1
|
Ikeda Y, Fujii J. The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023; 12:2831. [PMID: 38132151 PMCID: PMC10741565 DOI: 10.3390/cells12242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City 990-9585, Japan
| |
Collapse
|
2
|
Zhang H, Forman HJ. Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol 2009; 41:509-15. [PMID: 19684307 DOI: 10.1165/rcmb.2009-0169tr] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
gamma-Glutamyl transpeptidase (GGT) catalyzes the transfer of the glutamyl moiety from glutathione, and glutathione S-conjugates to acceptors to form another amide or to water to produce free glutamate. Functionally, GGT plays important roles in glutathione homeostasis and mercapturic acid metabolism. The expression of GGT is increased as an adaptive response upon the exposure of oxidative stress. The underlying mechanism of this, however, is nebulous, as GGT gene structure is complex and its transcription is usually controlled by multiple promoters that generate several subtypes of GGT mRNAs. Studies reveal that signaling pathways such as Ras, ERK, p38MAPK, and PI3K are involved in the induction of GGT gene expression in response to oxidative stress. Thus, not surprisingly, induction of GGT mRNA subtypes and the involvement of multiple signaling pathways vary depending on cell type and stimuli.
Collapse
Affiliation(s)
- Hongqiao Zhang
- School of Natural Sciences, University of California, Merced, Merced, CA 95340, USA
| | | |
Collapse
|
3
|
Reuter S, Schnekenburger M, Cristofanon S, Buck I, Teiten MH, Daubeuf S, Eifes S, Dicato M, Aggarwal BB, Visvikis A, Diederich M. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1. Biochem Pharmacol 2009; 77:397-411. [PMID: 18996094 DOI: 10.1016/j.bcp.2008.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.
Collapse
Affiliation(s)
- Simone Reuter
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The human gamma-glutamyltransferase gene family. Hum Genet 2008; 123:321-32. [PMID: 18357469 DOI: 10.1007/s00439-008-0487-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Assays for gamma-glutamyl transferase (GGT1, EC 2.3.2.2) activity in blood are widely used in a clinical setting to measure tissue damage. The well-characterized GGT1 is an extracellular enzyme that is anchored to the plasma membrane of cells. There, it hydrolyzes and transfers gamma-glutamyl moieties from glutathione and other gamma-glutamyl compounds to acceptors. As such, it has a critical function in the metabolism of glutathione and in the conversion of the leukotriene LTC4 to LTD4. GGT deficiency in man is rare and for the few patients reported to date, mutations in GGT1 have not been described. These patients do secrete glutathione in urine and fail to metabolize LTC4. Earlier pre-genome investigations had indicated that besides GGT1, the human genome contains additional related genes or sequences. These sequences were given multiple different names, leading to inconsistencies and confusion. Here we systematically evaluated all human sequences related to GGT1 using genomic and cDNA database searches and identified thirteen genes belonging to the extended GGT family, of which at least six appear to be active. In collaboration with the HUGO Gene Nomenclature Committee (HGNC) we have designated possible active genes with nucleotide or amino acid sequence similarity to GGT1, as GGT5 (formerly GGL, GGTLA1/GGT-rel), GGT6 (formerly rat ggt6 homologue) and GGT7 (formerly GGTL3, GGT4). Two loci have the potential to encode only the light chain portion of GGT and have now been designated GGTLC1 (formerly GGTL6, GGTLA4) and GGTLC2. Of the five full-length genes, three lack of significant nucleotide sequence homology but have significant (GGT5, GGT7) or very limited (GGT6) amino acid similarity to GGT1 and belong to separate families. GGT6 and GGT7 have not yet been described, raising the possibility that leukotriene synthesis, glutathione metabolism or gamma-glutamyl transfer is regulated by their, as of yet uncharacterized, enzymatic activities. In view of the widespread clinical use of assays that measure gamma-glutamyl transfer activity, this would appear to be of significant interest.
