1
|
Kumar V, Sharma H, Saini L, Tyagi A, Jain P, Singh Y, Balyan P, Kumar S, Jan S, Mir RR, Djalovic I, Singh KP, Kumar U, Malik V. Phylogenomic analysis of 20S proteasome gene family reveals stress-responsive patterns in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1037206. [PMID: 36388569 PMCID: PMC9659873 DOI: 10.3389/fpls.2022.1037206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The core particle represents the catalytic portions of the 26S proteasomal complex. The genes encoding α- and β-subunits play a crucial role in protecting plants against various environmental stresses by controlling the quality of newly produced proteins. The 20S proteasome gene family has already been reported in model plants such as Arabidopsis and rice; however, they have not been studied in oilseed crops such as rapeseed (Brassica napus L.). In the present study, we identified 20S proteasome genes for α- (PA) and β-subunits (PB) in B. napus through systematically performed gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 82 genes, comprising 35 BnPA and 47 BnPB of the 20S proteasome, were revealed in the B. napus genome. These genes were distributed on all 20 chromosomes of B. napus and most of these genes were duplicated on homoeologous chromosomes. The BnPA (α1-7) and BnPB (β1-7) genes were phylogenetically placed into seven clades. The pattern of expression of all the BnPA and BnPB genes was also studied using RNA-seq datasets under biotic and abiotic stress conditions. Out of 82 BnPA/PB genes, three exhibited high expression under abiotic stresses, whereas two genes were overexpressed in response to biotic stresses at both the seedling and flowering stages. Moreover, an additional eighteen genes were expressed under normal conditions. Overall, the current findings developed our understanding of the organization of the 20S proteasome genes in B. napus, and provided specific BnPA/PB genes for further functional research in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP, India
| | - Lalita Saini
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Archasvi Tyagi
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Pooja Jain
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri Post Graduate (PG) College, Chaudhary Charan Singh (CCS) University, Meerut, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, Novi Sad, Serbia
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, Govind Ballabh (GB) Pant University of Agriculture & Technology, Pantnagar, India
- Vice-Chancellor’s Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Vijai Malik
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| |
Collapse
|
2
|
Sharma H, Batra R, Kumar S, Kumar M, Kumar S, Balyan HS, Gupta PK. Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 2014; 15:950. [PMID: 25362847 PMCID: PMC4226900 DOI: 10.1186/1471-2164-15-950] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Collapse
Affiliation(s)
- Vikas Belamkar
- />Interdepartmental Genetics, Iowa State University, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Nathan T Weeks
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Arvind K Bharti
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Andrew D Farmer
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Michelle A Graham
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Steven B Cannon
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| |
Collapse
|
4
|
de Almeida Engler J, De Veylder L, De Groodt R, Rombauts S, Boudolf V, De Meyer B, Hemerly A, Ferreira P, Beeckman T, Karimi M, Hilson P, Inzé D, Engler G. Systematic analysis of cell-cycle gene expression during Arabidopsis development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:645-60. [PMID: 19392699 DOI: 10.1111/j.1365-313x.2009.03893.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The steady-state distribution of cell-cycle transcripts in Arabidopsis thaliana seedlings was studied in a broad in situ survey to provide a better understanding of the expression of cell-cycle genes during plant development. The 61 core cell-cycle genes analyzed were expressed at variable levels throughout the different plant tissues: 23 genes generally in dividing and young differentiating tissues, 34 genes mostly in both dividing and differentiated tissues and four gene transcripts primarily in differentiated tissues. Only 21 genes had a typical patchy expression pattern, indicating tight cell-cycle regulation. The increased expression of 27 cell-cycle genes in the root elongation zone hinted at their involvement in the switch from cell division to differentiation. The induction of 20 cell-cycle genes in differentiated cortical cells of etiolated hypocotyls pointed to their possible role in the process of endoreduplication. Of seven cyclin-dependent kinase inhibitor genes, five were upregulated in etiolated hypocotyls, suggesting a role in cell-cycle arrest. Nineteen genes were preferentially expressed in pericycle cells activated by auxin that give rise to lateral root primordia. Approximately 1800 images have been collected and can be queried via an online database. Our in situ analysis revealed that 70% of the cell-cycle genes, although expressed at different levels, show a large overlap in their localization. The lack of regulatory motifs in the upstream regions of the analyzed genes suggests the absence of a universal transcriptional control mechanism for all cell-cycle genes.
