1
|
Saha S, Zhu Y, Whelan J, Murcha MW. Methods to analyze mitochondrial protein translocation in plant mitochondria. Methods Enzymol 2024; 706:475-497. [PMID: 39455230 DOI: 10.1016/bs.mie.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Complex processes have evolved in plants to import proteins into mitochondria. Investigating these processes in plants provides insights into the specialised machinery and pathways that have evolved to cope with; (1) the immobile nature of plants that results in exposure to environmental stresses, and (2) the more complex cell environment due to the presence of plastids, the most prevalent being chloropalst in leaves. In this chapter, we present detailed protocols for the isolation of respiratory competent, coupled mitochondria from Arabidopsis thaliana, conducting protein import assays, and analyzing protein assembly into large multi-subunit complexes. Additionally, we present straightforward protocols for examining the localization of fluorescently tagged proteins to organelles such as mitochondria through protoplast transfections.
Collapse
Affiliation(s)
- Saurabh Saha
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
| | - Yanqiao Zhu
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, P.R. China
| | - James Whelan
- State Key Lab of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, P.R. China
| | - Monika W Murcha
- School of Molecular Sciences & ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
3
|
Fraga H, Ventura S. Oxidative folding in the mitochondrial intermembrane space in human health and disease. Int J Mol Sci 2013; 14:2916-27. [PMID: 23364613 PMCID: PMC3588022 DOI: 10.3390/ijms14022916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/22/2022] Open
Abstract
Oxidative folding in the mitochondrial intermembrane space (IMS) is a key cellular event associated with the folding and import of a large and still undetermined number of proteins. This process is catalyzed by an oxidoreductase, Mia40 that is able to recognize substrates with apparently little or no homology. Following substrate oxidation, Mia40 is reduced and must be reoxidized by Erv1/Alr1 that consequently transfers the electrons to the mitochondrial respiratory chain. Although our understanding of the physiological relevance of this process is still limited, an increasing number of pathologies are being associated with the impairment of this pathway; especially because oxidative folding is fundamental for several of the proteins involved in defense against oxidative stress. Here we review these aspects and discuss recent findings suggesting that oxidative folding in the IMS is modulated by the redox state of the cell.
Collapse
Affiliation(s)
- Hugo Fraga
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| | - Salvador Ventura
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra E-08193, Spain
- Authors to whom correspondence should be addressed; E-Mails: (H.F.); (S.V.); Tel.: +34-93-581-2154 (H.F.); +34-93-586-8956 (S.V.); Fax: +34-93-581-1264 (H.F. & S.V.)
| |
Collapse
|
4
|
Devaux F, Lelandais G, Garcia M, Goussard S, Jacq C. Posttranscriptional control of mitochondrial biogenesis: Spatio-temporal regulation of the protein import process. FEBS Lett 2010; 584:4273-9. [DOI: 10.1016/j.febslet.2010.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 11/30/2022]
|
5
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 DOI: 10.1199/tab.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
|
6
|
Okada S, Brennicke A. Transcript levels in plant mitochondria show a tight homeostasis during day and night. Mol Genet Genomics 2006; 276:71-8. [PMID: 16614813 DOI: 10.1007/s00438-006-0119-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
In plants the physiological and biochemical demands on each cell vary greatly between day and night, mostly due to the differing output of photosynthesis. Chloroplasts, the organelles of photosynthesis, are biochemically closely linked to the other energy generating organelles, the mitochondria. We have now investigated whether gene expression in plant mitochondria is influenced by these daily physiological variations. Transcript synthesis in these organelles cycles in a diurnal rhythm, while steady state transcript levels do not vary between light and dark phases and are stable throughout the diurnal (as well as the circadian) time course. This finding suggests that available steady state transcript levels in plant mitochondria are sufficient to provide the required biochemical capacities also at times of peak respiratory and physiological demands.
