliation(s)
- Tsung-Hsien Chang
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toru Kubota
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mayumi Matsuoka
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven Jones
- Population and Public Health Branch, National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Winnipeg, Manitoba, Canada
| | - Steven B. Bradfute
- United States Army Medical Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Mike Bray
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Keiko Ozato
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Internal deletions of IE2 86 and loss of the late IE2 60 and IE2 40 proteins encoded by human cytomegalovirus affect the levels of UL84 protein but not the amount of UL84 mRNA or the loading and distribution of the mRNA on polysomes. J Virol 2008; 82:11383-97. [PMID: 18787008 DOI: 10.1128/jvi.01293-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early (IE) region of human cytomegalovirus encodes two IE proteins, IE1 72 and IE2 86, that are translated from alternatively spliced transcripts that differ in their 3' ends. Two other proteins that correspond to the C-terminal region of IE2 86, IE2 60 and IE2 40, are expressed at late times. In this study, we used IE2 mutant viruses to examine the mechanism by which IE2 86, IE2 60, and IE2 40 affect the expression of a viral DNA replication factor, UL84. Deletion of amino acids (aa) 136 to 290 of IE2 86 results in a significant decrease in UL84 protein during the infection. This loss of UL84 is both proteasome and calpain independent, and the stability of the protein in the context of infection with the mutant remains unaffected. The RNA for UL84 is expressed to normal levels in the mutant virus-infected cells, as are the RNAs for two other proteins encoded by this region, UL85 and UL86. Moreover, nuclear-to-cytoplasmic transport and the distribution of the UL84 mRNA on polysomes are unaffected. A region between aa 290 and 369 of IE2 86 contributes to the UL84-IE2 86 interaction in vivo and in vitro. IE2 86, IE2 60, and IE2 40 are each able to interact with UL84 in the mutant-infected cells, suggesting that these interactions may be important for the roles of UL84 and the IE2 proteins. Thus, these data have defined the contribution of IE2 86, IE2 60, and IE2 40 to the efficient expression of UL84 throughout the infection.
Collapse
|
24
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J Virol 2008; 82:7059-77. [PMID: 18463148 DOI: 10.1128/jvi.00675-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins.
Collapse
|
25
|
Park JJ, Kim YE, Pham HT, Kim ET, Chung YH, Ahn JH. Functional interaction of the human cytomegalovirus IE2 protein with histone deacetylase 2 in infected human fibroblasts. J Gen Virol 2008; 88:3214-3223. [PMID: 18024889 DOI: 10.1099/vir.0.83171-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human cytomegalovirus (HCMV)-infected cells, the 86 kDa immediate-early (IE) 2 protein plays a key role in transactivating downstream viral genes. Recently, IE2 has been shown to interact with histone deacetylase 1 (HDAC1) and HDAC3. HDAC1 recruited by IE2 was required for IE2-mediated autorepression of the major IE (MIE) promoter, whereas IE2-HDAC3 interaction was suggested to relieve the repressive effect of HDAC3 on viral early promoters. However, whether IE2 indeed inhibits HDAC's deacetylation activity on viral promoters and interacts with other HDACs remains unclear. Here, we provide evidence that IE2 functionally interacts with HDAC2 and negates its repressive effect on the viral polymerase promoter. IE2 interacted with HDAC2 in both virus-infected cells and in vitro, and required the conserved C-terminal half for HDAC2 binding. The subcellular localization of HDAC2 was changed in virus-infected cells, showing colocalization with IE2 in viral transcription and replication sites. The overall HDAC2 protein levels and its deacetylation activity slightly increased during the late stages of infection and the IE2-associated deacetylation activity was still sensitive to an HDAC inhibitor, trichostatin A. In transfection assays, however, histone acetylation of the viral polymerase promoter was suppressed by HDAC2, and this was relieved by IE2 binding. Therefore, our data demonstrate that IE2 functionally interacts with HDAC2 and modulates its deacetylation activity on the viral polymerase promoter. Our results also support the idea that interactions of IE2 with several HDACs to modulate the host epigenetic regulation on viral MIE and early promoters are important events in the process of productive infection.
Collapse
Affiliation(s)
- Jung-Jin Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hong Thanh Pham
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Hwa Chung
- Department of Nanomedical Engineering, Pusan National University, Miryang, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
26
|
Boggio R, Chiocca S. Viruses and sumoylation: recent highlights. Curr Opin Microbiol 2006; 9:430-6. [PMID: 16815735 PMCID: PMC7108358 DOI: 10.1016/j.mib.2006.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/20/2006] [Indexed: 12/02/2022]
Abstract
Since its discovery in 1997, SUMO (small ubiquitin-like modifier) has been implicated in a range of activities, indicating that this protein is as important in the cell as ubiquitin is. Although it can function throughout the cell, it appears to be involved more in nuclear functions. The growing list of substrates that are covalently modified by SUMO includes many viral proteins; SUMO appears to facilitate viral infection of cells, making it a possible target for antiviral therapies. It therefore is important to understand how viruses manipulate the cellular sumoylation system and how sumoylation affects viral functions.
Collapse
|
27
|
Azmi P, Seth A. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer 2005; 41:2549-60. [PMID: 16226459 DOI: 10.1016/j.ejca.2005.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta pathway and EGFR pathway.