Collapse
Affiliation(s)
- Janice de Almeida Engler
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dixon DP, Skipsey M, Grundy NM, Edwards R. Stress-induced protein S-glutathionylation in Arabidopsis. PLANT PHYSIOLOGY 2005; 138:2233-44. [PMID: 16055689 PMCID: PMC1183410 DOI: 10.1104/pp.104.058917] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/23/2005] [Accepted: 05/03/2005] [Indexed: 05/03/2023]
Abstract
S-Glutathionylation (thiolation) is a ubiquitous redox-sensitive and reversible modification of protein cysteinyl residues that can directly regulate their activity. While well established in animals, little is known about the formation and function of these mixed disulfides in plants. After labeling the intracellular glutathione pool with [35S]cysteine, suspension cultures of Arabidopsis (Arabidopsis thaliana ecotype Columbia) were shown to undergo a large increase in protein thiolation following treatment with the oxidant tert-butylhydroperoxide. To identify proteins undergoing thiolation, a combination of in vivo and in vitro labeling methods utilizing biotinylated, oxidized glutathione (GSSG-biotin) was developed to isolate Arabidopsis proteins/protein complexes that can be reversibly glutathionylated. Following two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry proteomics, a total of 79 polypeptides were identified, representing a mixture of proteins that underwent direct thiolation as well as proteins complexed with thiolated polypeptides. The mechanism of thiolation of five proteins, dehydroascorbate reductase (AtDHAR1), zeta-class glutathione transferase (AtGSTZ1), nitrilase (AtNit1), alcohol dehydrogenase (AtADH1), and methionine synthase (AtMetS), was studied using the respective purified recombinant proteins. AtDHAR1, AtGSTZ1, and to a lesser degree AtNit1 underwent spontaneous thiolation with GSSG-biotin through modification of active-site cysteines. The thiolation of AtADH1 and AtMetS required the presence of unidentified Arabidopsis proteins, with this activity being inhibited by S-modifying agents. The potential role of thiolation in regulating metabolism in Arabidopsis is discussed and compared with other known redox regulatory systems operating in plants.
Collapse
Affiliation(s)
- David P Dixon
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | |
Collapse
|
6
|
Giavalisco P, Wilson D, Kreitler T, Lehrach H, Klose J, Gobom J, Fucini P. High heterogeneity within the ribosomal proteins of the Arabidopsis thaliana 80S ribosome. PLANT MOLECULAR BIOLOGY 2005; 57:577-91. [PMID: 15821981 DOI: 10.1007/s11103-005-0699-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 01/15/2005] [Indexed: 05/17/2023]
Abstract
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.
Collapse
Affiliation(s)
- Patrick Giavalisco
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC PLANT BIOLOGY 2004; 4:10. [PMID: 15171794 PMCID: PMC446195 DOI: 10.1186/1471-2229-4-10] [Citation(s) in RCA: 1271] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 06/01/2004] [Indexed: 05/17/2023]
Abstract
BACKGROUND Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. RESULTS Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. CONCLUSIONS Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
Collapse
Affiliation(s)
- Steven B Cannon
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Plant Pathology Department, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Andrew Baumgarten
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Ecology, Evolution, and Behavior Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Nevin D Young
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Plant Pathology Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Georgiana May
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Ecology, Evolution, and Behavior Department, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
Cannon SB, Young ND. OrthoParaMap: distinguishing orthologs from paralogs by integrating comparative genome data and gene phylogenies. BMC Bioinformatics 2003; 4:35. [PMID: 12952558 PMCID: PMC200972 DOI: 10.1186/1471-2105-4-35] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 09/02/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In eukaryotic genomes, most genes are members of gene families. When comparing genes from two species, therefore, most genes in one species will be homologous to multiple genes in the second. This often makes it difficult to distinguish orthologs (separated through speciation) from paralogs (separated by other types of gene duplication). Combining phylogenetic relationships and genomic position in both genomes helps to distinguish between these scenarios. This kind of comparison can also help to describe how gene families have evolved within a single genome that has undergone polyploidy or other large-scale duplications, as in the case of Arabidopsis thaliana - and probably most plant genomes. RESULTS We describe a suite of programs called OrthoParaMap (OPM) that makes genomic comparisons, identifies syntenic regions, determines whether sets of genes in a gene family are related through speciation or internal chromosomal duplications, maps this information onto phylogenetic trees, and infers internal nodes within the phylogenetic tree that may represent local - as opposed to speciation or segmental - duplication. We describe the application of the software using three examples: the melanoma-associated antigen (MAGE) gene family on the X chromosomes of mouse and human; the 20S proteasome subunit gene family in Arabidopsis, and the major latex protein gene family in Arabidopsis. CONCLUSION OPM combines comparative genomic positional information and phylogenetic reconstructions to identify which gene duplications are likely to have arisen through internal genomic duplications (such as polyploidy), through speciation, or through local duplications (such as unequal crossing-over). The software is freely available at http://www.tc.umn.edu/~cann0010/.
