1
|
Porto E, Loula P, Strand S, Hankeln T. Molecular analysis of the human cytoglobin mRNA isoforms. J Inorg Biochem 2024; 251:112422. [PMID: 38016326 DOI: 10.1016/j.jinorgbio.2023.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/26/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Paraskevi Loula
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany.
| |
Collapse
|
2
|
Oxidative Implications of Substituting a Conserved Cysteine Residue in Sugar Beet Phytoglobin BvPgb 1.2. Antioxidants (Basel) 2022; 11:antiox11081615. [PMID: 36009334 PMCID: PMC9404779 DOI: 10.3390/antiox11081615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Phytoglobins (Pgbs) are plant-originating heme proteins of the globin superfamily with varying degrees of hexacoordination. Pgbs have a conserved cysteine residue, the role of which is poorly understood. In this paper, we investigated the functional and structural role of cysteine in BvPgb1.2, a Class 1 Pgb from sugar beet (Beta vulgaris), by constructing an alanine-substituted mutant (Cys86Ala). The substitution had little impact on structure, dimerization, and heme loss as determined by X-ray crystallography, size-exclusion chromatography, and an apomyoglobin-based heme-loss assay, respectively. The substitution significantly affected other important biochemical properties. The autoxidation rate increased 16.7- and 14.4-fold for the mutant versus the native protein at 25 °C and 37 °C, respectively. Thermal stability similarly increased for the mutant by ~2.5 °C as measured by nano-differential scanning fluorimetry. Monitoring peroxidase activity over 7 days showed a 60% activity decrease in the native protein, from 33.7 to 20.2 U/mg protein. When comparing the two proteins, the mutant displayed a remarkable enzymatic stability as activity remained relatively constant throughout, albeit at a lower level, ~12 U/mg protein. This suggests that cysteine plays an important role in BvPgb1.2 function and stability, despite having seemingly little effect on its tertiary and quaternary structure.
Collapse
|
3
|
Song S, Starunov V, Bailly X, Ruta C, Kerner P, Cornelissen AJM, Balavoine G. Globins in the marine annelid Platynereis dumerilii shed new light on hemoglobin evolution in bilaterians. BMC Evol Biol 2020; 20:165. [PMID: 33371890 PMCID: PMC7771090 DOI: 10.1186/s12862-020-01714-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How vascular systems and their respiratory pigments evolved is still debated. While many animals present a vascular system, hemoglobin exists as a blood pigment only in a few groups (vertebrates, annelids, a few arthropod and mollusk species). Hemoglobins are formed of globin sub-units, belonging to multigene families, in various multimeric assemblages. It was so far unclear whether hemoglobin families from different bilaterian groups had a common origin. RESULTS To unravel globin evolution in bilaterians, we studied the marine annelid Platynereis dumerilii, a species with a slow evolving genome. Platynereis exhibits a closed vascular system filled with extracellular hemoglobin. Platynereis genome and transcriptomes reveal a family of 19 globins, nine of which are predicted to be extracellular. Extracellular globins are produced by specialized cells lining the vessels of the segmental appendages of the worm, serving as gills, and thus likely participate in the assembly of a previously characterized annelid-specific giant hemoglobin. Extracellular globin mRNAs are absent in smaller juveniles, accumulate considerably in growing and more active worms and peak in swarming adults, as the need for O2 culminates. Next, we conducted a metazoan-wide phylogenetic analysis of globins using data from complete genomes. We establish that five globin genes (stem globins) were present in the last common ancestor of bilaterians. Based on these results, we propose a new nomenclature of globins, with five clades. All five ancestral stem-globin clades are retained in some spiralians, while some clades disappeared early in deuterostome and ecdysozoan evolution. All known bilaterian blood globin families are grouped in a single clade (clade I) together with intracellular globins of bilaterians devoid of red blood. CONCLUSIONS We uncover a complex "pre-blood" evolution of globins, with an early gene radiation in ancestral bilaterians. Circulating hemoglobins in various bilaterian groups evolved convergently, presumably in correlation with animal size and activity. However, all hemoglobins derive from a clade I globin, or cytoglobin, probably involved in intracellular O2 transit and regulation. The annelid Platynereis is remarkable in having a large family of extracellular blood globins, while retaining all clades of ancestral bilaterian globins.
