1
|
de Melo-Braga MN, Moreira RDS, Gervásio JHDB, Felicori LF. Overview of protein posttranslational modifications in Arthropoda venoms. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210047. [PMID: 35519418 PMCID: PMC9036706 DOI: 10.1590/1678-9199-jvatitd-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Accidents with venomous animals are a public health issue worldwide. Among the species involved in these accidents are scorpions, spiders, bees, wasps, and other members of the phylum Arthropoda. The knowledge of the function of proteins present in these venoms is important to guide diagnosis, therapeutics, besides being a source of a large variety of biotechnological active molecules. Although our understanding about the characteristics and function of arthropod venoms has been evolving in the last decades, a major aspect crucial for the function of these proteins remains poorly studied, the posttranslational modifications (PTMs). Comprehension of such modifications can contribute to better understanding the basis of envenomation, leading to improvements in the specificities of potential therapeutic toxins. Therefore, in this review, we bring to light protein/toxin PTMs in arthropod venoms by accessing the information present in the UniProtKB/Swiss-Prot database, including experimental and putative inferences. Then, we concentrate our discussion on the current knowledge on protein phosphorylation and glycosylation, highlighting the potential functionality of these modifications in arthropod venom. We also briefly describe general approaches to study "PTM-functional-venomics", herein referred to the integration of PTM-venomics with a functional investigation of PTM impact on venom biology. Furthermore, we discuss the bottlenecks in toxinology studies covering PTM investigation. In conclusion, through the mining of PTMs in arthropod venoms, we observed a large gap in this field that limits our understanding on the biology of these venoms, affecting the diagnosis and therapeutics development. Hence, we encourage community efforts to draw attention to a better understanding of PTM in arthropod venom toxins.
Collapse
Affiliation(s)
- Marcella Nunes de Melo-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raniele da Silva Moreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - João Henrique Diniz Brandão Gervásio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Asahina Y, Ando T, Hojo H. Toward the chemical syntheses of fucosylated peptides: A combination of protecting groups for the hydroxy groups of fucose. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuya Asahina
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| | - Tatsuya Ando
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871
| |
Collapse
|
3
|
Maatoug S, Cheikh A, Khamessi O, Tabka H, Landoulsi Z, Guigonis JM, Diochot S, Bendahhou S, Benkhalifa R. Cross Pharmacological, Biochemical and Computational Studies of a Human Kv3.1b Inhibitor from Androctonus australis Venom. Int J Mol Sci 2021; 22:ijms222212290. [PMID: 34830172 PMCID: PMC8618407 DOI: 10.3390/ijms222212290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.
Collapse
Affiliation(s)
- Sonia Maatoug
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| | - Amani Cheikh
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Oussema Khamessi
- Laboratoire des Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia;
| | - Hager Tabka
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 7021, Tunisia
| | - Zied Landoulsi
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l′Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d’Azur, F-06107 Nice, France;
| | - Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France;
| | - Saïd Bendahhou
- UMR7370 CNRS, LP2M, Université Côte d’Azur, Labex ICST, Nice, France;
| | - Rym Benkhalifa
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| |
Collapse
|
4
|
Li YL, Qu Q, Qi YK, Liu L, Wang KW, Liu Y, Fang GM. Comparison of different strategies towards the chemical synthesis of long-chain scorpion toxin AaH-II. J Pept Sci 2021; 28:e3365. [PMID: 34467600 DOI: 10.1002/psc.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
Long-chain scorpion toxin AaH-II isolated from Androctonus australis Hector can selectively inhibit mammalian voltage-gated sodium ion channel Nav 1.7 responsible for pain sensation. Efficient chemical synthesis of AaH-II and its derivatives is beneficial to the study of the function and mechanism of Nav 1.7 and the development of potential peptide inhibitors. Herein, we compared three different strategies, namely, direct solid-phase peptide synthesis, hydrazide-based two-segment native chemical ligation, and hydrazide-based three-segment native chemical ligation for the synthesis of AaH-II. The hydrazide-based two-segment native chemical ligation affords the target toxin with the optimal efficiency, which provides a practically robust procedure for the preparation of tool molecules derived from AaH-II to study the biological functions and modulation of Nav 1.7. Our work highlights the importance of selecting suitable segment condensation approach in the chemical synthesis of protein toxins.
Collapse
Affiliation(s)
- Yu-Lei Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yun-Kun Qi
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ke Wei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ge-Min Fang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
5
|
Miyashita M, Mitani N, Kitanaka A, Yakio M, Chen M, Nishimoto S, Uchiyama H, Sue M, Hotta H, Nakagawa Y, Miyagawa H. Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2020; 191:25-37. [PMID: 33340503 DOI: 10.1016/j.toxicon.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Scorpion venom contains a variety of biologically active peptides. Among them, neurotoxins are major components in the venom, but it also contains peptides that show antimicrobial activity. Previously, we identified three insecticidal peptides from the venom of the Liocheles australasiae scorpion, but activities and structures of other venom components remained unknown. In this study, we performed a transcriptome analysis of the venom gland of the scorpion L. australasiae to gain a comprehensive understanding of its venom components. The result shows that potassium channel toxin-like peptides were the most diverse, whereas only a limited number of sodium channel toxin-like peptides were observed. In addition to these neurotoxin-like peptides, many non-disulfide-bridged peptides were identified, suggesting that these components have some critical roles in the L. australasiae venom. In this study, we also isolated a component with antiviral activity against hepatitis C virus using a bioassay-guided fractionation approach. By integrating mass spectrometric and transcriptomic data, we successfully identified LaPLA2-1 as an anti-HCV component. LaPLA2-1 is a phospholipase A2 having a heterodimeric structure that is N-glycosylated at the N-terminal region. Since the antiviral activity of LaPLA2-1 was inhibited by a PLA2 inhibitor, the enzymatic activity of LaPLA2-1 is likely to be involved in its antiviral activity.