Collapse
Affiliation(s)
- Sachiko Okada
- Molekulare Botanik, Universität Ulm, 89069, Ulm, Germany.
| | | |
Collapse
|
7
|
Lister R, Hulett JM, Lithgow T, Whelan J. Protein import into mitochondria: origins and functions today (review). Mol Membr Biol 2005; 22:87-100. [PMID: 16092527 DOI: 10.1080/09687860500041247] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mitochondria are organelles derived from alpha-proteobacteria over the course of one to two billion years. Mitochondria from the major eukaryotic lineages display some variation in functions and coding capacity but sequence analysis demonstrates them to be derived from a single common ancestral endosymbiont. The loss of assorted functions, the transfer of genes to the nucleus, and the acquisition of various 'eukaryotic' proteins have resulted in an organelle that contains approximately 1000 different proteins, with most of these proteins imported into the organelle across one or two membranes. A single translocase in the outer membrane and two translocases in the inner membrane mediate protein import. Comparative sequence analysis and functional complementation experiments suggest some components of the import pathways to be directly derived from the eubacterial endosymbiont's own proteins, and some to have arisen 'de novo' at the earliest stages of 'mitochondrification' of the endosymbiont. A third class of components appears lineage-specific, suggesting they were incorporated into the process of protein import long after mitochondria was established as an organelle and after the divergence of the various eukaryotic lineages. Protein sorting pathways inherited from the endosymbiont have been co-opted and play roles in intraorganelle protein sorting after import. The import apparatus of animals and fungi show significant similarity to one another, but vary considerably to the plant apparatus. Increasing complexity in the eukaryotic lineage, i.e., from single celled to multi-cellular life forms, has been accompanied by an expansion in genes encoding each component, resulting in small gene families encoding many components. The functional differences in these gene families remain to be elucidated, but point to a mosaic import apparatus that can be regulated by a variety of signals.
Collapse
Affiliation(s)
- Ryan Lister
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | |
Collapse
|
8
|
Chew O, Whelan J. Just read the message: a model for sorting of proteins between mitochondria and chloroplasts. TRENDS IN PLANT SCIENCE 2004; 9:318-9. [PMID: 15231275 DOI: 10.1016/j.tplants.2004.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
9
|
Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schürmann P, Droux M, Buchanan BB. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci U S A 2004; 101:2642-7. [PMID: 14983062 PMCID: PMC357003 DOI: 10.1073/pnas.0308583101] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain thioredoxin (Trx), a regulatory disulfide protein, and an associated flavoenzyme, NADP/Trx reductase, which provide a link to NADPH in the organelle. Unlike animal and yeast counterparts, the function of Trx in plant mitochondria is largely unknown. Accordingly, we have applied recently devised proteomic approaches to identify soluble Trx-linked proteins in mitochondria isolated from photosynthetic (pea and spinach leaves) and heterotrophic (potato tubers) sources. Application of the mitochondrial extracts to mutant Trx affinity columns in conjunction with proteomics led to the identification of 50 potential Trx-linked proteins functional in 12 processes: photorespiration, citric acid cycle and associated reactions, lipid metabolism, electron transport, ATP synthesis/transformation, membrane transport, translation, protein assembly/folding, nitrogen metabolism, sulfur metabolism, hormone synthesis, and stress-related reactions. Almost all of these targets were also identified by a fluorescent gel electrophoresis procedure in which reduction by Trx can be observed directly. In some cases, the processes targeted by Trx depended on the source of the mitochondria. The results support the view that Trx acts as a sensor and enables mitochondria to adjust key reactions in accord with prevailing redox state. These and earlier findings further suggest that, by sensing redox in chloroplasts and mitochondria, Trx enables the two organelles of photosynthetic tissues to communicate by means of a network of transportable metabolites such as dihydroxyacetone phosphate, malate, and glycolate. In this way, light absorbed and processed by means of chlorophyll can be perceived and function in regulating fundamental mitochondrial processes akin to its mode of action in chloroplasts.