Collapse
Affiliation(s)
- Steven B Cannon
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
| | - Nevin D Young
- Plant Biology Department, University of Minnesota, St. Paul, MN 55108, USA
- Plant Pathology Department, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
9
|
Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of "plant defense proteasomes". Int J Biochem Cell Biol 2003; 35:637-50. [PMID: 12672456 DOI: 10.1016/s1357-2725(02)00386-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plants have evolved efficient mechanisms to resist pathogens. The earliest defense response is the hypersensitive response (HR) considered as the main step leading to plant systemic acquired resistance (SAR) that protects the whole plant against a large spectrum of pathogens. We showed previously that elicitation of defense reactions in tobacco cells by cryptogein, a proteinaceous elicitor of plant defense reactions, leads to a rapid and differential accumulation of transcripts corresponding to genes encoding defense-induced (din) subunits of 20S proteasome: beta1din, alpha3din and alpha6din.Here, expression of these three subunits was investigated by Northern blotting and by Western blotting using specific antibodies synthesized against two peptides deduced from the beta1din, alpha3din or alpha6din encoding sequence. Kinetics of mRNA and protein accumulation in various defense models showed a simultaneous accumulation of beta1din, alpha3din and alpha6din corresponding mRNAs and proteins only in plants developing a systemic acquired resistance. Inhibition by diphenyleneiodonium of the oxidative burst induced in defense reactions blocked the expression of beta1din, alpha3din and alpha6din. Using 2D gel electrophoresis and Western blotting, we showed multiple spots for each induced subunit suggesting the possible existence of multigenic families confirmed by genomic DNA analysis. These results suggest a complex regulation of induced subunits tightly correlated with the activation of plant defense reactions. beta1din, alpha3din and alpha6din subunits could probably replace the corresponding constitutive subunits in 20S proteasome leading to "plant defense proteasomes" which could play an important role in plant defense reactions.
Collapse
|
10
|
Ballut L, Petit F, Mouzeyar S, Le Gall O, Candresse T, Schmid P, Nicolas P, Badaoui S. Biochemical identification of proteasome-associated endonuclease activity in sunflower. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1645:30-9. [PMID: 12535608 DOI: 10.1016/s1570-9639(02)00500-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteasomes have been purified from sunflower hypocotyles. They elute with a molecular mass of 600 kDa from gel filtration columns and two-dimensional gel electrophoresis indicates that the complex contains at least 20 different protein subunits. Peptide microsequencing revealed the presence of four subunits homologous to subunits Beta2, Beta6, Alpha5 and Alpha6 of plant proteasomes. These proteasomes have chymotrypsin-like activity and the highly purified fraction of this complex is associated with an endonuclease activity hydrolyzing Tobacco mosaic virus RNA and Lettuce mosaic virus RNA with a cleavage pattern showing fragments of well-defined size. This is the first evidence of a RNA endonuclease activity associated with plant proteasomes.
Collapse
Affiliation(s)
- Lionel Ballut
- UMR 1095, INRA Amélioration et Santé des Plantes, Université Blaise Pascal, Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zwickl P, Seemüller E, Kapelari B, Baumeister W. The proteasome: a supramolecular assembly designed for controlled proteolysis. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:187-222. [PMID: 11868272 DOI: 10.1016/s0065-3233(01)59006-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P Zwickl
- Department of Molecular Structural Biology, Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
In contrast to our detailed knowledge of prokaryotic proteasomes, we have only a limited understanding of the prokaryotic regulators and their functional interaction with the proteasome. Most probably, we will soon learn more about the molecular structure and the mechanism of action of the prokaryotic regulators. Nevertheless, it still remains to be unravelled which signals or/and modifications transform an endogenous prokaryotic protein into a substrate of the proteasomal degradation machinery.
