1
|
Hu M, Xu M, Chen Y, Ye Z, Zhu S, Cai J, Zhang M, Zhang C, Huang R, Ye Q, Ao H. Therapeutic potential of toosendanin: Novel applications of an old ascaris repellent as a drug candidate. Biomed Pharmacother 2023; 167:115541. [PMID: 37738795 DOI: 10.1016/j.biopha.2023.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Toosendanin (TSN), extracted from Melia. toosendan Sieb.et Zucc. and Melia. azedarach L., has been developed into an ascaris repellent in China. However, with the improvement of public health protection, the incidence of ascariasis has been reduced considerably, resulting in limited medical application of TSN. Therefore, it is questionable whether this old ascaris repellent can develop into a drug candidate. Modern studies have shown that TSN has strong pharmacological activities, including anti-tumor, anti-botulinum, anti-viral and anti-parasitic potentials. It also can regulate fat formation and improve inflammation. These researches indicate that TSN has great potential to be developed into a corresponding medical product. In order to better development and application of TSN, the availability, pharmacodynamics, pharmacokinetics and toxicology of TSN are summarized systematically. In addition, this review discusses shortcomings in the current researches and provides useful suggestions about how TSN developed into a drug candidate. Therefore, this paper illustrates the possibility of developing TSN as a medical product, aimed to provide directions for the clinical application and further research of TSN.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhangkai Ye
- Xinjiang Normal University, Urumqi 830017, Xinjiang, China
| | - Shunpeng Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Mengxue Zhang
- First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chi Zhang
- School of health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Ruizhen Huang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
2
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
3
|
Fan W, Fan L, Wang Z, Yang L. Limonoids From the Genus Melia (Meliaceae): Phytochemistry, Synthesis, Bioactivities, Pharmacokinetics, and Toxicology. Front Pharmacol 2022; 12:795565. [PMID: 35140606 PMCID: PMC8819599 DOI: 10.3389/fphar.2021.795565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Limonoids, as the vital bioactive chemical compounds in genus Melia plants, have attracted significant attention owing to their exclusive structural characteristics and remarkable biological activity. These compounds can be usually classified into two categories, including the ring-intact group and the ring-C-seco group. Benefiting from the development of separation and analysis technology, more than 200 limonoids have been isolated and identified from this genus. There is growing evidence that limonoids from genus Melia possess diverse pharmacological activities, especially anti-cancer effects, insecticidal activities, and anti-botulism effects. Toosendanin, one of the paramount limonoids, was considered as the pivotal bioactive marker in two medicinal herbs, including Melia toosendan Sieb. et Zucc and Melia azedarach L. In particular, limonoids are found to exhibit non-negligible toxic effects, a finding which needs further research. Besides this, the lack of clinical research data seriously hinders its further development and utilization, and necessary clinical trials should be taken into consideration. In this review, we systematically summarized the phytochemical compounds and their synthesis methods, pharmacological activities, and the structure–activity relationship, pharmacokinetics, and toxicology of genus Melia-derived limonoids. We believe that this up-to-date review could provide scientific evidence for the application of limonoids as agents beneficial to health in future clinical practice.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhengtao Wang, ; Li Yang,
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhengtao Wang, ; Li Yang,
| |
Collapse
|
4
|
Shen C, Pan Z, Wu X, Zhong C, Li Q, Si Y, Liu C, Tu H, Deng Z, Zhu Z, Guo J, Xin X, Liu M. A Sensitive Liquid Chromatography-Mass Spectrometry Method for Determination of Toosendanin in Rat Plasma and its Application to Pharmacokinetic Study. J Chromatogr Sci 2021; 60:478-485. [PMID: 34929736 DOI: 10.1093/chromsci/bmab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 11/13/2022]
Abstract
A simple, rapid and sensitive analytical method was developed for the determination of toosendanin in rat plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). Andrographolide was selected as the internal standard, and the plasma samples were extracted by liquid-liquid extraction with diethyl ether. Chromatographic separation was performed on a Dikma Spursil C18, 3.5 μm (150 × 2.1 mm i.d) analytical column with 85% methanol:water (v/v) containing 0.025% formic acid (pH = 3.9) as mobile phase. The flow rate was 0.25 mL/min, and the total run time was 3 min. Detection was performed with a triple-quadrupole tandem mass spectrometer using negative ion mode electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 573.1 → 531.1 and 349.0 → 287.0 for toosendanin and andrographolide, respectively. Good linearity was observed over the concentration range of 3.125-500 ng/mL in 100 μL of rat plasma with a correlation coefficient ˃0.9997. Intra- and inter-assay variabilities were ˂8.5% in plasma. The recovery and the matrix effect were in the range 71.8-73.5% and 96.4-103.8%, respectively. The analyte was stable under various conditions (at room temperature, during freeze-thaw settings, in the autosampler, and under deep-freeze conditions). The method was successfully applied to a pharmacokinetic study of toosendanin after its oral administration in rats at a dose of 10 mg/kg.
