1
|
Kummer E, Ban N. Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. EMBO J 2020; 39:e104820. [PMID: 32602580 PMCID: PMC7396830 DOI: 10.15252/embj.2020104820] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.
Collapse
Affiliation(s)
- Eva Kummer
- Department of BiologyInstitute of Molecular Biology and BiophysicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
| | - Nenad Ban
- Department of BiologyInstitute of Molecular Biology and BiophysicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
| |
Collapse
|
2
|
Zhang D, Yan K, Zhang Y, Liu G, Cao X, Song G, Xie Q, Gao N, Qin Y. New insights into the enzymatic role of EF-G in ribosome recycling. Nucleic Acids Res 2015; 43:10525-33. [PMID: 26432831 PMCID: PMC4666400 DOI: 10.1093/nar/gkv995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/19/2015] [Indexed: 12/30/2022] Open
Abstract
During translation, elongation factor G (EF-G) plays a catalytic role in tRNA translocation and a facilitative role in ribosome recycling. By stabilizing the rotated ribosome and interacting with ribosome recycling factor (RRF), EF-G was hypothesized to induce the domain rotations of RRF, which subsequently performs the function of splitting the major intersubunit bridges and thus separates the ribosome into subunits for recycling. Here, with systematic mutagenesis, FRET analysis and cryo-EM single particle approach, we analyzed the interplay between EF-G/RRF and post termination complex (PoTC). Our data reveal that the two conserved loops (loop I and II) at the tip region of EF-G domain IV possess distinct roles in tRNA translocation and ribosome recycling. Specifically, loop II might be directly involved in disrupting the main intersubunit bridge B2a between helix 44 (h44 from the 30S subunit) and helix 69 (H69 from the 50S subunit) in PoTC. Therefore, our data suggest a new ribosome recycling mechanism which requires an active involvement of EF-G. In addition to supporting RRF, EF-G plays an enzymatic role in destabilizing B2a via its loop II.
Collapse
Affiliation(s)
- Dejiu Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaige Yan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiwei Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guangqiao Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xintao Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangtao Song
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Xie
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Qin
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ermolenko DN, Cornish PV, Ha T, Noller HF. Antibiotics that bind to the A site of the large ribosomal subunit can induce mRNA translocation. RNA (NEW YORK, N.Y.) 2013; 19:158-66. [PMID: 23249745 PMCID: PMC3543091 DOI: 10.1261/rna.035964.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Chloramphenicol/metabolism
- Chloramphenicol/pharmacology
- Clindamycin/metabolism
- Clindamycin/pharmacology
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/drug effects
- Escherichia coli Proteins/metabolism
- Fluorescence Resonance Energy Transfer
- Lincomycin/metabolism
- Lincomycin/pharmacology
- Peptide Elongation Factor G/drug effects
- Peptide Elongation Factor G/metabolism
- Peptidyl Transferases/drug effects
- Peptidyl Transferases/metabolism
- Protein Biosynthesis/drug effects
- RNA Transport/drug effects
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- RNA, Transfer/drug effects
- RNA, Transfer/metabolism
- Ribosome Subunits, Large, Bacterial/drug effects
- Ribosome Subunits, Large, Bacterial/metabolism
- Sparsomycin/metabolism
- Sparsomycin/pharmacology
Collapse
Affiliation(s)
- Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
4
|
mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat Struct Mol Biol 2011; 18:457-62. [PMID: 21399643 PMCID: PMC3079290 DOI: 10.1038/nsmb.2011] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/15/2010] [Indexed: 11/09/2022]
Abstract
During protein synthesis, mRNA and tRNA undergo coupled translocation through the ribosome in a process that is catalyzed by elongation factor G (EF-G). On the basis of cryo-EM reconstructions, counterclockwise and clockwise rotational movements between the large and small ribosomal subunits have been implicated in a proposed ratcheting mechanism to drive the unidirectional movement of translocation. We used a combination of two fluorescence-based approaches to study the timing of these events, intersubunit fluorescence resonance energy transfer measurements to observe relative rotational movement of the subunits, and a fluorescence quenching assay to monitor translocation of mRNA. Binding of EF-G-GTP first induces rapid counterclockwise intersubunit rotation, followed by a slower, clockwise reversal of the rotational movement. We compared the rates of these movements and found that mRNA translocation occurs during the second, clockwise rotation event, corresponding to the transition from the hybrid state to the classical state.