Collapse
Affiliation(s)
- Yves Balmer
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lister R, Chew O, Lee MN, Heazlewood JL, Clifton R, Parker KL, Millar AH, Whelan J. A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. PLANT PHYSIOLOGY 2004; 134:777-89. [PMID: 14730085 PMCID: PMC344553 DOI: 10.1104/pp.103.033910] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 10/20/2003] [Accepted: 11/10/2003] [Indexed: 05/18/2023]
Abstract
Mitochondria import hundreds of cytosolically synthesized proteins via the mitochondrial protein import apparatus. Expression analysis in various organs of 19 components of the Arabidopsis mitochondrial protein import apparatus encoded by 31 genes showed that although many were present in small multigene families, often only one member was prominently expressed. This was supported by comparison of real-time reverse transcriptase-polymerase chain reaction and microarray experimental data with expressed sequence tag numbers and massive parallel signature sequence data. Mass spectrometric analysis of purified mitochondria identified 17 import components, their mitochondrial sub-compartment, and verified the presence of TIM8, TIM13, TIM17, TIM23, TIM44, TIM50, and METAXIN proteins for the first time, to our knowledge. Mass spectrometry-detected isoforms correlated with the most abundant gene transcript measured by expression data. Treatment of Arabidopsis cell culture with mitochondrial electron transport chain inhibitors rotenone and antimycin A resulted in a significant increase in transcript levels of import components, with a greater increase observed for the minor isoforms. The increase was observed 12 h after treatment, indicating that it was likely a secondary response. Microarray analysis of rotenone-treated cells indicated the up-regulation of gene sets involved in mitochondrial chaperone activity, protein degradation, respiratory chain assembly, and division. The rate of protein import into isolated mitochondria from rotenone-treated cells was halved, even though rotenone had no direct effect on protein import when added to mitochondria isolated from untreated cells. These findings suggest that transcription of import component genes is induced when mitochondrial function is limited and that minor gene isoforms display a greater response than the predominant isoforms.
Collapse
Affiliation(s)
- Ryan Lister
- Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Goggin DE, Lipscombe R, Fedorova E, Millar AH, Mann A, Atkins CA, Smith PMC. Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. PLANT PHYSIOLOGY 2003; 131:1033-41. [PMID: 12644656 PMCID: PMC166869 DOI: 10.1104/pp.102.015081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Revised: 11/11/2002] [Accepted: 12/27/2002] [Indexed: 05/18/2023]
Abstract
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.
Collapse
Affiliation(s)
- Danica Erin Goggin
- Department of Botany, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Cleary SP, Tan FC, Nakrieko KA, Thompson SJ, Mullineaux PM, Creissen GP, von Stedingk E, Glaser E, Smith AG, Robinson C. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 2002; 277:5562-9. [PMID: 11733507 DOI: 10.1074/jbc.m106532200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because mitochondrial proteins are not imported to any detectable levels. Surprisingly, however, pea mitochondria import a range of chloroplast protein precursors with the same efficiency as chloroplasts, including those of plastocyanin, the 33-kDa photosystem II protein, Hcf136, and coproporphyrinogen III oxidase. These import reactions are dependent on the Deltaphi across the inner mitochondrial membrane, and furthermore, marker enzyme assays and Western blotting studies exclude any import by contaminating chloroplasts in the preparation. The pea mitochondria specifically recognize information in the chloroplast-targeting presequences, because they also import a fusion comprising the presequence of coproporphyrinogen III oxidase linked to green fluorescent protein. However, the same construct is targeted exclusively into chloroplasts in vivo indicating that the in vitro mitochondrial import reactions are unphysiological, possibly because essential specificity factors are absent in these assays. Finally, we show that disruption of potential amphipathic helices in one presequence does not block import into pea mitochondria, indicating that other features are recognized.