Collapse
Affiliation(s)
- P Zwickl
- Department of Molecular Structural Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| |
Collapse
|
13
|
Shen WH, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P. Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 2002; 13:1916-28. [PMID: 12058059 PMCID: PMC117614 DOI: 10.1091/mbc.e02-02-0077] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The SCF (for SKP1, Cullin/CDC53, F-box protein) ubiquitin ligase targets a number of cell cycle regulators, transcription factors, and other proteins for degradation in yeast and mammalian cells. Recent genetic studies demonstrate that plant F-box proteins are involved in auxin responses, jasmonate signaling, flower morphogenesis, photocontrol of circadian clocks, and leaf senescence, implying a large spectrum of functions for the SCF pathway in plant development. Here, we present a molecular and functional characterization of plant cullins. The Arabidopsis genome contains 11 cullin-related genes. Complementation assays revealed that AtCUL1 but not AtCUL4 can functionally complement the yeast cdc53 mutant. Arabidopsis mutants containing transfer DNA (T-DNA) insertions in the AtCUL1 gene were shown to display an arrest in early embryogenesis. Consistently, both the transcript and the protein of the AtCUL1 gene were found to accumulate in embryos. The AtCUL1 protein localized mainly in the nucleus but also weakly in the cytoplasm during interphase and colocalized with the mitotic spindle in metaphase. Our results demonstrate a critical role for the SCF ubiquitin ligase in Arabidopsis embryogenesis.
Collapse
Affiliation(s)
- Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes du CNRS, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bahrami AR, Bastow R, Rolfe S, Price C, Gray JE. A role for nuclear localised proteasomes in mediating auxin action. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:691-8. [PMID: 12061900 DOI: 10.1046/j.1365-313x.2002.01320.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A number of important cellular events in animals and yeast are regulated by protein degradation, and it is becoming apparent that such regulated proteolysis is involved in many facets of plant physiology and development. We have investigated the role of protein degradation by proteasomes in plants using NtPSA1, a tobacco gene that is predominantly expressed in young developing tobacco tissues and has extensive homology to yeast and human alpha-type proteasome subunit genes. The NtPSA1 cDNA was used to complement a lethal mutation of the yeast PRC1 alpha subunit gene indicating that NtPSA1 encodes a functional proteasome subunit, and transient expression of an NtPSA1::GUS protein fusion in onion cells confirmed that the nuclear localisation signal that is present in the NtPSA1 peptide sequence is active in plant cells. Plants transformed with an antisense NtPSA1 gene had reduced levels of NtPSA1 mRNA and exhibited reduced apical dominance. In addition, these low NtPSA1 plants displayed several morphological defects associated with auxin resistance such as reduced stamen length, and showed increased tolerance to high concentrations of auxin. These results support a role for nuclear localised proteasomes in floral development and auxin responses.
Collapse
Affiliation(s)
- Ahmad R Bahrami
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
15
|
Lechner E, Goloubinoff P, Genschik P, Shen WH. A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of the gene in Arabidopsis. Gene 2002; 290:63-71. [PMID: 12062802 DOI: 10.1016/s0378-1119(02)00556-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Real interesting new gene (RING) finger proteins act as E3 ubiquitin-protein ligases and play critical roles in targeting the destruction of proteins of diverse functions in all eukaryotes, ranging from yeast to mammals. Arabidopsis genome contains a large number of genes encoding RING finger proteins. In this report we describe the identification of more than 40 RING-H2 finger proteins that are of small size, not more than 200 amino acids, and contain no other recognizable protein-protein interaction domain(s). We characterize RHA2b, one of these small RING-H2 finger genes. A gene trap line, SGT6304, was identified to contain a Dissociation (Ds) insertion in RHA2b gene. No RHA2b transcript was detected in the homozygous SGT6304 plants. Despite the elimination of RHA2b function, homozygous SGT6304 plants lacked detectable growth or development defects, suggesting functional redundancy of RHA2b with other RING finger genes. Expression of RHA2b was specifically active in vascular tissue and in upper pistil of inflorescence as well as in root tip and shoot apical meristem region. Potential functions of ubiquitin-proteolysis pathway in vascular formation and in fertilization are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Blotting, Northern
- Cells, Cultured
- DNA Transposable Elements/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genome, Plant
- Homozygote
- Indoleacetic Acids/pharmacology
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Phenotype
- Phylogeny
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, Strasbourg, France
| | | | | | | |
Collapse
|
16
|
Dahan J, Etienne P, Petitot AS, Houot V, Blein JP, Suty L. Cryptogein affects expression of alpha3, alpha6 and beta1 20S proteasome subunits encoding genes in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1947-8. [PMID: 11520884 DOI: 10.1093/jexbot/52.362.1947] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Twelve alpha and beta 20S proteasome subunits cDNAs showing 70-82% identity with the corresponding genes in Arabidopsis or rice, and features of eukaryotic proteasome subunits were cloned in tobacco. Only beta1-tcI 7, alpha3 and alpha6, 20S proteasome subunits encoding genes were up-regulated by cryptogein, a proteinaceous elicitor of plant defence reactions. These results led to the hypothesis that the activation of beta1-tcI 7, alpha3 and alpha6 could induce a specific proteolysis involved in the hypersensitive response and systemic acquired resistance monitored by cryptogein.