Collapse
|
5
|
Abstract
gamma-Glutamyltranspeptidase is a heterodimeric glycoprotein that catalyzes the transpeptidation and hydrolysis of the gamma-glutamyl group of glutathione and related compounds. It is known that the enzyme plays a role in the metabolism of glutathione and in salvaging constituents of glutathione. In the adult animal, high levels of gamma-glutamyltranspeptidase are constitutively expressed in the kidney, intestine, and epididymis. On the other hand, although gamma-glutamyltranspeptidase is up-regulated in the liver during the perinatal stage, its expression is nearly undetectable in the adult. In addition, it has long been observed that the intake of certain xenobiotics, including carcinogens and drugs, induces the hepatic expression of the enzyme. This induction seems to be associated with both transcriptional regulation and the growth of certain types of cells in the injured liver. A number of studies have been carried out to explain the mechanism by which gamma-glutamyltranspeptidase expression is regulated. 5'-Untranslated regions of mRNAs of the enzyme differ in a tissue-specific manner but share a common protein coding region, and the tissue-specific and developmental stage-specific expression, as well as hepatic induction, are conferred by different promoters. As suggested by the capability of enzymatic activity-independent induction of osteoclasts, the expression of gamma-glutamyltranspeptidase may also be involved in various biological processes that are not directly associated with glutathione metabolism. This chapter briefly summarizes studies to date concerning the tissue-specific expression and induction of gamma-glutamyltranspeptidase and transcriptional regulation by the multiple promoter system is discussed.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Japan
| | | |
Collapse
|
6
|
Daubeuf S, Accaoui MJ, Pettersen I, Huseby NE, Visvikis A, Galteau MM. Differential regulation of gamma-glutamyltransferase mRNAs in four human tumour cell lines. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:67-73. [PMID: 11731087 DOI: 10.1016/s0304-4165(01)00201-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human gamma-glutamyltransferase (GGT) belongs to a multigenic family and at least three mRNAs are transcribed from the gene that codes for an active enzyme. Four human tumour cell lines (HepG2, LNCap, HeLa and U937) with different GGT levels were used to investigate how GGT activity, total GGT mRNA and each individual GGT mRNA subtype responded to tumour necrosis factor-alpha (TNF-alpha), 12-O-tetradecanoylphorbol 13-acetate (TPA) or sodium butyrate treatment. Butyrate reduced the GGT activity in HepG2 cells, and the level of total GGT mRNA accordingly, whereas TNF-alpha and TPA did not alter these parameters. In LNCap cells, TNF-alpha, TPA, and butyrate reduced the activity as well as the level of GGT total mRNA. In HeLa cells no significant changes were observed either in activity or in mRNA level whereas TPA induced both GGT activity and mRNA levels in U937 cells. The distribution of each GGT mRNA subtype (A, B and C) was found to be cell specific: type B mRNA was the major form in HepG2 cells, while type A was the major form in LNCap and HeLa, type A and type C were expressed almost at the same level in U937 cells. The GGT mRNA subtypes were also differently modulated in these cells after TNF-alpha, TPA or butyrate treatment, suggesting that they are regulated by distinct and cell type specific mechanisms.
Collapse
Affiliation(s)
- S Daubeuf
- Thiols et Fonctions Cellulaires, Faculté de Pharmacie, Université Henri Poincaré Nancy 1, France
| | | | | | | | | | | |
Collapse
|
7
|
Jacquinet E, Rao NV, Rao GV, Zhengming W, Albertine KH, Hoidal JR. Cloning and characterization of the cDNA and gene for human epitheliasin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2687-99. [PMID: 11322890 DOI: 10.1046/j.1432-1327.2001.02165.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we reported cloning and characterization of the mouse gene, epitheliasin. In the present work we cloned the cDNA of the full-length human orthologue and characterized its gene including 2 kb of 5' flanking sequence. Analysis of epitheliasin gene expression in adult tissues shows that it is expressed as 3.4 kb and 2 kb transcripts. The major 3.4 kb transcript is observed in the following order: prostate > colon > small intestine > pancreas > kidney > lung > liver. Epitheliasin transcripts in fetal tissues are observed only in kidney and lung. In situ hybridization analysis of tissues revealed that epitheliasin was preferentially expressed in epithelial cells. The gene consists of 14 exons and 13 introns based on comparison with its cDNA sequence. In the 5' flanking region, we identified two transcription start sites and three CpG islands encompassing a number of potential regulatory elements including SP1, SREBP, GRE/PRE and ERE. The region upstream of the transcription sites lacks a TATA box but contains an initiator-like element as well as a downstream promoter-like element. In vitro experiments with lymph node carcinoma of prostate (LNCaP) cells revealed that the epitheliasin gene was induced by androgens and the induction was not blocked by cycloheximide indicating that the induction required no intermediate protein factors. Immunoprecipitation analysis showed that androgens strongly increased epitheliasin protein levels.