Collapse
Affiliation(s)
- Solène Song
- Institut Jacques Monod, Université de Paris / CNRS, UMR7592, Paris, France
- Laboratoire Matière et Systèmes Complexes, Université de Paris / CNRS, UMR7057, Paris, France
| | - Viktor Starunov
- Laboratory of Evolutionary Morphology, Zoological Institute, Russian Academy of Sciences, Universitetskaja nab. 1, 199034, Saint Petersburg, Russia
| | - Xavier Bailly
- Laboratoire des Modèles Marins Multicellulaires, Station Biologique de Roscoff, Sorbonne Université / CNRS, FR2424, Roscoff, France
| | - Christine Ruta
- Laboratory of Integrative Biology of Marine Organisms, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pierre Kerner
- Institut Jacques Monod, Université de Paris / CNRS, UMR7592, Paris, France
| | | | | |
Collapse
|
4
|
Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating. Sci Rep 2019; 9:5326. [PMID: 30926858 PMCID: PMC6441039 DOI: 10.1038/s41598-019-41780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant “Gly-loop”, the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs.
Collapse
|
5
|
Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 2016; 6:26400. [PMID: 27211528 PMCID: PMC4876387 DOI: 10.1038/srep26400] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/03/2016] [Indexed: 11/29/2022] Open
Abstract
A class 1 non-symbiotic hemoglobin family gene, SoHb, was isolated from spinach. qRT-PCR showed that SoHb was induced by excess nitrate, polyethylene glycol, NaCl, H2O2, and salicylic acid. Besides, SoHb was strongly induced by application of nitric oxide (NO) donor, while was suppressed by NO scavenger, nitrate reductase inhibitor, and nitric oxide synthase inhibitor. Overexpression of SoHb in Arabidopsis resulted in decreased NO level and sensitivity to nitrate stress, as shown by reduced root length, fresh weight, the maximum photosystem II quantum ratio of variable to maximum fluorescence (Fv/Fm), and higher malondialdehyde contents. The activities and gene transcription of superoxide dioxidase, and catalase decreased under nitrate stress. Expression levels of RD22, RD29A, DREB2A, and P5CS1 decreased after nitrate treatment in SoHb-overexpressing plants, while increased in the WT plants. Moreover, SoHb-overexpressing plants showed decreased tolerance to NaCl and osmotic stress. In addition, the SoHb-overexpression lines showed earlier flower by regulating the expression of SOC, GI and FLC genes. Our results indicated that the decreasing NO content in Arabidopsis by overexpressing SoHb might be responsible for lowered tolerance to nitrate and other abiotic stresses.
Collapse
|
6
|
Kinjo AR. A unified statistical model of protein multiple sequence alignment integrating direct coupling and insertions. Biophys Physicobiol 2016; 13:45-62. [PMID: 27924257 PMCID: PMC5042171 DOI: 10.2142/biophysico.13.0_45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/18/2016] [Indexed: 12/01/2022] Open
Abstract
The multiple sequence alignment (MSA) of a protein family provides a wealth of information in terms of the conservation pattern of amino acid residues not only at each alignment site but also between distant sites. In order to statistically model the MSA incorporating both short-range and long-range correlations as well as insertions, I have derived a lattice gas model of the MSA based on the principle of maximum entropy. The partition function, obtained by the transfer matrix method with a mean-field approximation, accounts for all possible alignments with all possible sequences. The model parameters for short-range and long-range interactions were determined by a self-consistent condition and by a Gaussian approximation, respectively. Using this model with and without long-range interactions, I analyzed the globin and V-set domains by increasing the “temperature” and by “mutating” a site. The correlations between residue conservation and various measures of the system’s stability indicate that the long-range interactions make the conservation pattern more specific to the structure, and increasingly stabilize better conserved residues.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Stojanoski V, Adamski CJ, Hu L, Mehta SC, Sankaran B, Zwart P, Prasad BVV, Palzkill T. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain. Biochemistry 2016; 55:2479-90. [PMID: 27073009 DOI: 10.1021/acs.biochem.6b00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine β-lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. They utilize an active-site serine residue as a nucleophile, forming an acyl-enzyme intermediate during hydrolysis. In this study, thermal denaturation experiments as well as X-ray crystallography were performed to test the effect of substitution of the catalytic serine with glycine on protein stability in serine β-lactamases. Six different enzymes comprising representatives from each of the three classes of serine β-lactamases were examined, including TEM-1, CTX-M-14, and KPC-2 of class A, P99 of class C, and OXA-48 and OXA-163 of class D. For each enzyme, the wild type and a serine-to-glycine mutant were evaluated for stability. The glycine mutants all exhibited enhanced thermostability compared to that of the wild type. In contrast, alanine substitutions of the catalytic serine in TEM-1, OXA-48, and OXA-163 did not alter stability, suggesting removal of the Cβ atom is key to the stability increase associated with the glycine mutants. The X-ray crystal structures of P99 S64G, OXA-48 S70G and S70A, and OXA-163 S70G suggest that removal of the side chain of the catalytic serine releases steric strain to improve enzyme stability. Additionally, analysis of the torsion angles at the nucleophile position indicates that the glycine mutants exhibit improved distance and angular parameters of the intrahelical hydrogen bond network compared to those of the wild-type enzymes, which is also consistent with increased stability. The increased stability of the mutants indicates that the enzyme pays a price in stability for the presence of a side chain at the catalytic serine position but that the cost is necessary in that removal of the serine drastically impairs function. These findings support the stability-function hypothesis, which states that active-site residues are optimized for substrate binding and catalysis but that the requirements for catalysis are often not consistent with the requirements for optimal stability.