Collapse
Affiliation(s)
- Suzanne P Cleary
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wright G, Terada K, Yano M, Sergeev I, Mori M. Oxidative stress inhibits the mitochondrial import of preproteins and leads to their degradation. Exp Cell Res 2001; 263:107-17. [PMID: 11161710 DOI: 10.1006/excr.2000.5096] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrion depends upon the import of cytosolically synthesized preproteins for most of the proteins that comprise its structural elements and metabolic pathways. Here we have examined the influence of redox conditions on mitochondrial preprotein import and processing by mammalian mitochondria. Paraquat pretreatment of isolated mitochondria inhibited the subsequent import preornithine transcarbamylase (pOTC) in vitro. In intact cells oxidizing conditions led to decreased levels of mature OTC and accumulation of its preprotein. Implicating a mitochondrial import lesion, the fluorescence of pOTC-GFP (a protein in which the presequence of pOTC was fused to green fluorescent protein) transfected cells was decreased by paraquat treatment while cytosolic wild-type GFP remained largely unaffected. The accumulation of preproteins was enhanced by proteasome inhibitors. We observed that precursor proteins that failed to be imported, due to oxidizing conditions or an intrinsically slower import rate, are susceptible to degradation. Inhibition of the proteasome was also found to lead to higher levels of the translocase outer membrane protein 20 (Tom20) and to the perinuclear accumulation of mitochondria. These studies indicate that cellular redox conditions influence mitochondrial import, which, in turn, affects mitochondrial protein levels. A role for the proteasome in this process and in general mitochondrial function was also indicated.
Collapse
Affiliation(s)
- G Wright
- Department of Molecular Genetics, Kumamoto University School of Medicine, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | | | | | | | | |
Collapse
|
14
|
Murcha MW, Huang T, Whelan J. Import of precursor proteins into mitochondria from soybean tissues during development. FEBS Lett 1999; 464:53-9. [PMID: 10611482 DOI: 10.1016/s0014-5793(99)01674-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterisation of the amount of protein import of the alternative oxidase (AOX) and the F(A)d precursor proteins (previously shown to use different import pathways) into mitochondria from developing soybean tissues indicated that they displayed different patterns. Import of the AOX declined in both cotyledon and root mitochondria with increasing age, whereas the import of the F(A)d into cotyledon mitochondria remained high throughout the same period. Using primary leaf mitochondria, it was evident that import of AOX remained high while it declined in cotyledon and root mitochondria. The amount of import of the AOX into mitochondria from different tissues closely matched the amount of the Tom 20 receptor.
Collapse
Affiliation(s)
- M W Murcha
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Perth, W.A., Australia
| | | | | |
Collapse
|
15
|
Tanudji M, Sjöling S, Glaser E, Whelan J. Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem 1999; 274:1286-93. [PMID: 9880497 DOI: 10.1074/jbc.274.3.1286] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical residues involved in targeting and processing of the soybean alternative oxidase to plant and animal mitochondria was investigated. Import of various site-directed mutants into soybean mitochondria indicated that positive residues throughout the length of the presequence were important for import, not just those in the predicted region of amphiphilicity. The position of the positive residues in the C-terminal end of the presequence was also important for import. Processing assays of the various constructs with purified spinach mitochondrial processing peptidase showed that all the -2-position mutants had a drastic effect on processing. In contrast to the import assay, the position of the positive residue could be changed for processing. Deletion mutants confirmed the site-directed mutagenesis data in that an amphiphilic alpha-helix was not the only determinant of mitochondrial import in this homologous plant system. Import of these constructs into rat liver mitochondria indicated that the degree of inhibition differed and that the predicted region of amphiphilic alpha-helix was more important with rat liver mitochondria. Processing with a rat liver matrix fraction showed little inhibition. These results are discussed with respect to targeting specificity in plant cells and highlight the need to carry out homologous studies and define the targeting requirements to plant mitochondria.
Collapse
Affiliation(s)
- M Tanudji
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Western Australia, Australia
| | | | | | | |
Collapse
|