Collapse
Affiliation(s)
- J Dahan
- UMR INRA-Université de Bourgogne, Phytopharmacie et Biochimie des Interactions Cellulaires, INRA BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Farrás R, Ferrando A, Jásik J, Kleinow T, Ökrész L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 2001; 20:2742-56. [PMID: 11387208 PMCID: PMC125500 DOI: 10.1093/emboj/20.11.2742] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arabidopsis Snf1-related protein kinases (SnRKs) are implicated in pleiotropic regulation of metabolic, hormonal and stress responses through their interaction with the kinase inhibitor PRL1 WD-protein. Here we show that SKP1/ASK1, a conserved SCF (Skp1-cullin-F-box) ubiquitin ligase subunit, which suppresses the skp1-4 mitotic defect in yeast, interacts with the PRL1-binding C-terminal domains of SnRKs. The same SnRK domains recruit an SKP1/ASK1-binding proteasomal protein, alpha4/PAD1, which enhances the formation of a trimeric SnRK complex with SKP1/ASK1 in vitro. By contrast, PRL1 reduces the interaction of SKP1/ASK1 with SnRKs. SKP1/ASK1 is co-immunoprecipitated with a cullin SCF subunit (AtCUL1) and an SnRK kinase, but not with PRL1 from Arabidopsis cell extracts. SKP1/ASK1, cullin and proteasomal alpha-subunits show nuclear co-localization in differentiated Arabidopsis cells, and are observed in association with mitotic spindles and phragmoplasts during cell division. Detection of SnRK in purified 26S proteasomes and co-purification of epitope- tagged SKP1/ASK1 with SnRK, cullin and proteasomal alpha-subunits indicate that the observed protein interactions between SnRK, SKP1/ASK1 and alpha4/PAD1 are involved in proteasomal binding of an SCF ubiquitin ligase in Arabidopsis.
Collapse
Affiliation(s)
- Rosa Farrás
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Alejandro Ferrando
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Ján Jásik
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Tatjana Kleinow
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - László Ökrész
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Antonio Tiburcio
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Klaus Salchert
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Carlos del Pozo
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Jeff Schell
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| | - Csaba Koncz
- Max-Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany, Department of Plant Physiology, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovakia, Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Temesvári krt. 62, Hungary, Unitat de Fisiologia Vegetal, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Centro de Biologia Molecular ‘Severo Ochoa’, Cantoblanco, 28049 Madrid, Spain and Risoe National Laboratory, Plant Biology and Biogeochemistry Department, DK-4000 Roskilde, Denmark Corresponding author e-mail:
| |
Collapse
|
18
|
Krisch R, Rakowski K, Ratajczak R. Processing of V-ATPase subunit B of Mesembryanthemum crystallinum L. is mediated in vitro by a protease and/or reactive oxygen species. Biol Chem 2000; 381:583-92. [PMID: 10987365 DOI: 10.1515/bc.2000.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Soluble proteins were isolated from leaves of the common ice plant Mesembryanthemum crystallinum L. in the CAM state of photosynthesis and tested for protease activity using amino acid-beta-naphthylamide (NA)-derivatives in a search for proteolytic activity responsible for cleavage of the V-ATPase subunit B. This cleavage is suggested to occur at the peptide bond between Met192 and Glu193. At neutral pH Met-NA was one of seven derivatives which were cleaved by proteases present in this fraction. Enzymes exhibiting proteolytic activity were separated from other soluble proteins by Superose 12-size exclusion FPLC. Incubation of partially purified protease with tonoplast-enriched membrane vesicle fractions isolated from M. crystallinum in the C3-state of photosynthesis led to a decrease in subunit B (55 kDa) protein amount and to the formation of the polypeptide Di (32 kDa), which has been previously suggested to represent a fragment of subunit B. Cleavage of subunit B and the appearance of Di also occurred during incubation of tonoplast vesicles in the presence of reactive oxygen species. In addition to Di, the polypeptide Ei (28 kDa) appeared after incubation with protease and/or reactive oxygen species. Taken into account that Di and Ei cross-reacted with an affinity purified antiserum directed against subunit B, Di as well as Ei might represent fragments of subunit B. These results open new perspectives with respect to the regulation of V-ATPase modification and turnover.
Collapse
Affiliation(s)
- R Krisch
- Darmstadt University of Technology, Institute of Botany, Germany
| | | | | |
Collapse
|
19
|
Sassa H, Oguchi S, Inoue T, Hirano H. Primary structural features of the 20S proteasome subunits of rice (Oryza sativa). Gene 2000; 250:61-6. [PMID: 10854779 DOI: 10.1016/s0378-1119(00)00190-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 20S proteasome is the proteolytic complex that is involved in removing abnormal proteins, and it also has other diverse biological functions. Its structure comprises 28 subunits arranged in four rings of seven subunits, and exists as a hollow cylinder. The two outer rings and two inner rings form an alpha7beta7beta7alpha7 structure, and each subunit, alpha and beta, exists as seven different types, thus giving 14 kinds of subunits. In this study, we report the primary structures of the 14 proteasomal subunit subfamilies in rice (Oryza sativa), representing the first set for all of the subunits from monocots. Amino acid sequence homology within the rice family (alpha-type: 28.9-42.1%; beta-type: 17.2-31. 9%) were lower than those between rice subunits and corresponding orthologs from Arabidopsis and yeast (alpha-type: 49.2-94.5%; beta-type: 34.8-87.7%). Structural features observed in eukaryotic proteasome subunits, i.e., alpha- or beta-type signature at the N-termini, Thr active sites in beta1, beta2 and beta5 subunits, and nuclear localization signal-like sequences in some alpha-type subunits, were shown to be conserved in rice.
Collapse
Affiliation(s)
- H Sassa
- Kihara Institute for Biological Research & Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Japan
| | | | | | | |
Collapse
|
20
|
Fu H, Doelling JH, Rubin DM, Vierstra RD. Structural and functional analysis of the six regulatory particle triple-A ATPase subunits from the Arabidopsis 26S proteasome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:529-39. [PMID: 10417703 DOI: 10.1046/j.1365-313x.1999.00479.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The 26S proteasome is a multi-subunit ATP-dependent protease responsible for degrading most short-lived intracellular proteins targeted for breakdown by ubiquitin conjugation. The complex is composed of two relatively stable subparticles, the 20S proteasome, a hollow cylindrical structure which contains the proteolytic active sites in its lumen, and the 19S regulatory particle (RP) which binds to either end of the cylinder and provides the ATP-dependence and the specificity for ubiquitinated proteins. Among the approximately 18 subunits of the RP from yeast and animals are a set of six proteins, designated RPT1-6 for regulatory particle triple-A ATPase, that form a distinct family within the AAA superfamily. Presumably, these subunits use ATP hydrolysis to help assemble the 26S holocomplex, recognize and unfold appropriate substrates, and/or translocate the substrates to the 20S complex for degradation. Here, we describe the RPT gene family from Arabidopsis thaliana. From a collection of cDNAs and genomic sequences, a family of genes encoding all six of the RPT subunits was identified with significant amino acid sequence similarity to their yeast and animal counterparts. Five of the six RPT sub- units are encoded by two genes; the exception being RPT3 which is encoded by a single gene. mRNA for each of the six proteins is present in all tissue types examined. Five of the subunits (RPT1 and 3-6) complemented yeast mutants missing their respective orthologs, indicating that the yeast and Arabidopsis proteins are functionally equivalent. Taken together, these results demonstrate that the RP, like the 20S proteasome, is functionally and structurally conserved among eukaryotes and indicate that the plant RPT subunits, like their yeast counterparts, have non-redundant functions.