Collapse
|
5
|
deLivron MA, Makanji HS, Lane MC, Robinson VL. A novel domain in translational GTPase BipA mediates interaction with the 70S ribosome and influences GTP hydrolysis. Biochemistry 2009; 48:10533-41. [PMID: 19803466 DOI: 10.1021/bi901026z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and beta-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.
Collapse
Affiliation(s)
- Megan A deLivron
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
6
|
Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 2009; 326:694-9. [PMID: 19833919 PMCID: PMC3763468 DOI: 10.1126/science.1179709] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Elongation factor G (EF-G) is a guanosine triphosphatase (GTPase) that plays a crucial role in the translocation of transfer RNAs (tRNAs) and messenger RNA (mRNA) during translation by the ribosome. We report a crystal structure refined to 3.6 angstrom resolution of the ribosome trapped with EF-G in the posttranslocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the guanosine triphosphate and guanosine diphosphate forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with the tRNA at the peptidyl-tRNA binding site (P site) and with mRNA shed light on the role of these elements in EF-G function. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure.
Collapse
Affiliation(s)
- Yong-Gui Gao
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | | | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
7
|
Thakor NS, Nechifor R, Scott PG, Keelan M, Taylor DE, Wilson KS. Chimeras of bacterial translation factors Tet(O) and EF-G. FEBS Lett 2008; 582:1386-90. [PMID: 18371310 DOI: 10.1016/j.febslet.2008.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 11/26/2022]
Abstract
Ribosomal protection proteins (RPPs) confer bacterial resistance to tetracycline by releasing this antibiotic from ribosomes stalled in protein synthesis. RPPs share structural similarity to elongation factor G (EF-G), which promotes ribosomal translocation during normal protein synthesis. We constructed and functionally characterized chimeric proteins of Campylobacter jejuni Tet(O), the best characterized RPP, and Escherichia coli EF-G. A distinctly conserved loop sequence at the tip of domain 4 is required for both factor-specific functions. Domains 3-5: (i) are necessary, but not sufficient, for functional specificity; and (ii) modulate GTP hydrolysis by EF-G, while minimally affecting Tet(O), under substrate turnover conditions.
Collapse
Affiliation(s)
- Nehal S Thakor
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | | | |
Collapse
|
8
|
Gao N, Zavialov AV, Ehrenberg M, Frank J. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 2007; 374:1345-58. [PMID: 17996252 DOI: 10.1016/j.jmb.2007.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/24/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a guanosine 5'-triphosphate (GTP)-hydrolysis-dependent manner. Based on a previous cryo-electron microscopy study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF-containing posttermination ribosome triggers an interdomain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9-A (Fourier shell correlation cutoff of 0.5) cryo-electron microscopy map of a 50S x EF-G x guanosine 5'-[(betagamma)-imido]triphosphate x RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the noncleavable GTP analogue guanosine 5'-[(betagamma)-imido]triphosphate. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in transfer RNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G's domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits.
Collapse
Affiliation(s)
- Ning Gao
- Howard Hughes Medical Institute, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
9
|
Kovtun AA, Minchenko AG, Gudkov AT. Mutation analysis of the functional role of amino acid residues in domain IV of elongation factor G. Mol Biol 2006. [DOI: 10.1134/s0026893306050116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Hansson S, Singh R, Gudkov AT, Liljas A, Logan DT. Structural insights into fusidic acid resistance and sensitivity in EF-G. J Mol Biol 2005; 348:939-49. [PMID: 15843024 DOI: 10.1016/j.jmb.2005.02.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/25/2005] [Accepted: 02/27/2005] [Indexed: 11/26/2022]
Abstract
Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups.