Collapse
Affiliation(s)
- Chuangpeng Shen
- Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,Department of Chinese Medicine, The First People's Hospital of Kashgar Prefecture, Xinjiang Uygur Autonomous Region, Kashgar 844000, China
| | - Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojie Wu
- Central Lab, Binzhou People's Hospital, Binzhou 256600, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Li
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuqi Si
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Changhui Liu
- School of Chinese Material Medical, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haitao Tu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhijun Deng
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou 510130, China
| | - Zhangzhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiewen Guo
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou 510130, China
| | - Xiaoyi Xin
- Department of Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
5
|
Yan X, Zhuo Y, Bian X, Li J, Zhang Y, Ma L, Lu G, Guo MQ, Wu JL, Li N. Integrated Proteomics, Biological Functional Assessments, and Metabolomics Reveal Toosendanin-Induced Hepatic Energy Metabolic Disorders. Chem Res Toxicol 2019; 32:668-680. [DOI: 10.1021/acs.chemrestox.8b00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaojing Yan
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 25 Heping North Road, Changzhou 213003, China
| | - Yue Zhuo
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xiqing Bian
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Jianmin Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yida Zhang
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Lidong Ma
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Guanghua Lu
- School of Ethnic Medicine, Chengdu University of Traditional Medicine, Chengdu 611137, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| |
Collapse
|
6
|
Toosendanin inhibits adipogenesis by activating Wnt/β-catenin signaling. Sci Rep 2018; 8:4626. [PMID: 29545541 PMCID: PMC5854628 DOI: 10.1038/s41598-018-22873-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
Toosendanin (TSN), a triterpenoid extracted from Melia toosendan, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities. However, its anti-adipogenic effect remains unknown. Here, we found that TSN dose-dependently attenuated lipid accumulation in preadipocytes 3T3-L1 as evidenced by Oil Red O staining. TSN also significantly downregulated mRNA and protein levels of adipocytokines (adiponectin and leptin), CCAAT/enhancer binding proteins α (C/EBP-α), peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid synthase, and acetyl-CoA carboxylase in adipocytes. To understand the mechanism, we observed that TSN effectively activated Wnt/β-catenin pathway, in which TSN increased low density lipoprotein receptor related protein 6, disheveled 2, β-catenin, and cyclin D1 expression levels, while it inactivated glycogen synthase kinase 3β by enhancing its phosphorylation. Moreover, TSN reduced weight of gonadal white fat and serum triacylglycerol (TAG) content in high-fat diet (HFD)-fed mice. Interestingly, the in vivo studies also demonstrated that TSN promoted the expression of β-catenin, but accordingly repressed C/EBP-α and PPAR-γ expression in HFD-induced mice. Overall, TSN is capable of inhibiting the lipogenesis of adipocytes by activating the Wnt/β-catenin pathway, suggesting potential application of TSN as a natural anti-obesity agent.
Collapse
|
7
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Liu XL, Wang H, Zhang L, Wang YL, Wang J, Wang P, He X, He YJ. Anticancer effects of crude extract from Melia toosendan Sieb. et Zucc on hepatocellular carcinoma in vitro and in vivo. Chin J Integr Med 2015; 22:362-9. [PMID: 26383159 DOI: 10.1007/s11655-015-2084-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the anti-cancer effects of crude extract from Melia toosendan Sieb. et Zucc and its possible molecular mechanisms in vitro and in vivo. METHODS Transonic alcohol-chloroform extraction method was used to extract toosendanin from the bark of Melia toosendan Sieb. et Zucc, and the content of toosendanin in the crude extract was measured by high performance liquid chromatography (HPLC). Anti-cancer effects of crude extract from Melia toosendan Sieb. et Zucc were investigated in in vivo and in vitro studies. In the in vitro experiment, human hepatocellular carcinoma cell lines SMMC-7721 and Hep3B were co-incubated with toosendanin crude extract of different concentrations, respectively. In the in vivo experiment, BALB/c mice were subcutaneously inoculated with mouse hepatocellular carcinoma H22 cells and treated with crude extract. RESULTS HPLC revealed the content of toosendanin was about 15%. Crude extract from Melia toosendan Sieb. et Zucc inhibited cancer cells growth in a dose- and time-dependent manner. The 50% inhibitory concentration (IC50, 72 h) was 0.6 mg/L for SMMC-7721 cells and 0.8 mg/L for Hep3B cells. Both high-dose [0.69 mg/(kg d)] and low-dose [0.138 mg/(kg d)] crude extract could markedly suppress cancer growth, and the inhibition rate was greater than 50%. Hematoxylin and eosin staining showed necrotic area in cancers and transmission electron microscopy displayed necrotic and apoptotic cancer cells with apoptotic bodies. Immunohistochemistry showed that the expression of Bax and Fas increased and the expression of Bcl-2 reduced. CONCLUSIONS Toosendanin extract has potent anti-cancer effects via suppressing proliferation and inducing apoptosis of cancer cells in vivo and in vitro. The mechanism of apoptosis involves in mitochondrial pathway and death receptor pathway.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ling Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - You-Liang Wang
- Department of Laboratory Medicine, People's Hospital, Pengzhou, Sichuan Province, 611930, China
| | - Jin Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Peng Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xiao He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Juan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Anniballi F, Lonati D, Fiore A, Auricchio B, De Medici D, Locatelli CA. New targets in the search for preventive and therapeutic agents for botulism. Expert Rev Anti Infect Ther 2014; 12:1075-86. [PMID: 25089560 DOI: 10.1586/14787210.2014.945917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Botulism is a severe neuroparalytic disease resulting from exposure to one of the most poisonous toxins to humans. Because of this high potency and the use of toxins as biological weapons, botulism is a public health concern and each case represents an emergency. Current therapy involves respiratory supportive care and anti-toxins administration. As a preventive measure, vaccination against toxins represents an effective strategy but is undesirable due the rarity of botulism and the effectiveness of toxins in treating several neuromuscular disorders. This paper summarizes the current issues in botulism treatment and prevention, highlighting the challenge for future researches.
Collapse
Affiliation(s)
- Fabrizio Anniballi
- Department of Veterinary Public Health and Food Safety, National Reference Centre for Botulism, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Slater LH, Hett EC, Mark K, Chumbler NM, Patel D, Lacy DB, Collier RJ, Hung DT. Identification of novel host-targeted compounds that protect from anthrax lethal toxin-induced cell death. ACS Chem Biol 2013; 8:812-22. [PMID: 23343607 DOI: 10.1021/cb300555n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studying how pathogens subvert the host to cause disease has contributed to the understanding of fundamental cell biology. Bacillus anthracis, the causative agent of anthrax, produces the virulence factor lethal toxin to disarm host immunity and cause pathology. We conducted a phenotypic small molecule screen to identify inhibitors of lethal toxin-induced macrophage cell death and used an ordered series of secondary assays to characterize the hits and determine their effects on cellular function. We identified a structurally diverse set of small molecules that act at various points along the lethal toxin pathway, including inhibitors of endocytosis, natural product inhibitors of organelle acidification (e.g., the botulinum neurotoxin inhibitor, toosendanin), and a novel proteasome inhibitor, 4MNB (4-methoxy-2-[2-(5-methoxy-2-nitrosophenyl)ethyl]-1-nitrosobenzene). Many of the compounds, including three drugs approved for use in humans, also protected against the related Clostridium difficile toxin TcdB, further demonstrating their value as novel tools for perturbation and study of toxin biology and host cellular processes and highlighting potential new strategies for intervening on toxin-mediated diseases.
Collapse
Affiliation(s)
- Louise H. Slater
- Department of Molecular Biology
and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
- Infectious Disease Initiative, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
- Department
of Microbiology and
Immunobiology, Harvard Medical School,
77 Ave. Louis Pasteur Boston, Massachusetts 02115, United States
| | - Erik C. Hett
- Department of Molecular Biology
and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
- Infectious Disease Initiative, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
- Department
of Microbiology and
Immunobiology, Harvard Medical School,
77 Ave. Louis Pasteur Boston, Massachusetts 02115, United States
| | - Kevin Mark
- Department of Molecular Biology
and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
- Infectious Disease Initiative, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
- Department
of Microbiology and
Immunobiology, Harvard Medical School,
77 Ave. Louis Pasteur Boston, Massachusetts 02115, United States
| | - Nicole M. Chumbler
- Department of Microbiology and
Immunology, Vanderbilt University Medical Center, A-5301 Medical Center North, 1161 21st Avenue South, Nashville,
Tennessee 37232, United States
| | - Deepa Patel
- Department
of Microbiology and
Immunobiology, Harvard Medical School,
77 Ave. Louis Pasteur Boston, Massachusetts 02115, United States
| | - D. Borden Lacy
- Department of Microbiology and
Immunology, Vanderbilt University Medical Center, A-5301 Medical Center North, 1161 21st Avenue South, Nashville,
Tennessee 37232, United States
| | - R. John Collier
- Department
of Microbiology and
Immunobiology, Harvard Medical School,
77 Ave. Louis Pasteur Boston, Massachusetts 02115, United States
| | - Deborah T. Hung
- Department of Molecular Biology
and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
- Infectious Disease Initiative, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts
02142, United States
- Department
of Microbiology and
Immunobiology, Harvard Medical School,
77 Ave. Louis Pasteur Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Ju J, Qi Z, Cai X, Cao P, Huang Y, Wang S, Liu N, Chen Y. The apoptotic effects of toosendanin are partially mediated by activation of deoxycytidine kinase in HL-60 cells. PLoS One 2012; 7:e52536. [PMID: 23300702 PMCID: PMC3531419 DOI: 10.1371/journal.pone.0052536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022] Open
Abstract
Triterpenoid toosendanin (TSN) exhibits potent cytotoxic activity through inducing apoptosis in a variety of cancer cell lines. However, the target and mechanism of the apoptotic effects by TSN remain unknown. In this study, we captured a specific binding protein of TSN in HL-60 cells by serial affinity chromatography and further identified it as deoxycytidine kinase (dCK). Combination of direct activation of dCK and inhibition of TSN-induced apoptosis by a dCK inhibitor confirmed that dCK is a target for TSN partially responsible for the apoptosis in HL-60 cells. Moreover, the activation of dCK by TSN was a result of conformational change, rather than auto-phosphorylation. Our results further imply that, in addition to the dATP increase by dCK activation in tumor cells, dCK may also involve in the apoptotic regulation.
Collapse
Affiliation(s)
- Jianming Ju
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhichao Qi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Xueting Cai
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Peng Cao
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yan Huang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Ju J, Qi Z, Cai X, Cao P, Liu N, Wang S, Chen Y. Toosendanin induces apoptosis through suppression of JNK signaling pathway in HL-60 cells. Toxicol In Vitro 2012; 27:232-8. [PMID: 23111283 DOI: 10.1016/j.tiv.2012.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/05/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
Abstract
Toosendanin (TSN), a triterpenoid isolated from Melia toosendan Sieb. et Zucc., has been found to suppress proliferation and induce apoptosis in a variety of human cancer cells. However, the mechanism how TSN induces apoptosis remains poorly understood. In this study, we examined the effects of TSN on the growth, cell cycle arrest, induction of apoptosis and the involved signaling pathway in human promyelocytic leukemia HL-60 cells. Proliferation of HL-60 cells was inhibited in a dose-dependent manner with the IC(50 (48 h)) of 28 ng/mL. The growth inhibition was due primarily to the S phase arrest and cell apoptosis. Cell apoptosis induced by TSN was confirmed by Annexin V-FITC/propidium iodide staining. The increase of the pro-apoptotic protein Bax, cleaved PARP and caspase-3, and the decrease of anti-apoptotic protein Bcl-2 were observed. Western blot analysis indicated that TSN inhibits the CDC42/MEKK1/JNK pathway. Taken together, our study suggested, for the first time, that the pro-apoptotic effects of TSN on HL-60 cells were mediated through JNK signaling pathway.
Collapse
Affiliation(s)
- Jianming Ju
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Fang XF, Cui ZJ. The anti-botulism triterpenoid toosendanin elicits calcium increase and exocytosis in rat sensory neurons. Cell Mol Neurobiol 2011; 31:1151-62. [PMID: 21656151 DOI: 10.1007/s10571-011-9716-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/20/2011] [Indexed: 02/07/2023]
Abstract
Toosendanin, a triterpenoid from Melia toosendan Sieb et Zucc, has been found before to be an effective anti-botulism agent, with a bi-phasic effect at both motor nerve endings and central synapse: an initial facilitation followed by prolonged depression. Initial facilitation may be due to activation of voltage-dependent calcium channels plus inhibition of potassium channels, but the depression is not fully understood. Toosendanin has no effect on intracellular calcium or secretion in the non-excitable pancreatic acinar cells, ruling out general toosendanin inhibition of exocytosis. In this study, toosendanin effects on sensory neurons isolated from rat nodose ganglia were investigated. It was found that toosendanin stimulated increases in cytosolic calcium and neuronal exocytosis dose dependently. Experiments with membrane potential indicator bis-(1,3-dibutylbarbituric acid)trimethine oxonol found that toosendanin hyperpolarized capsaicin-insensitive but depolarized capsaicin-sensitive neurons; high potassium-induced calcium increase was much smaller in hyperpolarizing neurons than in depolarizing neurons, whereas no difference was found for potassium-induced depolarization in these two types of neurons. In neurons showing spontaneous calcium oscillations, toosendanin increased the oscillatory amplitude but not frequency. Toosendanin-induced calcium increase was decreased in calcium-free buffer, by nifedipine, and by transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. Simultaneous measurements of cytosolic and endoplasmic reticulum (ER) calcium showed an increase in cytosolic but a decrease in ER calcium, indicating that toosendanin triggered ER calcium release. These data together indicate that toosendanin modulates sensory neurons, but had opposite effects on membrane potential depending on the presence or absence of capsaicin receptor/TRPV 1 channel.
Collapse
Affiliation(s)
- Xiao Feng Fang
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
14
|
Meng X, Peng J, Chen Y. Determination of Toosendanin Extracted from Traditional Chinese Medicine: the Fruit of Melia azedarach LC–FD Detection. Chromatographia 2009. [DOI: 10.1365/s10337-009-1170-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc Natl Acad Sci U S A 2009; 106:1330-5. [PMID: 19164566 DOI: 10.1073/pnas.0812839106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium botulinum neurotoxin (BoNT) is the causative agent of botulism, a neuroparalytic disease. We describe here a semisynthetic strategy to identify inhibitors based on toosendanin, a traditional Chinese medicine reported to protect from BoNT intoxication. Using a single molecule assay of BoNT serotypes A and E light chain (LC) translocation through the heavy chain (HC) channel in neurons, we discovered that toosendanin and its tetrahydrofuran analog selectively arrest the LC translocation step of intoxication with subnanomolar potency, and increase the unoccluded HC channel propensity to open with micromolar efficacy. The inhibitory profile on LC translocation is accurately recapitulated in 2 different BoNT intoxication assays, namely the mouse protection and the primary rat spinal cord cell assays. Toosendanin has an unprecedented dual mode of action on the protein-conducting channel acting as a cargo-dependent inhibitor of translocation and as cargo-free channel activator. These results imply that the bimodal modulation by toosendanin depends on the dynamic interactions between channel and cargo, highlighting their tight interplay during the progression of LC transit across endosomes.
Collapse
|
16
|
Zhang Y, Qi X, Gong L, Li Y, Liu L, Xue X, Xiao Y, Wu X, Ren J. Roles of reactive oxygen species and MAP kinases in the primary rat hepatocytes death induced by toosendanin. Toxicology 2008; 249:62-8. [PMID: 18499325 DOI: 10.1016/j.tox.2008.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 01/11/2023]
Abstract
Toosendanin (Tsn), a triterpenoid extracted from Melia toosendan Sieb et Zucc, possesses different pharmacological effects in human and important values in agriculture. However, liver injury has been reported when toosendanin or Melia-family plants, which contain toosendanin are applied. The mechanism by which toosendanin induces liver injury remains largely unknown. Here we reported that toosendanin induced primary rat hepatocytes death by mitochondrial dysfunction and caspase activation. Toosendanin led to decrease of mitochondrial membrane potential, fall in intracellular ATP level, release of cytochrome c to cytoplasm, activation of caspase-8, 9, and 3 and ultimately cell death. Level of reactive oxygen species (ROS) was also increased in hepatocytes after incubation with toosendanin. Catalase, the H2O2-decomposing enzyme, can prevent the reduction in ATP level and protect hepatocytes from toosendanin-induced death. The ERK1/2 (p44/42 MAP kinases) and JNK (c-Jun N-terminal kinase) were activated, but p38 MAPK was not activated by toosendanin. Inhibition of ERK1/2 activation sensitized hepatocytes to death and increased activity of caspase-9 and 3 in response to toosendanin. Inhibition of JNK attenuated toosendanin-induced cell death. These results suggested that toosendanin causes death of primary rat hepatocytes by mitochondrial dysfunction and caspase activation. Generation of ROS and MAP kinases activation might be involved in this process.
Collapse
Affiliation(s)
- Yunhai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shi YL, Li MF. Biological effects of toosendanin, a triterpenoid extracted from Chinese traditional medicine. Prog Neurobiol 2007; 82:1-10. [PMID: 17363132 DOI: 10.1016/j.pneurobio.2007.02.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 11/27/2006] [Accepted: 02/06/2007] [Indexed: 11/21/2022]
Abstract
Toosendanin (TSN) is a triterpenoid extracted from Melia toosendan Sieb et Zucc, which was used as a digestive tract-parasiticide and agricultural insecticide in ancient China. TSN was demonstrated to be a selective presynaptic blocker and an effective antibotulismic agent. By interfering with neurotransmitter release through an initial facilitation followed by a subsequent depression, TSN eventually blocks synaptic transmission at both the neuro-muscular junction and central synapses. Despite sharing some similar actions with botulinum neurotoxin (BoNT), TSN has a marked antibotulismic effect in vivo and in vitro. Studies suggest that the antibotulismic effect of TSN is achieved by preventing BoNT from approaching its enzymatic substrate, the SNARE protein. It is also found that TSN can induce differentiation and apoptosis in several cell lines, and suppress proliferation of various human cancer cells. TSN inhibits various K(+)-channels, selectively facilitates Ca(2+)-influx via L-type Ca(2+) channels and increases intracellular Ca(2+) concentration ([Ca(2+)](i)). The TSN-induced [Ca(2+)](i) increase and overload could be responsible for the TSN-induced biphasic effect on transmitter release, cell differentiation, apoptosis as well as the cytoxicity of TSN.
Collapse
Affiliation(s)
- Yu-Liang Shi
- Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China.
| | | |
Collapse
|
18
|
Dixon N, Wong LS, Geerlings TH, Micklefield J. Cellular targets of natural products. Nat Prod Rep 2007; 24:1288-310. [DOI: 10.1039/b616808f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Dickerson TJ, Janda KD. The use of small molecules to investigate molecular mechanisms and therapeutic targets for treatment of botulinum neurotoxin A intoxication. ACS Chem Biol 2006; 1:359-69. [PMID: 17163773 DOI: 10.1021/cb600179d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Botulinum neurotoxins (BoNTs) are agents responsible for botulism, a disease characterized by peripheral neuromuscular blockade and subsequent flaccid paralysis. The potent paralytic ability of these toxins has resulted in their use as a therapeutic; however, BoNTs are also classified by the Centers for Disease Control and Prevention as one of the six highest-risk threat agents of bioterrorism. Consequently, a thorough understanding of the molecular mechanism of BoNT toxicity is crucial before effective inhibitors and, ultimately, an approved drug can be developed. In this article, we systematically detail BoNT intoxication by examining each of the discrete steps in this process. Additionally, rationally designed strategies for combating the toxicity of the most potent BoNT serotype are evaluated.
Collapse
Affiliation(s)
- Tobin J Dickerson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
20
|
Li MF, Shi YL. Toosendanin interferes with pore formation of botulinum toxin type A in PC12 cell membrane. Acta Pharmacol Sin 2006; 27:66-70. [PMID: 16364212 DOI: 10.1111/j.1745-7254.2006.00236.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AIM Botulinum neurotoxins (BoNT) abort the process of neurotransmitter release at presynaptic motor nerve terminals, causing muscle paralysis. The ability of botulinum toxin to produce its effect is dependent on the ability of the light chain to cleave the SNARE proteins associated with transmitter release. Translocation of the light chain protease through the heavy chain-formed channel is a pivotal step in the intoxication process. Toosendanin (TSN), a triterpenoid derivative extracted from a Chinese traditional medicine, has been demonstrated to be an effective cure for experimental botulism. This study was designed to explore the antibotulismic mechanisms of toosendanin. METHODS The inside-out single-channel recording patch-clamp technique was used to record the BoNT/A-induced currents in the presence and absence of TSN. RESULTS Channel formation was delayed and the sizes of the channels were reduced in the TSN-treated PC12 cell membrane. CONCLUSION The antibotulismic effect of TSN might occur via interference with toxin translocation.
Collapse
Affiliation(s)
- Mu-feng Li
- Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
| | | |
Collapse
|
21
|
Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. The evolving field of biodefence: therapeutic developments and diagnostics. Nat Rev Drug Discov 2005; 4:281-97. [PMID: 15803193 PMCID: PMC7096857 DOI: 10.1038/nrd1694] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioweapons are a clear threat to both military and civilian populations. Here, the latest advances in the pursuit of inhibitors against biothreat threat toxins, current therapeutic strategies for treating biodefence related pathogens, and strategies for improving detection and exposure survivability are covered. There are numerous lead therapeutics that have emerged from drug discovery efforts. However, many of these are toxic and/or fail to possess conventional drug-like properties. One clear advantage of small (non-peptidic) molecules is that they possess scaffolds that are inherently more likely to evolve into real therapeutics. One of the major obstacles impeding the translation of these lead therapeutics into viable drugs is the lack of involvement of the pharmaceutical industry, which has been discovering leads and translating them into drugs for decades. The expertise of the pharmaceutical industry therefore needs to be more effectively engaged in developing drugs against biothreat agents. New methods for rapidly detecting and diagnosing biothreat agents are also in development. The detection and diagnosis of biothreats is inherently linked with treatment. The means for detecting the release of bioweapons are being deployed, and new technologies are shortening the timeframe between initial sample collection and conclusive agent determination. However, the organization of this process is imperfect. At present, a unifying entity that orchestrates the biodefence response is clearly needed to reduce the time-to-drug process and redundancies in drug development efforts. Such a central entity could formulate and implement plans to coordinate all participants, including academic institutions, government agencies and the private sector. This could accelerate the development of countermeasures against high probability biothreat agents.
The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents.
Collapse
Affiliation(s)
- James C. Burnett
- Developmental Therapeutics Program, Target Structure-Based Drug Discovery Group, National Cancer Institute-SAIC, Frederick, 21702 Maryland USA
| | - Erik A. Henchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| | - Alan L. Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| |
Collapse
|
22
|
Li MF, Shi YL. The long-term effect of toosendanin on current through nifedipine-sensitive Ca2+ channels in NG108-15 cells. Toxicon 2005; 45:53-60. [PMID: 15581683 DOI: 10.1016/j.toxicon.2004.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 09/16/2004] [Indexed: 11/17/2022]
Abstract
Toosendanin is a triterpenoid derivative extracted from Melia toosendan Sieb et Zucc. Previous studies demonstrated that toosendanin could block neurotransmission and stimulate PC12 cell into differentiation and apoptosis. These actions of toosendanin were suggested to result from a continuous increase in Ca2+ influx, which led to intracellular Ca2+ overload. Here, we observed the long-term effect of toosendanin on Ca2+ channels in NG108-15 cells by whole-cell patch-clamp recording. Obtained data showed that a prolonged exposure to toosendanin induced a continuous increase in the Ca2+ influx in a concentration and time-dependent manner while a brief treatment induced an irreversible increase in Ca2+ influx in differentiated NG108-15 cells. The nifedipine-sensitive L-type currents were significantly increased after exposure to TSN while the nifedipine-resistant or omega-conotoxin MVIIC-sensitive currents were not affected.
Collapse
Affiliation(s)
- Mu-Feng Li
- Key Laboratory of Neurobiology, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, People's Republic of China
| | | |
Collapse
|
23
|
Li MF, Shi YL. Toosendanin, a triterpenoid derivative, acts as a novel agonist of L-type Ca2+ channels in neonatal rat ventricular cells. Eur J Pharmacol 2004; 501:71-8. [PMID: 15464064 DOI: 10.1016/j.ejphar.2004.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 08/05/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Toosendanin, a triterpenoid derivative extracted from Melia toosendan Sieb et Zucc, was demonstrated to be potentially useful in medical and scientific researches. Here, we investigated the effects of toosendanin on L-type voltage-dependent Ca(2+) channels in cultured neonatal rat ventricular cells, using whole-cell patch-clamp method. Toosendanin irreversibly increased L-type Ca(2+) current (I(Ca(L))) in a concentration-dependent manner and shifted the maximum of the current/voltage relationship from 8.3+/-3.7 to 1.7+/-3.7 mV, without modifying the threshold potential of the current. Toosendanin shifted the steady-state activation and inactivation curves to the left. The deactivation kinetics of the I(Ca(L)) was significantly slowed by toosendanin while the activation kinetics was not affected. The cells pretreated with 100 nM 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid methyl ester (S(-)-BayK8644) still respond to further addition of 87 microM toosendanin, and vice versa. These results prove toosendanin to be a novel L-type Ca(2+) channel agonist, which possesses a distinct binding site from BayK8644.
Collapse
Affiliation(s)
- Mu-Feng Li
- Key Laboratory of Neurobiology, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P.R. China
| | | |
Collapse
|
24
|
Li MF, Wu Y, Wang ZF, Shi YL. Toosendanin, a triterpenoid derivative, increases Ca2+ current in NG108-15 cells via L-type channels. Neurosci Res 2004; 49:197-203. [PMID: 15140562 DOI: 10.1016/j.neures.2004.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 02/23/2004] [Indexed: 11/25/2022]
Abstract
Toosendanin, a triterpenoid derivative extracted from Melia toosendan Sieb et Zucc, was demonstrated to be a selective presynaptic blocker and an effective antibotulismic agent in previous studies. Here, we observed its effects on Ca(2+) channels in NG108-15 cells by whole-cell patch-clamp recording. Obtained data showed that toosendanin concentration dependently increased the high-voltage-activated (HVA) Ca(2+) current with an EC(50) of 5.13 microM in differentiated NG108-15 cells. The enhancement effect was still observed when the cells were pretreated with 5 microM omega-conotoxin MVIIC. However, when the cells were preincubated with 5 microM nifedipine or 10 microM verapamil-containing solution, the effect was absent. In undifferentiated NG108-15 cells, which only express T-type Ca(2+) channels, toosendanin did not affect Ca(2+) currents. These results show that toosendanin increases Ca(2+) influx in NG108-15 cells via L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Mu-Feng Li
- Key Laboratory of Neurobiology, Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|