Collapse
Affiliation(s)
- H Fu
- Cellular and Molecular Biology Program and the Department of Horticulture, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
21
|
Tanaka K, Kasahara M. The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 1998; 163:161-76. [PMID: 9700509 DOI: 10.1111/j.1600-065x.1998.tb01195.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Production of antigenic peptides that serve as MHC class I ligands is essential for initiation of cell-mediated immunity. Accumulating evidence indicates that the proteasome, a large multisubunit protein deg radative machine in eukaryotes, functions as a processing enzyme responsible for the generation of MHC class I ligands. This processing system is elaborately regulated by various immunomodulatory cytokines. In particular, interferon-gamma induces the formation of immunoproteasomes and a recently identified proteasomal regulatory factor. PA28, which in concert contribute to efficient production of MHC class I ligands. Many of the MHC-encoded genes including LMP appear to have emerged by an ancient chromosomal duplication, suggesting that modifications and renewal of pre-existing non-immune genes were instrumental in the emergence of adaptive immunity.
Collapse
Affiliation(s)
- K Tanaka
- Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Japan.
| | | |
Collapse
|
22
|
Camilleri C, Lafleuriel J, Macadré C, Varoquaux F, Parmentier Y, Picard G, Caboche M, Bouchez D. A YAC contig map of Arabidopsis thaliana chromosome 3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:633-642. [PMID: 9675906 DOI: 10.1046/j.1365-313x.1998.00159.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have constructed a YAC contig map of Arabidopsis thaliana chromosome 3. From an estimated total size of 25 Mb, about 21 Mb were covered by 148 clones arranged into nine YAC contigs, which represented most of the low-copy regions of the chromosome. YAC clones were anchored with 259 molecular markers, including 111 for which linkage information was previously available. Most of the genetic map was included in the YAC coverage, and more than 60% of the genetic markers from the reference recombinant inbred line map were anchored, giving a high level of integration between the genetic and physical maps. The submetacentric structure of the chromosome was confirmed by physical data; 3R (the top arm of the linkage map) was about 12 Mb, and 3L (the bottom arm of the linkage map) was about 9 Mb. This YAC physical map will aid in chromosome walking experiments and provide a framework for large-scale DNA sequencing of chromosome 3.
Collapse
Affiliation(s)
- C Camilleri
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 1998; 149:677-92. [PMID: 9611183 PMCID: PMC1460176 DOI: 10.1093/genetics/149.2.677] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The 20S proteasome is the proteolytic complex in eukaryotes responsible for degrading short-lived and abnormal intracellular proteins, especially those targeted by ubiquitin conjugation. The 700-kD complex exists as a hollow cylinder comprising four stacked rings with the catalytic sites located in the lumen. The two outer rings and the two inner rings are composed of seven different alpha and beta polypeptides, respectively, giving an alpha7/beta7/beta7/alpha7 symmetric organization. Here we describe the molecular organization of the 20S proteasome from the plant Arabidopsis thaliana. From an analysis of a collection of cDNA and genomic clones, we identified a superfamily of 23 genes encoding all 14 of the Arabidopsis proteasome subunits, designated PAA-PAG and PBA-PBG for Proteasome Alpha and Beta subunits A-G, respectively. Four of the subunits likely are encoded by single genes, and the remaining subunits are encoded by families of at least 2 genes. Expression of the alpha and beta subunit genes appears to be coordinately regulated. Three of the nine Arabidopsis proteasome subunit genes tested, PAC1 (alpha3), PAE1 (alpha5) and PBC2 (beta3), could functionally replace their yeast orthologs, providing the first evidence for cross-species complementation of 20S subunit genes. Taken together, these results demonstrate that the 20S proteasome is structurally and functionally conserved among eukaryotes and suggest that the subunit arrangement of the Arabidopsis 20S proteasome is similar if not identical to that recently determined for the yeast complex.
Collapse
Affiliation(s)
- H Fu
- Cellular and Molecular Biology Program and the Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|