Collapse
Affiliation(s)
- Sebastian Hansson
- Department of Molecular Biophysics, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
11
|
Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 2004; 47:3675-81. [PMID: 14638464 PMCID: PMC296194 DOI: 10.1128/aac.47.12.3675-3681.2003] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sean R Connell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
12
|
Kolesnikov A, Gudkov A. Elongation factor G with effector loop from elongation factor Tu is inactive in translocation. FEBS Lett 2002; 514:67-9. [PMID: 11904183 DOI: 10.1016/s0014-5793(02)02300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elongation factors Tu and G (EF-Tu and EF-G) alternately interact with the ribosome during the elongation phase of protein biosynthesis. The function of both factors depends on GTP binding, and the factors are ascribed to a superfamily of G-proteins. All G-proteins contain the effector loop, a structural element that is important for the protein's interaction with its target molecule. In this study the effector loop of EF-G was replaced by the loop taken from EF-Tu. The EF-G with EF-Tu loop has markedly decreased GTPase activity and did not catalyze translocation. We conclude that these loops are not functionally interchangeable since the factors interact with different states of the ribosome.
Collapse
Affiliation(s)
- Alexander Kolesnikov
- Institute of Protein Research, Russian Academy of Sciences, 142290, Moscow Region, Pushchino, Russia
| | | |
Collapse
|
13
|
Martemyanov KA, Gudkov AT. Domain III of elongation factor G from Thermus thermophilus is essential for induction of GTP hydrolysis on the ribosome. J Biol Chem 2000; 275:35820-4. [PMID: 10940297 DOI: 10.1074/jbc.m002656200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two elongation factors (EF) EF-Tu and EF-G participate in the elongation phase during protein biosynthesis on the ribosome. Their functional cycles depend on GTP binding and its hydrolysis. The EF-Tu complexed with GTP and aminoacyl-tRNA delivers tRNA to the ribosome, whereas EF-G stimulates translocation, a process in which tRNA and mRNA movements occur in the ribosome. In the present paper we report that: (a) intrinsic GTPase activity of EF-G is influenced by excision of its domain III; (b) the EF-G lacking domain III has a 10(3)-fold decreased GTPase activity on the ribosome, whereas its affinity for GTP is slightly decreased; and (c) the truncated EF-G does not stimulate translocation despite the physical presence of domain IV, which is also very important for translocation. By contrast, the interactions of the truncated factor with GDP and fusidic acid-dependent binding of EF-G.GDP complex to the ribosome are not influenced. These findings indicate an essential contribution of domain III to activation of GTP hydrolysis. These results also suggest conformational changes of the EF-G molecule in the course of its interaction with the ribosome that might be induced by GTP binding and hydrolysis.
Collapse
Affiliation(s)
- K A Martemyanov
- Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | | |
Collapse
|
14
|
Laurberg M, Kristensen O, Martemyanov K, Gudkov AT, Nagaev I, Hughes D, Liljas A. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 2000; 303:593-603. [PMID: 11054294 DOI: 10.1006/jmbi.2000.4168] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of Thermus thermophilus elongation factor G (EF-G) carrying the point mutation His573Ala was determined at a resolution of 2.8 A. The mutant has a more closed structure than that previously reported for wild-type EF-G. This is obtained by a 10 degrees rigid rotation of domains III, IV and V with regard to domains I and II. This rotation results in a displacement of the tip of domain IV by approximately 9 A. The structure of domain III is now fully visible and reveals the double split beta-alpha-beta motif also observed for EF-G domain V and for several ribosomal proteins. A large number of fusidic acid resistant mutations found in domain III have now been possible to locate. Possible locations for the effector loop and a possible binding site for fusidic acid are discussed in relation to some of the fusidic acid resistant mutations.