Collapse
Affiliation(s)
- Peter Azmi
- Department of Anatomic Pathology and Division of Molecular and Cellular Biology, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5
| | | |
Collapse
|
28
|
Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 2005; 5:593-605. [PMID: 16056253 DOI: 10.1038/nri1667] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein inhibitor of activated STAT (PIAS) family of proteins has been proposed to regulate the activity of many transcription factors, including signal transducer and activator of transcription proteins (STATs), nuclear factor-kappaB, SMA- and MAD-related proteins (SMADs), and the tumour-suppressor protein p53. PIAS proteins regulate transcription through several mechanisms, including blocking the DNA-binding activity of transcription factors, recruiting transcriptional corepressors or co-activators, and promoting protein sumoylation. Recent genetic studies support an in vivo function for PIAS proteins in the regulation of innate immune responses. In this article, we review the current understanding of the molecular basis, specificity and physiological roles of PIAS proteins in the regulation of gene-activation pathways in the immune system.
Collapse
Affiliation(s)
- Ke Shuai
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
29
|
Sadanari H, Yamada R, Ohnishi K, Matsubara K, Tanaka J. SUMO-1 modification of the major immediate-early (IE) 1 and 2 proteins of human cytomegalovirus is regulated by different mechanisms and modulates the intracellular localization of the IE1, but not IE2, protein. Arch Virol 2005; 150:1763-82. [PMID: 15931461 DOI: 10.1007/s00705-005-0559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that two proteins with apparent molecular masses of 91- and 102-kDa (p91 and p102, respectively) in human cytomegalovirus (HCMV)-infected cells are antigenically and structurally related to the major immediate-early (IE) 1 and 2 proteins (IE1p68 and IE2p80, respectively) of HCMV, respectively. In this study, we extended the characterization of p91 and p102 and our results were as follows; (i) Lysine at amino acid position 450 in IE1p68 and at amino acid position 175 or 180 in IE2p80, to which SUMO-1 has been shown to be covalently linked, are required for production of p91 and p102, respectively. (ii) A reversal of cycloheximide (CH) block in the presence of actinomycin D imposed at the time of infection inhibited production of p91, but not p102. (iii) The steady-state levels of p91, but not p102, were remarkably decreased by treatment with proteasome inhibitor MG132, but coincubation with CH inhibited this decrease of p91. (iv) Cell fractionation by differential detergent extraction demonstrated that p91 is preferentially found in detergent-insoluble fraction, although p102 as well as IE1p68 and IE2p80 distributes into all fractions. These results demonstrate that p91 and p102 correspond to SUMO-1-modified IE1p68 and IE2p80, respectively, that the production and degradation of SUMO-1-modified IE1p68 is regulated by mechanisms different from those of SUMO-1-modified IE2p80, and that SUMO-1 modification modulates the intracellular localization of IE1p68, but not IE2p80.
Collapse
Affiliation(s)
- H Sadanari
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
30
|
Lee JR, Hahn HS, Yu JR, Kim ST, Yang JM, Hahn MJ. Immunoaffinity purification of SRT-tagged human creatine kinase by peptide elution. J Biotechnol 2005; 117:287-91. [PMID: 15862359 DOI: 10.1016/j.jbiotec.2005.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 01/18/2005] [Accepted: 01/24/2005] [Indexed: 11/16/2022]
Abstract
The mouse monoclonal antibody (Mab), SRT10, recognizes a linear epitope of 10 amino acids (ThrPheIleGlyAlaIleAlaThrAspThr). When these epitope-tagged fusion proteins are expressed in mammalian cells, the Mab can detect the tagged proteins by immunoblotting, immunocytochemistry and immunoprecipitation. Here, we describe an efficient method for the purification of SRT-tagged recombinant human creatine kinase (CK) transiently expressed in mammalian cells. This method utilizes the expression of the N-terminal- or C-terminal-tagged CK in transiently transfected HEK293 cells followed by binding to anti-SRT-agarose affinity resin and competitive elution with SRT peptide. Recombinant CK was purified near homogeneity as judged by SDS-PAGE.
Collapse
Affiliation(s)
- Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | | | | | |
Collapse
|
31
|
Hilgarth RS, Murphy LA, Skaggs HS, Wilkerson DC, Xing H, Sarge KD. Regulation and Function of SUMO Modification. J Biol Chem 2004; 279:53899-902. [PMID: 15448161 DOI: 10.1074/jbc.r400021200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Roland S Hilgarth
- Department of Molecular and Cellular Biochemistry and Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lee HR, Ahn JH. Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus Towne strain is not required for virus growth in cultured human fibroblasts. J Gen Virol 2004; 85:2149-2154. [PMID: 15269353 DOI: 10.1099/vir.0.79954-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus has been shown to increase transactivation activity in target reporter gene assays. This study examined the role of IE2 sumoylation in viral infection. A Towne strain-based bacterial artificial chromosome clone was generated encoding a mutated form of the IE2 protein with Lys-->Arg substitutions at positions 175 and 180, the two major sumoylation sites. When human fibroblast (HF) cells were infected with the reconstituted mutant virus, (i) viral growth kinetics, (ii) the accumulation of IE1 (UL123), IE2 (UL122), p52 (UL44) and pp65 (UL83) proteins and (iii) the relocalization of the cellular small ubiquitin-like modifier (SUMO)-1, p53 and proliferating cell nuclear antigen proteins into viral DNA replication compartments were comparable with those of the wild-type and the revertant virus. The data demonstrate that sumoylation of IE2 is not essential for virus growth in cultured HF cells.
Collapse
Affiliation(s)
- Hye-Ra Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Kyonggido 440-746, Korea
| |
Collapse
|