Collapse
Affiliation(s)
| | | | | | | | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Peter Zwart
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | | | | |
Collapse
|
8
|
Thomas VL, McReynolds AC, Shoichet BK. Structural bases for stability-function tradeoffs in antibiotic resistance. J Mol Biol 2009; 396:47-59. [PMID: 19913034 DOI: 10.1016/j.jmb.2009.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Preorganization of enzyme active sites for substrate recognition typically comes at a cost to the stability of the folded form of the protein; consequently, enzymes can be dramatically stabilized by substitutions that attenuate the size and preorganization "strain" of the active site. How this stability-activity tradeoff constrains enzyme evolution has remained less certain, and it is unclear whether one should expect major stability insults as enzymes mutate towards new activities or how these new activities manifest structurally. These questions are both germane and easy to study in beta-lactamases, which are evolving on the timescale of years to confer resistance to an ever-broader spectrum of beta-lactam antibiotics. To explore whether stability is a substantial constraint on this antibiotic resistance evolution, we investigated extended-spectrum mutants of class C beta-lactamases, which had evolved new activity versus third-generation cephalosporins. Five mutant enzymes had between 100-fold and 200-fold increased activity against the antibiotic cefotaxime in enzyme assays, and the mutant enzymes all lost thermodynamic stability (from 1.7 kcal mol(-)(1) to 4.1 kcal mol(-)(1)), consistent with the stability-function hypothesis. Intriguingly, several of the substitutions were 10-20 A from the catalytic serine; the question of how they conferred extended-spectrum activity arose. Eight structures, including complexes with inhibitors and extended-spectrum antibiotics, were determined by X-ray crystallography. Distinct mechanisms of action, including changes in the flexibility and ground-state structures of the enzyme, are revealed for each mutant. These results explain the structural bases for the antibiotic resistance conferred by these substitutions and their corresponding decrease in protein stability, which will constrain the evolution of new antibiotic resistance.
Collapse
Affiliation(s)
- Veena L Thomas
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA 94158-2518, USA
| | | | | |
Collapse
|
9
|
Codutti L, Picotti P, Marin O, Dewilde S, Fogolari F, Corazza A, Viglino P, Moens L, Esposito G, Fontana A. Conformational stability of neuroglobin helix F--possible effects on the folding pathway within the globin family. FEBS J 2009; 276:5177-90. [PMID: 19674102 DOI: 10.1111/j.1742-4658.2009.07214.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroglobin is a recently discovered member of the globin family, mainly observed in neurons and retina. Despite the low sequence identity (less than 20% over the whole sequence for the human proteins), the general fold of neuroglobin closely resembles that of myoglobin. The latter is a paradigmatic protein for folding studies, whereas much less is known about the neuroglobin folding pathway. In this work, we show how the structural features of helix F in neuroglobin and myoglobin could represent a pivotal difference in their folding pathways. Former studies widely documented that myoglobin lacks helix F in the apo form. In this study, limited proteolysis experiments on aponeuroglobin showed that helix F does not undergo proteolytic cleavage, suggesting that, also in the apo form, this helix maintains a rigid and structured conformation. To understand better the structural properties of helices F in the two proteins, we analyzed peptides encompassing helix F of neuroglobin and myoglobin in the wild-type and mutant forms. NMR and CD experiments revealed a helical conformation for neuroglobin helix F peptide, at both pH 7 and pH 2, absent in the myoglobin peptide. In particular, NMR data suggest a secondary structure stabilization effect caused by hydrophobic interactions involving Tyr88, Leu89 and Leu92. Molecular dynamics simulations performed on the apo and holo forms of the two proteins reveal the persistence of helix F in neuroglobin even in the absence of heme. Conversely myoglobin shows a higher mobility of the N-terminus of helix F on heme removal, which leads to the loss of secondary structure.
Collapse
Affiliation(s)
- Luca Codutti
- Department of Biomedical Sciences and Technologies and MATI Centre of Excellence, University of Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Persson A, Gross E, Laurent P, Busch KE, Bretes H, de Bono M. Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature 2009; 458:1030-3. [PMID: 19262507 DOI: 10.1038/nature07820] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/21/2009] [Indexed: 11/09/2022]
Abstract
Behaviours evolve by iterations of natural selection, but we have few insights into the molecular and neural mechanisms involved. Here we show that some Caenorhabditis elegans wild strains switch between two foraging behaviours in response to subtle changes in ambient oxygen. This finely tuned switch is conferred by a naturally variable hexacoordinated globin, GLB-5. GLB-5 acts with the atypical soluble guanylate cyclases, which are a different type of oxygen binding protein, to tune the dynamic range of oxygen-sensing neurons close to atmospheric (21%) concentrations. Calcium imaging indicates that one group of these neurons is activated when oxygen rises towards 21%, and is inhibited as oxygen drops below 21%. The soluble guanylate cyclase GCY-35 is required for high oxygen to activate the neurons; GLB-5 provides inhibitory input when oxygen decreases below 21%. Together, these oxygen binding proteins tune neuronal and behavioural responses to a narrow oxygen concentration range close to atmospheric levels. The effect of the glb-5 gene on oxygen sensing and foraging is modified by the naturally variable neuropeptide receptor npr-1 (refs 4, 5), providing insights into how polygenic variation reshapes neural circuit function.
Collapse
Affiliation(s)
- Annelie Persson
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
11
|
Kinjo AR, Nakamura H. Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices. PLoS One 2008; 3:e1963. [PMID: 18398479 PMCID: PMC2276316 DOI: 10.1371/journal.pone.0001963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/05/2008] [Indexed: 11/19/2022] Open
Abstract
Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in protein families.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | | |
Collapse
|
12
|
Parent C, Berger A, Folzer H, Dat J, Crevècoeur M, Badot PM, Capelli N. A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. THE NEW PHYTOLOGIST 2007; 177:142-154. [PMID: 17986182 DOI: 10.1111/j.1469-8137.2007.02250.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study presents the isolation and characterization of a novel nonsymbiotic Hb gene from sessile oak (Quercus petraea) seedlings, herein designated QpHb1. The cellular and tissue expression of QpHb1 was analysed by Northern blotting and in situ hybridization. The encoded protein was predicted to consist of 161 amino acid residues, and shares 71 and 51% amino acid sequence identity with the Arabidopsis class 1 and 2 nonsymbiotic Hb, respectively. Northern blot analysis revealed that QpHb1 was strongly expressed in roots. Spatial expression analysis of QpHb1 in the root apical region of sessile oak by in situ hybridization indicated that transcripts were mostly abundant in protoxylem cell initials, some cortical cells and the protoderm. In addition, when comparing the expression profile of QpHb1 in sessile and pedunculate oak (Quercus robur), two species with contrasted hypoxia tolerance, the transcript level of QpHb1 rose early in the most flood-tolerant species, pedunculate oak, during root submergence. The spatial-temporal expression of QpHb1 suggests that this gene could participate in perception and signalling during hypoxia.
Collapse
Affiliation(s)
- Claire Parent
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| | - Audrey Berger
- Département de Botanique et Biologie Végétale, Université de Genève, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| | - Hélène Folzer
- Institut Méditerranéen d'Ecologie et de Paléoécologie (UMR CNRS 6116), Université Paul Cézanne, Avenue Escadrille Normandie-Niemen, F-13397 Marseille cedex 20, France
| | - James Dat
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| | - Michèle Crevècoeur
- Département de Botanique et Biologie Végétale, Université de Genève, 30 Quai Ernest Ansermet, CH-1211 Genève 4, Switzerland
| | - Pierre-Marie Badot
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| | - Nicolas Capelli
- Laboratoire de Biologie Environnementale (EA 3184 MR usc INRA), Université de Franche-Comté. Place Leclerc, F-25030 Besançon cedex, France
| |
Collapse
|
13
|
Kinoshita K, Ota M. P-cats: prediction of catalytic residues in proteins from their tertiary structures. Bioinformatics 2005; 21:3570-1. [PMID: 15994193 DOI: 10.1093/bioinformatics/bti561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED P-cats is a web server that predicts the catalytic residues in proteins from the atomic coordinates. P-cats receives a coordinate file of the tertiary structure and sends out analytical results via e-mail. The reply contains a summary and two URLs to allow the user to examine the conserved residues: one for interactive images of the prediction results and the other for a graphical view of the multiple sequence alignment. AVAILABILITY P-cats is freely available at http://p-cats.hgc.jp/p-cats CONTACT kino@ims.u-tokyo.ac.jp
Collapse
Affiliation(s)
- Kengo Kinoshita
- Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
14
|
Ota M, Kinoshita K, Nishikawa K. Prediction of catalytic residues in enzymes based on known tertiary structure, stability profile, and sequence conservation. J Mol Biol 2003; 327:1053-64. [PMID: 12662930 DOI: 10.1016/s0022-2836(03)00207-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The catalytic or functionally important residues of a protein are known to exist in evolutionarily constrained regions. However, the patterns of residue conservation alone are sometimes not very informative, depending on the homologous sequences available for a given query protein. Here, we present an integrated method to locate the catalytic residues in an enzyme from its sequence and structure. Mutations of functional residues usually decrease the activity, but concurrently often increase stability. Also, catalytic residues tend to occupy partially buried sites in holes or clefts on the molecular surface. After confirming these general tendencies by carrying out statistical analyses on 49 representative enzymes, these data together with amino acid conservation were evaluated. This novel method exhibited better sensitivity in the prediction accuracy than traditional methods that consider only the residue conservation. We applied it to some so-called "hypothetical" proteins, with known structures but undefined functions. The relationships among the catalytic, conserved, and destabilizing residues in enzymatic proteins are discussed.
Collapse
Affiliation(s)
- Motonori Ota
- National Institute of Genetics, Yata, Mishima, 411-8540, Shizuoka, Japan.
| | | | | |
Collapse
|
15
|
Draghi F, Miele AE, Travaglini-Allocatelli C, Vallone B, Brunori M, Gibson QH, Olson JS. Controlling ligand binding in myoglobin by mutagenesis. J Biol Chem 2002; 277:7509-19. [PMID: 11744723 DOI: 10.1074/jbc.m109206200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A quadruple mutant of sperm whale myoglobin was constructed to mimic the structure found in Ascaris suum hemoglobin. The replacements include His(E7)-->Gln, Leu(B10)-->Tyr, Thr(E10)--> Arg, and Ile(G8)-->Phe. Single, double, and triple mutants were characterized to dissect out the effects of the individual substitutions. The crystal structures of the deoxy and oxy forms of the quadruple mutant were determined and compared with that of native Ascaris hemoglobin. Tyr(B10) myoglobin displays low O(2) affinity, high dissociation rate constants, and heterogeneous kinetic behavior, suggesting unfavorable steric interactions between the B10 phenol side chain and His(E7). In contrast, all mutants containing the Tyr(B10)/Gln(E7) pair show high O(2) affinity, low dissociation rate constants, and simple, monophasic kinetic behavior. Replacement of Ile(107) with Phe enhances nanosecond geminate recombination singly and in combination with the Tyr(B10)/Gln(E7)/Arg(E10) mutation by limiting access to the Xe4 site. These kinetic results and comparisons with native Ascaris hemoglobin demonstrate the importance of distal pocket cavities in governing the kinetics of ligand binding. The approximately 150-fold higher O(2) affinity of Ascaris hemoglobin compared with that for Tyr(B10)/Gln(E7)-containing myoglobin mutants appears to be the result of favorable proximal effects in the Ascaris protein, due to a staggered orientation of His(F8), the lack of a hydrogen bonding lattice between the F4, F7, and F8 residues, and the presence of a large polar Trp(G5) residue in the interior portion of the proximal heme pocket.
Collapse
Affiliation(s)
- Federica Draghi
- A. Rossi Fanelli Department of Biochemical Sciences, CNR Center of Molecular Biology, University of Rome La Sapienza, P. le. A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Seregélyes C, Mustárdy L, Ayaydin F, Sass L, Kovács L, Endre G, Lukács N, Kovács I, Vass I, Kiss GB, Horváth GV, Dudits D. Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells. FEBS Lett 2000; 482:125-30. [PMID: 11018535 DOI: 10.1016/s0014-5793(00)02049-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a 483-bp-long full-length cDNA clone encoding a non-symbiotic hemoglobin called Mhb1, the first one found in alfalfa. This non-symbiotic hemoglobin is a single copy gene localized in linkage group 4 in diploid Medicago genome. The Mhb1 mRNA was found only in the roots of alfalfa plants. The Mhb1 gene was inducible by hypoxia and showed no induction by cold stress treatment. The Mhb1 transcript level increased at the G2/M boundary in a synchronized alfalfa cell suspension culture. The majority of Mhb1 protein was shown to be localized in the nucleus and smaller amounts were detected in the cytoplasm. A potential link to the nitric oxide signalling pathway is also discussed.
Collapse
Affiliation(s)
- C Seregélyes
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|