Collapse
Affiliation(s)
- M Laurberg
- Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, Lund, SE-221 00, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Savelsbergh A, Matassova NB, Rodnina MV, Wintermeyer W. Role of domains 4 and 5 in elongation factor G functions on the ribosome. J Mol Biol 2000; 300:951-61. [PMID: 10891280 DOI: 10.1006/jmbi.2000.3886] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elongation factor G (EF-G) is a large, five domain GTPase that catalyses the translocation of the tRNAs on the bacterial ribosome at the expense of GTP. In the crystal structure of GDP-bound EF-G, domain 1 (G domain) makes direct contacts with domains 2 and 5, whereas domain 4 protrudes from the body of the molecule. Here, we show that the presence of both domains 4 and 5 is essential for tRNA translocation and for the turnover of the factor on the ribosome, but not for rapid single-round GTP hydrolysis by EF-G. Replacement of a highly conserved histidine residue at the tip of domain 4, His583, with lysine or arginine decreases the rate of tRNA translocation at least 100-fold, whereas the binding of the factor to the ribosome, GTP hydrolysis and P(i) release are not affected by the mutations. Various small deletions in the tip region of domain 4 decrease the translocation activity of EF-G even further, but do not block the turnover of the factor. Unlike native EF-G, the mutants of EF-G lacking domains 4/5 do not interact with the alpha-sarcin stem-loop of 23 S rRNA. These mutants are not released from the ribosome after GTP hydrolysis or translocation, indicating that the contact with, or a conformational change of, the alpha-sarcin stem-loop is required for EF-G release from the ribosome.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Binding Sites
- Catalysis
- Conserved Sequence
- Crystallography, X-Ray
- Endoribonucleases/metabolism
- Escherichia coli/chemistry
- Fungal Proteins
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Structure, Tertiary
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Deletion/genetics
- Sulfuric Acid Esters/metabolism
Collapse
Affiliation(s)
- A Savelsbergh
- Institute of Molecular Biology, University of Witten/Herdecke, Witten, 58448, Germany
| | | | | | | |
Collapse
|
16
|
Martemyanov KA, Liljas A, Gudkov AT. Extremely thermostable elongation factor G from Aquifex aeolicus: cloning, expression, purification, and characterization in a heterologous translation system. Protein Expr Purif 2000; 18:257-61. [PMID: 10733877 DOI: 10.1006/prep.1999.1178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fus gene of the translation factor G (EF-G) from the hyperthermophilic bacterium Aquifex aeolicus was cloned under control of a phage promoter and overexpressed in Escherichia coli with the T7 RNA polymerase system. A heat denaturation step at 95 degrees C was used to purify the protein from the cell extract. This approach simplified the chromatographic procedures and decreased the protein loss since most of Escherichia coli proteins were denatured and precipitated. Ten milligrams of the highly purified protein was isolated from 4 liters of induced culture. The overproduced EF-G was active in ribosome-dependent GTP hydrolysis and a poly(U)-directed polyphenylalanine translation system with E. coli 70S ribosomes. The method presented here might facilitate functional and structural studies of important components of the protein biosynthesis system.
Collapse
Affiliation(s)
- K A Martemyanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia
| | | | | |
Collapse
|
17
|
Martemyanov KA, Gudkov AT. Domain IV of elongation factor G from Thermus thermophilus is strictly required for translocation. FEBS Lett 1999; 452:155-9. [PMID: 10386581 DOI: 10.1016/s0014-5793(99)00635-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two truncated variants of elongation factor G from Thermus thermophilus with deletion of its domain IV have been constructed and the mutated genes were expressed in Escherichia coli. The truncated factors were produced in a soluble form and retained a high thermostability. It was demonstrated that mutated factors possessed (1) a reduced affinity to the ribosomes with an uncleavable GTP analog and (2) a specific ribosome-dependent GTPase activity. At the same time, in contrast to the wild-type elongation factor G, they were incapable to promote translocation. The conclusions are drawn that (1) domain IV is not involved in the GTPase activity of elongation factor G, (2) it contributes to the binding of elongation factor G with the ribosome and (3) is strictly required for translocation. These results suggest that domain IV might be directly involved in translocation and GTPase activity of the factor is not directly coupled with translocation.
Collapse
Affiliation(s)
- K A Martemyanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino
| | | |
Collapse
|