Collapse
Affiliation(s)
- Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Naoya Mitani
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Kitanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mao Yakio
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ming Chen
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan
| | - Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hak Hotta
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Touchard A, Téné N, Song PCT, Lefranc B, Leprince J, Treilhou M, Bonnafé E. Deciphering the Molecular Diversity of an Ant Venom Peptidome through a Venomics Approach. J Proteome Res 2018; 17:3503-3516. [DOI: 10.1021/acs.jproteome.8b00452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Axel Touchard
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Nathan Téné
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Philippe Chan Tchi Song
- Normandie Univ, UNIROUEN, Institut de Recherche et d’Innovation Biomédicale (IRIB), 76000 Rouen, France
| | - Benjamin Lefranc
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000 Rouen, France
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| | - Elsa Bonnafé
- Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012 Albi, France
| |
Collapse
|
7
|
Cassoli JS, Verano-Braga T, Oliveira JS, Montandon GG, Cologna CT, Peigneur S, Pimenta AMDC, Kjeldsen F, Roepstorff P, Tytgat J, de Lima ME. The proteomic profile of Stichodactyla duerdeni secretion reveals the presence of a novel O-linked glycopeptide. J Proteomics 2013; 87:89-102. [DOI: 10.1016/j.jprot.2013.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 01/05/2023]
|
8
|
Verano-Braga T, Dutra AAA, León IR, Melo-Braga MN, Roepstorff P, Pimenta AMC, Kjeldsen F. Moving Pieces in a Venomic Puzzle: Unveiling Post-translationally Modified Toxins from Tityus serrulatus. J Proteome Res 2013; 12:3460-70. [DOI: 10.1021/pr4003068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thiago Verano-Braga
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alexandre A. A. Dutra
- Department
of Biochemistry and
Immunology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ileana R. León
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcella N. Melo-Braga
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Adriano M. C. Pimenta
- Department
of Biochemistry and
Immunology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Frank Kjeldsen
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Caliskan F, García BI, Coronas FIV, Restano-Cassulini R, Korkmaz F, Sahin Y, Corzo G, Possani LD. Purification and cDNA cloning of a novel neurotoxic peptide (Acra3) from the scorpion Androctonus crassicauda. Peptides 2012; 37:106-12. [PMID: 22819772 DOI: 10.1016/j.peptides.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023]
Abstract
Androctonus crassicauda is one of the Southeastern Anatolian scorpions of Turkey with ethno-medical and toxicological importance. Two toxic peptides (Acra1 and Acra2) were isolated and characterized from the venom of this scorpion. In this communication, the isolation of an additional toxin (Acra3) by chromatographic separations (HPLC and TSK-gel sulfopropyl) and its chemical and functional characterization is reported. Acra3 is a 7620Da molecular weight peptide, with 66 amino acid residues crosslinked by four disulfide bridges. The gene coding for this peptide was cloned and sequenced. Acra3 is anticipated to undergo post-translational modifications at the C-terminal region, having an amidated serine as last residue. Injection of Acra3 induces severe neurotoxic events in mice, such as: excitability and convulsions, leading to the death of the animals within a few minutes after injection. Electrophysiological assays conducted with pure Acra3, using cells that specifically expressed sodium channels (Nav1.1-Nav1.6) showed no clear effect. The exact molecular target of Acra3 remained undiscovered, similar to three other scorpion peptides that clustered very closely in the phylogenetic tree included here. The exact target of these four peptides is not very clear.
Collapse
Affiliation(s)
- Figen Caliskan
- Department of Biology, Faculty of Science and Art, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nie Y, Zeng XC, Luo X, Wu S, Zhang L, Cao H, Zhou J, Zhou L. Tremendous intron length differences of the BmKBT and a novel BmKBT-like peptide genes provide a mechanical basis for the rapid or constitutive expression of the peptides. Peptides 2012; 37:150-6. [PMID: 22705625 DOI: 10.1016/j.peptides.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022]
Abstract
The cDNA sequence encoding a novel BmKBT-like peptide (referred to as BmKBy) was cloned and sequenced from the scorpion Mesobuthus martensii Karsch. Functional analysis indicated that both BmKBT and BmKBy possess strong toxicity in mice, but very weak toxicity in cotton bollworm. Phylogenetic analysis showed that BmKBy and BmKBT represent evolutionary intermediates between the α- and β-toxins from scorpions. The genomic sequences of BmKBT and BmKBy were also obtained. It is interesting to see that two genes, which contain an intron of 225 and 1529bp, respectively, exactly code for the BmKBT peptide. One gene, which contains an intron of 1312bp, codes for BmKBy. Given that genes with long introns favor constitutive expression, whereas those with short introns are rapidly regulated in response to stimulations, the BmKBT_a and BmKBT_b genes provide a mechanical basis for either constitutive expression or rapid generation of the toxic peptides in response to different signals.
Collapse
Affiliation(s)
- