1
|
Matsunami-Nakamura R, Tamogami J, Takeguchi M, Ishikawa J, Kikukawa T, Kamo N, Nara T. Key determinants for signaling in the sensory rhodopsin II/transducer complex are different between Halobacterium salinarum and Natronomonas pharaonis. FEBS Lett 2023; 597:2334-2344. [PMID: 37532685 DOI: 10.1002/1873-3468.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.
Collapse
Affiliation(s)
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Miki Takeguchi
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Junya Ishikawa
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| |
Collapse
|
2
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
3
|
Cha G, Liu Y, Yang Q, Bai L, Cheng L, Fan W. Comparative Genomic Insights into Chemoreceptor Diversity and Habitat Adaptation of Archaea. Appl Environ Microbiol 2022; 88:e0157422. [PMID: 36314867 PMCID: PMC9680633 DOI: 10.1128/aem.01574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Diverse archaea, including many unknown species and phylogenetically deeply rooted taxa, survive in extreme environments. They play crucial roles in the global carbon cycle and element fluxes in many terrestrial, marine, saline, host-associated, hot-spring, and oilfield environments. There is little knowledge of the diversity of chemoreceptors that are presumably involved in their habitat adaptation. Thus, we have explored this diversity through phylogenetic and comparative genomic analyses of complete archaeal genomes. The results show that chemoreceptors are significantly richer in archaea of mild environments than in those of extreme environments, that specific ligand-binding domains of the chemoreceptors are strongly associated with specific habitats, and that the number of chemoreceptors correlates with genome size. The results indicate that the successful adaptation of archaea to specific habitats has been associated with the acquisition and maintenance of chemoreceptors, which may be crucial for their survival in these environments. IMPORTANCE Archaea are capable of sensing and responding to environmental changes by several signal transduction systems with different mechanisms. Much attention is paid to model organisms with complex signaling networks to understand their composition and function, but general principles regarding how an archaeal species organizes its chemoreceptor diversity and habitat adaptation are poorly understood. Here, we have explored this diversity through phylogenetic and comparative genomic analyses of complete archaeal genomes. Signaling sensing and adaptation processes are tightly related to the ligand-binding domain, and it is clear that evolution and natural selection in specialized niches under constant conditions have selected for smaller genome sizes. Taken together, our results extend the understanding of archaeal adaptations to different environments and emphasize the importance of ecological constraints in shaping their evolution.
Collapse
Affiliation(s)
- Guihong Cha
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yugeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China
| | - Qing Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
4
|
Luck M, Velázquez Escobar F, Glass K, Sabotke MI, Hagedorn R, Corellou F, Siebert F, Hildebrandt P, Hegemann P. Photoreactions of the Histidine Kinase Rhodopsin Ot-HKR from the Marine Picoalga Ostreococcus tauri. Biochemistry 2019; 58:1878-1891. [PMID: 30768260 DOI: 10.1021/acs.biochem.8b01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The tiny picoalga, Ostreococcus tauri, originating from the Thau Lagoon is a member of the marine phytoplankton. Because of its highly reduced genome and small cell size, while retaining the fundamental requirements of a eukaryotic photosynthetic cell, it became a popular model organism for studying photosynthesis or circadian clock-related processes. We analyzed the spectroscopic properties of the photoreceptor domain of the histidine kinase rhodopsin Ot-HKR that is suggested to be involved in the light-induced entrainment of the Ostreococcus circadian clock. We found that the rhodopsin, Ot-Rh, dark state absorbs maximally at 505 nm. Exposure to green-orange light led to the accumulation of a blue-shifted M-state-like absorbance form with a deprotonated Schiff base. This Ot-Rh P400 state had an unusually long lifetime of several minutes. A second long-living photoproduct with a red-shifted absorbance, P560, accumulated upon illumination with blue/UVA light. The resulting photochromicity of the rhodopsin is expected to be advantageous to its function as a molecular control element of the signal transducing HKR domains. The light intensity and the ratio of blue vs green light are reflected by the ratio of rhodopsin molecules in the long-living absorbance forms. Furthermore, dark-state absorbance and the photocycle kinetics vary with the salt content of the environment substantially. This observation is attributed to anion binding in the dark state and a transient anion release during the photocycle, indicating that the salinity affects the photoinduced processes.
Collapse
Affiliation(s)
- Meike Luck
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | | | - Kathrin Glass
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Mareike-Isabel Sabotke
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Rolf Hagedorn
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| | - Florence Corellou
- Laboratoire d'Oceanographie Microbienne , Université Pierre et Marie Curie (Paris 6), Centre National de la Recherche Scientifique, Unité Mixte de Recherche , 7621 , Observatoire Oceanologique, Banyuls/mer , France
| | - Friedrich Siebert
- Institute of Chemistry, Technische Universität Berlin , Berlin 10623 , Germany.,Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik , Albert-Ludwigs-Universität Freiburg , Freiburg 79104 , Germany
| | - Peter Hildebrandt
- Institute of Chemistry, Technische Universität Berlin , Berlin 10623 , Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin , Berlin 10115 , Germany
| |
Collapse
|
5
|
Mosslehy W, Voskoboynikova N, Colbasevici A, Ricke A, Klose D, Klare JP, Mulkidjanian AY, Steinhoff HJ. Conformational Dynamics of Sensory Rhodopsin II in Nanolipoprotein and Styrene-Maleic Acid Lipid Particles. Photochem Photobiol 2019; 95:1195-1204. [PMID: 30849183 DOI: 10.1111/php.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/03/2019] [Indexed: 02/01/2023]
Abstract
Styrene-maleic acid lipid particles (SMALPs) provide stable water-soluble nanocontainers for lipid-encased membrane proteins. Possible effects of the SMA-stabilized lipid environment on the interaction dynamics between functionally coupled membrane proteins remain to be elucidated. The photoreceptor sensory rhodopsin II, NpSRII and its cognate transducer, NpHtrII, of Natronomonas pharaonis form a transmembrane complex, NpSRII2 /NpHtrII2 that plays a key role in negative phototaxis and provides a unique model system to study the light-induced transfer of a conformational signal between two integral membrane proteins. Photon absorption induces transient structural changes in NpSRII comprising an outward movement of helix F that cause further conformational alterations in NpHtrII. We applied site-directed spin labeling and time-resolved optical and EPR spectroscopy to compare the conformational dynamics of NpSRII2 /NpHtrII2 reconstituted in SMALPs with that of nanolipoprotein particle and liposome preparations. NpSRII and NpSRII2 /NpHtrII2 show similar photocycles in liposomes and nanolipoprotein particles. An accelerated decay of the M photointermediate found for SMALPs can be explained by a high local proton concentration provided by the carboxylic groups of the SMA polymer. Light-induced large-scale conformational changes of NpSRII2 /NpHtrII2 observed in liposomes and nanolipoprotein particles are affected in SMALPs, indicating restrictions of the protein's conformational freedom.
Collapse
Affiliation(s)
- Wageiha Mosslehy
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | | | | | - Adrian Ricke
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Daniel Klose
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
6
|
Swafford AJM, Oakley TH. Multimodal sensorimotor system in unicellular zoospores of a fungus. ACTA ACUST UNITED AC 2018; 221:jeb.163196. [PMID: 29170260 DOI: 10.1242/jeb.163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/19/2017] [Indexed: 12/15/2022]
Abstract
Complex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as Chlamydomonas, which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system. Therefore, existing single-celled models for multimodal sensorimotor integration are very distantly related to animals. Here, we describe a multisensory system that controls the motor function of unicellular fungal zoospores. We found that zoospores of Allomyces arbusculus exhibit both phototaxis and chemotaxis. Furthermore, we report that closely related Allomyces species respond to either the chemical or the light stimuli presented in this study, not both, and likely do not share this multisensory system. This diversity of sensory systems within Allomyces provides a rare example of a comparative framework that can be used to examine the evolution of sensory systems following the gain/loss of available sensory modalities. The tractability of Allomyces and related fungi as laboratory organisms will facilitate detailed mechanistic investigations into the genetic underpinnings of novel photosensory systems, and how multisensory systems may have functioned in early opisthokonts before multicellularity allowed for the evolution of specialized cell types.
Collapse
Affiliation(s)
- Andrew J M Swafford
- Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
8
|
Sahoo BR, Fujiwara T. Conformational states of HAMP domains interacting with sensory rhodopsin membrane systems: an integrated all-atom and coarse-grained molecular dynamics simulation approach. MOLECULAR BIOSYSTEMS 2017; 13:193-207. [PMID: 27901172 DOI: 10.1039/c6mb00730a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Understanding the downstream signaling mechanism of sensory rhodopsin and its cognate transducer complex (srII-htrII) has long been a challenge in the field of photoreceptor research. Here, an integration of all-atom and coarse-grained (CG) molecular dynamics (MD) simulations in different srII-htrII complex states is carried out. It is shown that the cytoplasmic four-helix HAMP dimer gives rise to a gear-box model interaction with discrete hydrophobic packing in Natronomonas pharaonis (Np). Structural analysis in all-atom and CG-MD reveals a stable conformational state in the physiological environment (323 K and 1.15 M salt). Comparative analysis in the ground and intermediate state conformations reveals substantial inter-HAMP interactions in the intermediate state with uniform clockwise (+10° to +30°) and counterclockwise (-20° to -40°) rotations in the α1 helix and the α2 helix of the monomer, respectively. Low temperature and low salt environments (283 K and 0.15 M) significantly affect srII-htrII binding affinity in both states with unusual helix bending. The distinguished control cable, knob-into-holes packing and piston-like movements in HAMP helices are found in the intermediate state complex. The N-terminal htrII (159 residues) coupled with srII yields a binding energy (ΔGbind) of -309.22, -436.53 and -331.11 kJ mol-1 in the MM/PBSA calculation for the NphtrII homodimer, the NpsrII-htrII ground state conformation and the NpsrII-htrII intermediate state conformation, respectively. Only the HAMP1 domain shows a very low ΔGbind value (-21.03 kJ mol-1) for the ground state in comparison to that for the intermediate state (-54.68 kJ mol-1). The structural analysis highlights the key residues that include Y199srII, T189srII, E43htrII, T86htrII, M100htrII, E116htrII, E126htrII and S130htrII for complex stabilization and signal transduction.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 5650871, Japan.
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 5650871, Japan.
| |
Collapse
|
9
|
Tamogami J, Kikukawa T, Nara T, Demura M, Kimura-Someya T, Shirouzu M, Yokoyama S, Miyauchi S, Shimono K, Kamo N. Existence of two O-like intermediates in the photocycle of Acetabularia rhodopsin II, a light-driven proton pump from a marine alga. Biophys Physicobiol 2017; 14:49-55. [PMID: 28560129 PMCID: PMC5437830 DOI: 10.2142/biophysico.14.0_49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 12/01/2022] Open
Abstract
A spectrally silent change is often observed in the photocycle of microbial rhodopsins. Here, we suggest the presence of two O intermediates in the photocycle of Acetabularia rhodopsin II (ARII or also called Ace2), a light-driven algal proton pump from Acetabularia acetabulum. ARII exhibits a photocycle including a quasi-equilibrium state of M, N, and O (M⇄N⇄O→) at near neutral and above pH values. However, acidification of the medium below pH ~5.5 causes no accumulation of N, resulting in that the photocycle of ARII can be described as an irreversible scheme (M→O→). This may facilitate the investigation of the latter part of the photocycle, especially the rise and decay of O, during which molecular events have not been sufficiently understood. Thus we analyzed the photocycle under acidic conditions (pH ≤ 5.5). Analysis of the absorbance change at 610 nm, which mainly monitors the fractional concentration changes of K and O, was performed and revealed a photocycle scheme containing two sequential O-states with the different molar extinction coefficients. These photoproducts, termed O1 and O2, may be even produced at physiological pH, although they are not clearly observed under this condition due to the existence of a long M-N-O equilibrium.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Seiji Miyauchi
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.,Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kazumi Shimono
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.,Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Voskoboynikova N, Mosslehy W, Colbasevici A, Ismagulova TT, Bagrov DV, Akovantseva AA, Timashev PS, Mulkidjanian AY, Bagratashvili VN, Shaitan KV, Kirpichnikov MP, Steinhoff HJ. Characterization of an archaeal photoreceptor/transducer complex from Natronomonas pharaonis assembled within styrene–maleic acid lipid particles. RSC Adv 2017. [DOI: 10.1039/c7ra10756k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The archaeal receptor/transducer complex NpSRII/NpHtrII retains its integrity upon reconstitution in styrene–maleic acid lipid particles.
Collapse
Affiliation(s)
| | - W. Mosslehy
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - A. Colbasevici
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - T. T. Ismagulova
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - D. V. Bagrov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - A. A. Akovantseva
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - P. S. Timashev
- Institute for Regenerative Medicine of I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
| | | | - V. N. Bagratashvili
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - K. V. Shaitan
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - M. P. Kirpichnikov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - H.-J. Steinhoff
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| |
Collapse
|
11
|
Mohrmann H, Kube I, Lórenz-Fonfría VA, Engelhard M, Heberle J. Transient Conformational Changes of Sensory Rhodopsin II Investigated by Vibrational Stark Effect Probes. J Phys Chem B 2016; 120:4383-7. [DOI: 10.1021/acs.jpcb.6b01900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hendrik Mohrmann
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ines Kube
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Víctor A. Lórenz-Fonfría
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Engelhard
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Joachim Heberle
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
12
|
Orekhov PS, Klose D, Mulkidjanian AY, Shaitan KV, Engelhard M, Klare JP, Steinhoff HJ. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol 2015; 11:e1004561. [PMID: 26496122 PMCID: PMC4651059 DOI: 10.1371/journal.pcbi.1004561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors. Achaea and bacteria can “see” and “sniffle”, they have photo- and chemosensors that measure the environment. On the cell poles, these sensor proteins form large arrays built of several thousands of different receptors. The receptors comprise extracellular or transmembrane sensory domains and elongated homodimeric coiled-coil bundles, which transduce the signals from the membrane across ~20 nm to a conserved cytoplasmic signaling subdomain in an unknown manner. In our study we performed coarse-grained molecular dynamics simulations of the phototactic receptor/transducer complex from Natronomonas pharaonis. Comparing fully methylated and demethylated complexes reveals an interconversion between states of different dynamics along the coiled-coil bundle, which might represent the essential characteristics of the signal transfer from the membrane to the binding sites of the downstream kinase CheA.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daniel Klose
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
- Department of Bioengineering and Bioinformatics and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Martin Engelhard
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | | |
Collapse
|
13
|
Klare JP, Steinhoff HJ. Spin Labeling Studies of Transmembrane Signaling and Transport. Methods Enzymol 2015; 564:315-47. [DOI: 10.1016/bs.mie.2015.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Orban-Glaß I, Voskoboynikova N, Busch KB, Klose D, Rickert C, Mosslehy W, Roder F, Wilkens V, Piehler J, Engelhard M, Steinhoff HJ, Klare JP. Clustering and dynamics of phototransducer signaling domains revealed by site-directed spin labeling electron paramagnetic resonance on SRII/HtrII in membranes and nanodiscs. Biochemistry 2014; 54:349-62. [PMID: 25489970 DOI: 10.1021/bi501160q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In halophilic archaea the photophobic response is mediated by the membrane-embedded 2:2 photoreceptor/-transducer complex SRII/HtrII, the latter being homologous to the bacterial chemoreceptors. Both systems bias the rotation direction of the flagellar motor via a two-component system coupled to an extended cytoplasmic signaling domain formed by a four helical antiparallel coiled-coil structure. For signal propagation by the HAMP domains connecting the transmembrane and cytoplasmic domains, it was suggested that a two-state thermodynamic equilibrium found for the first HAMP domain in NpSRII/NpHtrII is shifted upon activation, yet signal propagation along the coiled-coil transducer remains largely elusive, including the activation mechanism of the coupled kinase CheA. We investigated the dynamic and structural properties of the cytoplasmic tip domain of NpHtrII in terms of signal transduction and putative oligomerization using site-directed spin labeling electron paramagnetic resonance spectroscopy. We show that the cytoplasmic tip domain of NpHtrII is engaged in a two-state equilibrium between a dynamic and a compact conformation like what was found for the first HAMP domain, thus strengthening the assumption that dynamics are the language of signal transfer. Interspin distance measurements in membranes and on isolated 2:2 photoreceptor/transducer complexes in nanolipoprotein particles provide evidence that archaeal photoreceptor/-transducer complexes analogous to chemoreceptors form trimers-of-dimers or higher-order assemblies even in the absence of the cytoplasmic components CheA and CheW, underlining conservation of the overall mechanistic principles underlying archaeal phototaxis and bacterial chemotaxis systems. Furthermore, our results revealed a significant influence of the NpHtrII signaling domain on the NpSRII photocycle kinetics, providing evidence for a conformational coupling of SRII and HtrII in these complexes.
Collapse
Affiliation(s)
- Ioan Orban-Glaß
- Macromolecular Structure Group, Department of Physics, University of Osnabrück , Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tamogami J, Iwano K, Matsuyama A, Kikukawa T, Demura M, Nara T, Kamo N. The effects of chloride ion binding on the photochemical properties of sensory rhodopsin II from Natronomonas pharaonis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:192-201. [DOI: 10.1016/j.jphotobiol.2014.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/04/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022]
|
16
|
Light-induced switching of HAMP domain conformation and dynamics revealed by time-resolved EPR spectroscopy. FEBS Lett 2014; 588:3970-6. [PMID: 25240192 DOI: 10.1016/j.febslet.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
Abstract
HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain's dynamics into the current model.
Collapse
|
17
|
Natarajan J, Schultz A, Kurz U, Schultz JE. Biochemical characterization of the tandem HAMP domain fromNatronomonas pharaonisas an intraprotein signal transducer. FEBS J 2014; 281:3218-27. [DOI: 10.1111/febs.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 05/16/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Janani Natarajan
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
18
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 791] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Alexiev U, Farrens DL. Fluorescence spectroscopy of rhodopsins: insights and approaches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:694-709. [PMID: 24183695 DOI: 10.1016/j.bbabio.2013.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
Fluorescence spectroscopy has become an established tool at the interface of biology, chemistry and physics because of its exquisite sensitivity and recent technical advancements. However, rhodopsin proteins present the fluorescence spectroscopist with a unique set of challenges and opportunities due to the presence of the light-sensitive retinal chromophore. This review briefly summarizes some approaches that have successfully met these challenges and the novel insights they have yielded about rhodopsin structure and function. We start with a brief overview of fluorescence fundamentals and experimental methodologies, followed by more specific discussions of technical challenges rhodopsin proteins present to fluorescence studies. Finally, we end by discussing some of the unique insights that have been gained specifically about visual rhodopsin and its interactions with affiliate proteins through the use of fluorescence spectroscopy. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Berlin, Germany.
| | - David L Farrens
- Departments of Biochemistry and Molecular Biology, Oregon Health Sciences University, USA
| |
Collapse
|
20
|
Grote M, Engelhard M, Hegemann P. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:533-45. [PMID: 23994288 DOI: 10.1016/j.bbabio.2013.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Mathias Grote
- Institut für Philosophie, Literatur-, Wissenschafts- und Technikgeschichte, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Martin Engelhard
- Max Planck Institut für Molekulare Physiologie, Otto Hahn Str. 11, 44227 Dortmund, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
21
|
Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C. Light-Induced Movement of the Transmembrane Helix B in Channelrhodopsin-2. Angew Chem Int Ed Engl 2013; 52:9705-8. [DOI: 10.1002/anie.201301698] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/12/2013] [Indexed: 11/06/2022]
|
22
|
Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C. Light-Induced Movement of the Transmembrane Helix B in Channelrhodopsin-2. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
24
|
Klare JP, Steinhoff HJ. Structural Information from Spin-Labelled Membrane-Bound Proteins. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_88] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Inoue K, Reissig L, Sakai M, Kobayashi S, Homma M, Fujii M, Kandori H, Sudo Y. Absorption Spectra and Photochemical Reactions in a Unique Photoactive Protein, Middle Rhodopsin MR. J Phys Chem B 2012; 116:5888-99. [DOI: 10.1021/jp302357m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Keiichi Inoue
- Department of Frontier
Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
| | - Louisa Reissig
- Division of Biological
Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Makoto Sakai
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho,
Midori-ku, Yokohama 226-8503, Japan
| | - Shiori Kobayashi
- Division of Biological
Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological
Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Masaaki Fujii
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho,
Midori-ku, Yokohama 226-8503, Japan
| | - Hideki Kandori
- Department of Frontier
Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
| | - Yuki Sudo
- Division of Biological
Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi,
Saitama, 332-0012, Japan
| |
Collapse
|
26
|
Wang J, Sasaki J, Tsai AL, Spudich JL. HAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex. J Biol Chem 2012; 287:21316-25. [PMID: 22511775 DOI: 10.1074/jbc.m112.344622] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phototaxis receptor complex composed of sensory rhodopsin II (SRII) and the transducer subunit HtrII mediates photorepellent responses in haloarchaea. Light-activated SRII transmits a signal through two HAMP switch domains (HAMP1 and HAMP2) in HtrII that bridge the photoreceptive membrane domain of the complex and the cytoplasmic output kinase-modulating domain. HAMP domains, widespread signal relay modules in prokaryotic sensors, consist of four-helix bundles composed of two helices, AS1 and AS2, from each of two dimerized transducer subunits. To examine their molecular motion during signal transmission, we incorporated SRII-HtrII dimeric complexes in nanodiscs to allow unrestricted probe access to the cytoplasmic side HAMP domains. Spin-spin dipolar coupling measurements confirmed that in the nanodiscs, SRII photoactivation induces helix movement in the HtrII membrane domain diagnostic of transducer activation. Labeling kinetics of a fluorescein probe in monocysteine-substituted HAMP1 mutants revealed a light-induced shift of AS2 against AS1 by one-half α-helix turn with minimal other changes. An opposite shift of AS2 against AS1 in HAMP2 at the corresponding positions supports the proposal from x-ray crystal structures by Airola et al. (Airola, M. V., Watts, K. J., Bilwes, A. M., and Crane, B. R. (2010) Structure 18, 436-448) that poly-HAMP chains undergo alternating opposite interconversions to relay the signal. Moreover, we found that haloarchaeal cells expressing a HAMP2-deleted SRII-HtrII exhibit attractant phototaxis, opposite from the repellent phototaxis mediated by the wild-type di-HAMP SRII-HtrII complex. The opposite conformational changes and corresponding opposite output signals of HAMP1 and HAMP2 imply a signal transmission mechanism entailing small shifts in helical register between AS1 and AS2 alternately in opposite directions in adjacent HAMPs.
Collapse
Affiliation(s)
- Jihong Wang
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
27
|
Klare JP, Bordignon E, Engelhard M, Steinhoff HJ. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. Eur J Cell Biol 2012; 90:731-9. [PMID: 21684631 DOI: 10.1016/j.ejcb.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Archaeal photoreceptors, together with their cognate transducer proteins, mediate phototaxis by regulating cell motility through two-component signal transduction pathways. This sensory pathway is closely related to the bacterial chemotactic system, which has been studied in detail during the past 40 years. Structural and functional studies applying site-directed spin labelling and electron paramagnetic resonance spectroscopy on the sensory rhodopsin II/transducer (NpSRII/NpHtrII) complex of Natronomonas pharaonis have yielded insights into the structure, the mechanisms of signal perception, the signal transduction across the membrane and provided information about the subsequent information transfer within the transducer protein towards the components of the intracellular signalling pathway. Here, we provide an overview about the findings of the last decade, which, combined with the wealth of data from research on the Escherichia coli chemotaxis system, served to understand the basic principles microorganisms use to adapt to their environment. We document the time course of a signal being perceived at the membrane, transferred across the membrane and, for the first time, how this signal modulates the dynamic properties of a HAMP domain, a ubiquitous signal transduction module found in various protein classes.
Collapse
Affiliation(s)
- Johann P Klare
- Faculty of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
28
|
Tamogami J, Kikukawa T, Ikeda Y, Demura M, Nara T, Kamo N. Photo-induced bleaching of sensory rhodopsin II (phoborhodopsin) from Halobacterium salinarum by hydroxylamine: identification of the responsible intermediates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2012; 106:87-94. [PMID: 22104601 DOI: 10.1016/j.jphotobiol.2011.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Sensory rhodopsin II from Halobacterium salinarum (HsSRII) is a retinal protein in which retinal binds to a specific lysine residue through a Schiff base. Here, we investigated the photobleaching of HsSRII in the presence of hydroxylamine. For identification of intermediate(s) attacked by hydroxylamine, we employed the flash-induced bleaching method. In order to change the concentration of intermediates, such as M- and O-intermediates, experiments were performed under varying flashlight intensities and concentrations of azide that accelerated only the M-decay. We found the proportional relationship between the bleaching rate and area under the concentration-time curve of M, indicating a preferential attack of hydroxylamine on M. Since hydroxylamine is a water-soluble reagent, we hypothesize that for M, hydrophilicity or water-accessibility increases specifically in the moiety of Schiff base. Thus, hydroxylamine bleaching rates may be an indication of conformational changes near the Schiff base. We also considered the possibility that azide may induce a small conformational change around the Schiff base. We compared the hydroxylamine susceptibility between HsSRII and NpSRII (SRII from Natronomonas pharaonis) and found that the M of HsSRII is about three times more susceptible than that of the stable NpSRII. In addition, long illumination to HsSRII easily produced M-like photoproduct, P370. We thus infer that the instability of HsSRII under illumination may be related to this increase of hydrophilicity at M and P370.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Holterhues J, Bordignon E, Klose D, Rickert C, Klare JP, Martell S, Li L, Engelhard M, Steinhoff HJ. The signal transfer from the receptor NpSRII to the transducer NpHtrII is not hampered by the D75N mutation. Biophys J 2011; 100:2275-82. [PMID: 21539797 DOI: 10.1016/j.bpj.2011.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/17/2011] [Accepted: 03/16/2011] [Indexed: 11/28/2022] Open
Abstract
Sensory rhodopsin II (NpSRII) is a phototaxis receptor of Natronomonas pharaonis that performs its function in complex with its cognate transducer (NpHtrII). Upon light activation NpSRII triggers by means of NpHtrII a signal transduction chain homologous to the two component system in eubacterial chemotaxis. The D75N mutant of NpSRII, which lacks the blue-shifted M intermediate and therefore exhibits a significantly faster photocycle compared to the wild-type, mediates normal phototaxis responses demonstrating that deprotonation of the Schiff base is not a prerequisite for transducer activation. Using site-directed spin labeling and time resolved electron paramagnetic-resonance spectroscopy, we show that the mechanism revealed for activation of the wild-type complex, namely an outward tilt motion of the cytoplasmic part of the receptor helix F and a concomitant rotation of the transmembrane transducer helix TM2, is also valid for the D75N variant. Apparently, the D75N mutation shifts the ground state conformation of NpSRII-D75N and its cognate transducer into the direction of the signaling state.
Collapse
|
30
|
Sudo Y, Tanaka R, Kobayashi T, Kamo N, Kohno T, Kojima C. Functional expression of a two-transmembrane HtrII protein using cell-free synthesis. Biophysics (Nagoya-shi) 2011; 7:51-58. [PMID: 27857592 PMCID: PMC5036783 DOI: 10.2142/biophysics.7.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/23/2011] [Indexed: 12/01/2022] Open
Abstract
An approach of cell-free synthesis is presented for the functional expression of transmembrane proteins without the need of refolding. The transmembrane region of the pharaonis halobacterial transducer protein, pHtrII, was translated with various large soluble tags added (thioredoxin, glutathione S-transferase, green fluorescent protein and maltose binding protein). In this system, all fusion pHtrII were translated in a soluble fraction, presumably, forming giant micelle-like structures. The detergent n-dodecyl-β-d-maltoside was added for enhancing the solubilization of the hydrophobic region of pHtrII. The activity of the expressed pHtrII, having various tags, was checked using a pull-down assay, using the fact that pHtrII forms a signaling complex with pharaonis phoborhodopsin (ppR) in the membrane, as also in the presence of a detergent. All tagged pHtrII showed a binding activity with ppR. Interestingly, the binding activity with ppR was positively correlated with the molecular weight of the soluble tags. Thus, larger soluble tags lead to higher binding activities. We could show, that our approach is beneficial for the preparation of active membrane proteins, and is also potentially applicable for larger membrane proteins, such as 7-transmembrane proteins.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Rikou Tanaka
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-0031, Japan
| | - Toshitatsu Kobayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Toshiyuki Kohno
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-0031, Japan
| | - Chojiro Kojima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Inoue K, Sudo Y, Homma M, Kandori H. Spectrally Silent Intermediates during the Photochemical Reactions of Salinibacter Sensory Rhodopsin I. J Phys Chem B 2011; 115:4500-8. [DOI: 10.1021/jp2000706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
32
|
Sasaki J, Tsai AL, Spudich JL. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes. J Biol Chem 2011; 286:18868-77. [PMID: 21454480 DOI: 10.1074/jbc.m110.200345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
33
|
Tamogami J, Kikukawa T, Ikeda Y, Takemura A, Demura M, Kamo N. The photochemical reaction cycle and photoinduced proton transfer of sensory rhodopsin II (Phoborhodopsin) from Halobacterium salinarum. Biophys J 2010; 98:1353-63. [PMID: 20371336 DOI: 10.1016/j.bpj.2009.12.4288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022] Open
Abstract
Sensory rhodopsin II (HsSRII, also called phoborhodopsin) is a negative phototaxis receptor of Halobacterium salinarum, a bacterium that avoids blue-green light. In this study, we expressed the protein in Escherichia coli cells, and reconstituted the purified protein with phosphatidylcholine. The reconstituted HsSRII was stable. We examined the photocycle by flash-photolysis spectroscopy in the time range of milliseconds to seconds, and measured proton uptake/release using a transparent indium-tin oxide electrode. The pKa of the counterion of the Schiff base, Asp(73), was 3.0. Below pH 3, the depleted band was observed on flash illumination, but the positive band in the difference spectra was not found. Above pH 3, the basic photocycle was HsSRII (490) --> M (350) --> O (520) --> Y (490) --> HsSRII, where the numbers in parentheses are the maximum wavelengths. The decay rate of O-intermediate and Y-intermediate were pH-independent, whereas the M-intermediate decay was pH-dependent. For 3 < pH < 4.5, the M-decay was one phase, and the rate decreased with an increase in pH. For 4.5 < pH < 6.5, the decay was one phase with pH-independent rates, and azide markedly accelerated the M-decay. These findings suggest the existence of a protonated amino acid residue (X-H) that may serve as a proton relay to reprotonate the Schiff base. Above pH 6.5, the M-decay showed two phases. The fast M-decay was pH-independent and originated from the molecule having a protonated X-H, and the slow M-decay originated from the molecule having a deprotonated X, in which the proton came directly from the outside. The analysis yielded a value of 7.5 for the pKa of X-H. The proton uptake and release occurred during M-decay and O-decay, respectively.
Collapse
Affiliation(s)
- Jun Tamogami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Sineshchekov OA, Sasaki J, Wang J, Spudich JL. Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes. Biochemistry 2010; 49:6696-704. [PMID: 20590098 PMCID: PMC2914491 DOI: 10.1021/bi100798w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI−HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by ∼1.5 units from that of the inwardly connected conformer. The pKa difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI−HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI−HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII−HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI−HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin−transducer complexes.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
35
|
Etzkorn M, Seidel K, Li L, Martell S, Geyer M, Engelhard M, Baldus M. Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 2010; 18:293-300. [PMID: 20223212 DOI: 10.1016/j.str.2010.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 12/23/2009] [Accepted: 01/22/2010] [Indexed: 11/18/2022]
Abstract
Microbial rhodopsins execute diverse biological functions in the cellular membrane. A mechanistic understanding of their functional profile is, however, still limited. We used solid-state NMR (ssNMR) spectroscopy to study structure and dynamics of a 2 x 400 amino acid sensory rhodopsin/transducer (SRII/HtrII) complex from Natronomonas pharaonis in a natural membrane environment. We found a receptor-transducer binding interface in the ground state that significantly extends beyond the available X-ray structure. This binding domain involves the EF loop of the receptor and stabilizes the functionally relevant, directly adjacent HAMP domain of the transducer. Using 2D ssNMR difference spectroscopy, we identified protein residues that may act as a functional module around the retinal binding site during the early events of protein activation. These latter protein segments, the inherent plasticity of the HAMP domain, and the observation of an extended SRII/HtrII membrane-embedded interface may be crucial components for optimal signal relay efficiency across the cell membrane.
Collapse
Affiliation(s)
- Manuel Etzkorn
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Protein-protein interaction changes in an archaeal light-signal transduction. J Biomed Biotechnol 2010; 2010:424760. [PMID: 20671933 PMCID: PMC2910557 DOI: 10.1155/2010/424760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
Negative phototaxis in Natronomonas pharaonis is initiated by transient interaction changes between photoreceptor and transducer. pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) and the cognate transducer protein, pHtrII, form a tight 2 : 2 complex in the unphotolyzed state, and the interaction is somehow altered during the photocycle of ppR. We have studied the signal transduction mechanism in the ppR/pHtrII system by means of low-temperature Fourier-transform infrared (FTIR) spectroscopy. In the paper, spectral comparison in the absence and presence of pHtrII provided fruitful information in atomic details, where vibrational bands were identified by the use of isotope-labeling and site-directed mutagenesis. From these studies, we established the two pathways of light-signal conversion from the receptor to the transducer; (i) from Lys205 (retinal) of ppR to Asn74 of pHtrII through Thr204 and Tyr199, and (ii) from Lys205 of ppR to the cytoplasmic loop region of pHtrII that links Gly83.
Collapse
|
37
|
Sharaabi Y, Brumfeld V, Sheves M. Binding of Anions to Proteorhodopsin Affects the Asp97 pKa. Biochemistry 2010; 49:4457-65. [DOI: 10.1021/bi901746b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Oberbarnscheidt L, Janissen R, Martell S, Engelhard M, Oesterhelt F. Single-Molecule Force Spectroscopy Measures Structural Changes Induced by Light Activation and Transducer Binding in Sensory Rhodopsin II. J Mol Biol 2009; 394:383-90. [DOI: 10.1016/j.jmb.2009.07.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
39
|
Abstract
The understanding of structure-dynamics-function relationships in oligonucleotides or oligonucleotide/protein complexes calls for biophysical methods that can resolve the structure and dynamics of such systems on the critical nanometer length scale. A modern electron paramagnetic resonance (EPR) method called pulsed electron-electron double resonance (PELDOR or DEER) has been shown to reliably and precisely provide distances and distance distributions in the range of 1.5-8nm. In addition, recent experiments proved that a PELDOR experiment also contains information on the orientation of labels, enables easy separation of coupling mechanisms and allows for counting the number of monomers in complexes. This chapter briefly summarizes the theory, describes how to perform and analyze such experiments and discusses the limitations.
Collapse
|
40
|
Kriegsmann J, Gregor I, von der Hocht I, Klare J, Engelhard M, Enderlein J, Fitter J. Translational diffusion and interaction of a photoreceptor and its cognate transducer observed in giant unilamellar vesicles by using dual-focus FCS. Chembiochem 2009; 10:1823-9. [PMID: 19551796 DOI: 10.1002/cbic.200900251] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to monitor membrane-protein binding in lipid bilayers at physiological protein concentrations, we employed the recently developed dual-focus fluorescence correlation spectroscopy (2fFCS) technique. In a case study on a photoreceptor consisting of seven transmembrane helices and its cognate transducer (two transmembrane helices), the lateral diffusion for these integral membrane proteins was analyzed in giant unilamellar vesicles (GUVs). The two-dimensional diffusion coefficients of both separately diffusing proteins differ significantly, with D = 2.2 x 10(-8) cm2 s(-1) for the photoreceptor and with D = 4.1 x 10(-8) cm2 s(-1) for the transducer. In GUVs with both membrane proteins present together, we observed significantly smaller diffusion coefficients for labelled transducer molecules; this indicates the presence of larger diffusing units and therefore intermolecular protein binding. Based on the phenomenological dependence of diffusion coefficients on the molecule's cylindrical radius, we are able to estimate the degree of membrane protein binding on a quantitative level.
Collapse
Affiliation(s)
- Jana Kriegsmann
- Research Centre Jülich, ISB 2: Molecular Biophysics, 52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Klare JP, Steinhoff HJ. Spin labeling EPR. PHOTOSYNTHESIS RESEARCH 2009; 102:377-390. [PMID: 19728138 DOI: 10.1007/s11120-009-9490-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 08/14/2009] [Indexed: 05/28/2023]
Abstract
Site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy has emerged as an efficient tool to elucidate the structure and conformational dynamics of biomolecules under native-like conditions. This article summarizes the basics as well as recent progress of site-directed spin labeling. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the sensory rhodopsin-transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis and the photosynthetic reaction center from Rhodobacter sphaeroides R26.
Collapse
Affiliation(s)
- Johann P Klare
- Physics Department, University of Osnabrück, Barbarastr. 7, 49076, Osnabrück, Germany
| | | |
Collapse
|
42
|
Kim YJ, Chizhov I, Engelhard M. Functional Expression of the Signaling Complex Sensory Rhodopsin II/Transducer II fromHalobacterium salinaruminEscherichia coli. Photochem Photobiol 2009; 85:521-8. [DOI: 10.1111/j.1751-1097.2008.00470.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Sensory rhodopsin II/transducer complex formation in detergent and in lipid bilayers studied with FRET. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:522-31. [DOI: 10.1016/j.bbamem.2008.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/10/2008] [Accepted: 11/10/2008] [Indexed: 11/21/2022]
|
44
|
Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M. Structural Rearrangements of Membrane Proteins Probed by Water-Edited Solid-State NMR Spectroscopy. J Am Chem Soc 2008; 131:170-6. [DOI: 10.1021/ja806306e] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Ader
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Robert Schneider
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karsten Seidel
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Manuel Etzkorn
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Doebber M, Bordignon E, Klare JP, Holterhues J, Martell S, Mennes N, Li L, Engelhard M, Steinhoff HJ. Salt-driven equilibrium between two conformations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer? J Biol Chem 2008; 283:28691-701. [PMID: 18697747 PMCID: PMC2661416 DOI: 10.1074/jbc.m801931200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/06/2008] [Indexed: 11/06/2022] Open
Abstract
HAMP domains (conserved in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) perform their putative function as signal transducing units in diversified environments in a variety of protein families. Here the conformational changes induced by environmental agents, namely salt and temperature, on the structure and function of a HAMP domain of the phototransducer from Natronomonas pharaonis (NpHtrII) in complex with sensory rhodopsin II (NpSRII) were investigated by site-directed spin labeling electron paramagnetic resonance. A series of spin labeled mutants were engineered in NpHtrII157, a truncated analog containing only the first HAMP domain following the transmembrane helix 2. This truncated transducer is shown to be a valid model system for a signal transduction domain anchored to the transmembrane light sensor NpSRII. The HAMP domain is found to be engaged in a "two-state" equilibrium between a highly dynamic (dHAMP) and a more compact (cHAMP) conformation. The structural properties of the cHAMP as proven by mobility, accessibility, and intra-transducer-dimer distance data are in agreement with the four helical bundle NMR model of the HAMP domain from Archaeoglobus fulgidus.
Collapse
Affiliation(s)
- Meike Doebber
- Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.
Collapse
|
47
|
Cisneros DA, Oberbarnscheidt L, Pannier A, Klare JP, Helenius J, Engelhard M, Oesterhelt F, Muller DJ. Transducer Binding Establishes Localized Interactions to Tune Sensory Rhodopsin II. Structure 2008; 16:1206-13. [DOI: 10.1016/j.str.2008.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 12/13/2022]
|
48
|
Furutani Y, Ito M, Sudo Y, Kamo N, Kandori H. ProteinProtein Interaction of aPharaonisHalorhodopsin Mutant Forming a Complex withPharaonisHalobacterial Transducer Protein II Detected by Fourier-Transform Infrared Spectroscopy. Photochem Photobiol 2008; 84:874-9. [DOI: 10.1111/j.1751-1097.2008.00317.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Sasaki J, Spudich JL. Signal Transfer in Haloarchaeal Sensory Rhodopsin Transducer Complexes. Photochem Photobiol 2008; 84:863-8. [DOI: 10.1111/j.1751-1097.2008.00314.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Kawamura I, Yoshida H, Ikeda Y, Yamaguchi S, Tuzi S, Saitô H, Kamo N, Naito A. Dynamics change of phoborhodopsin and transducer by activation: study using D75N mutant of the receptor by site-directed solid-state 13C NMR. Photochem Photobiol 2008; 84:921-30. [PMID: 18363620 DOI: 10.1111/j.1751-1097.2008.00326.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharaonis phoborhodopsin (ppR or sensory rhodopsin II) is a negative phototaxis receptor of Natronomonas pharaonis, and forms a complex, which transmits the photosignal into cytoplasm, with its cognate transducer (pHtrII). We examined a possible local dynamics change of ppR and its D75N mutant complexed with pHtrII, using solid-state (13)C NMR of [3-(13)C]Ala- and [1-(13)C]Val-labeled preparations. We distinguished Ala C(beta) (13)C signals of relatively static stem (Ala221) in the C-terminus of the receptors from those of flexible tip (Ala228, 234, 236 and 238), utilizing a mutant with truncated C-terminus. The local fluctuation frequency at the C-terminal tip was appreciably decreased when ppR was bound to pHtrII, while it was increased when D75N, that mimics the signaling state because of disrupted salt bridge between C and G helices prerequisite for the signal transfer, was bound to pHtrII. This signal change may be considered with the larger dissociation constant of the complex between pHtrII and M-state of ppR. At the same time, it turned out that fluctuation frequency of cytoplasmic portion of pHtrII is lowered when ppR is replaced by D75N in the complex with pHtrII. This means that the C-terminal tip partly participates in binding with the linker region of pHtrII in the dark, but this portion might be released at the signaling state leading to mutual association of the two transducers in the cytoplasmic regions within the ppR/pHtrII complex.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|