Collapse
Affiliation(s)
- E Jacquinet
- Department of Internal Medicine, Division of Respiratory, Critical Care and Occupational Medicine, University of Utah Health Science Center and VA Medical Center, Salt Lake City, UT, USA
| | | | | | | | | | | |
Collapse
|
8
|
Chang KC. Critical regulatory domains in intron 2 of a porcine sarcomeric myosin heavy chain gene. J Muscle Res Cell Motil 2001; 21:451-61. [PMID: 11129436 DOI: 10.1023/a:1005625302409] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The porcine sarcomeric fast 2a myosin heavy chain (MyHC) gene was previously found to require a region extending 3' from the transcriptional start site for high levels of expression. Here we established the existence of two novel opposing regulatory domains in intron 2. A positive regulatory element, defined to a 75bp region, resembles a TATA-less intronic promoter, with a consensus transcription initiation element. It can up-regulate its endogenous or a heterologous muscle promoter in a position specific manner, and on its own drive a reporter gene. In tandem with it is a dominant negative regulatory element, localised to a 81bp region, which can down-regulate its native gene and a heterologous muscle promoter. Bandshift and DNase I footprinting assays demonstrated that specific nuclear factors bound to both regulatory elements are distinctly different. Both elements appear to have no counterpart in intron 2 of the porcine fast 2x and 2b MyHC genes. Taken together, we demonstrate for the first time that a 5'-end terminal intron of a sarcomeric MyHC gene contains two critical regulatory domains, which may be involved in the complexity of temporo-spatial expression.
Collapse
Affiliation(s)
- K C Chang
- Veterinary Molecular Medicine Laboratory, Department of Veterinary Pathology, University of Glasgow.
| |
Collapse
|
9
|
Visvikis A, Pawlak A, Accaoui MJ, Ichino K, Leh H, Guellaen G, Wellman M. Structure of the 5' sequences of the human gamma-glutamyltransferase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:317-25. [PMID: 11168366 DOI: 10.1046/j.1432-1033.2001.01881.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In humans, five distinct mRNAs code for gamma-glutamyltransferase (GGT). Their coding regions are identical and their 5' untranslated regions exhibit both common and type-specific sequences. To elucidate the mecanisms that generate these different mRNAs, we cloned and determined the structure of the 5' region of the human GGT gene. The common regions of the 5' UTR are encoded by five exons, localized within a 2.4-kb region of the genomic DNA. Three of them are separated only by intron-donor or intron-acceptor sites at their boundaries. Alternative splicing of these exons may determine the unique pattern of the different GGT mRNA 5' UTRs in a tissue-specific manner. In addition, we have isolated a genomic fragment containing the most distal 5' sequences of the major GGT mRNA in HepG2 cells. Primer extension analysis revealed one major transcription initiation site while 5' RACE indicated that one more distal initiation site could be present. In the putative promoter sequence neither classical TATA or CAAT boxes were found. However, sites for AP1, AP2, CREB, GRE and SP1 transcription factors were identified. Chimeric plasmids, containing this genomic region fused to the luciferase gene, were transiently expressed in three cell lines of different origin: HeLa cells, ovarian carcinoma A2780 cells and V79 lung fibroblasts. The significant promoter activities obtained indicate a transcription start within this region. However, differences in the level of expression were found between the different cell lines used. These data suggest that the human GGT gene employs regulatory sequences and alternative splicing, and gene expression may therefore be regulated in tissue specific and cell-type-specific manners.
Collapse
Affiliation(s)
- A Visvikis
- Centre du Médicament, EA 3117, Faculté de Pharmacie UHP Nancy 1, 30 rue Lionnois, 54000 Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Chikhi N, Holic N, Guellaen G, Laperche Y. Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol 1999; 122:367-80. [PMID: 10392451 DOI: 10.1016/s0305-0491(99)00013-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gamma-glutamyl transpeptidase (GGT) is an enzyme located at the external surface of epithelial cells. It initiates extracellular glutathione (GSH) breakdown, provides cells with a local cysteine supply and contributes to maintain intracellular GSH level. GGT expression, highly sensitive to oxidative stress, is a part of the cell antioxidant defense mechanisms. We describe recent advances in GGT gene structure and expression knowledge and put emphasis on the complex transcriptional organization of that gene and its conservation among different species. GGT gene structure has been elucidated in rat and mouse where a single gene is transcribed from multiple promoters into several transcripts which finally yield a unique polypeptidic chain. Analysis of rat, mouse, human and pig cDNA and gene sequences reveals a large conservation of the transcriptional organization of that gene. This complex structure provides flexibility in GGT expression controlled at the promoter level, through multiple regulatory sites, and at RNA level by alternate 5' untranslated sequences which may create a diversity in the stability and translational efficiency of the different transcripts. In conclusion, transcription of the GGT gene from several promoters offers multiple DNA and RNA targets for various oxidative stimuli and contributes to a broad antioxidant cell defense through GGT induction and subsequent cysteine supply from extracellular glutathione.
Collapse
Affiliation(s)
- N Chikhi
- INSERM Unité 99, Université Paris XII, Hôpital Henri Mondor, Créteil, France
| | | | | | | |
Collapse
|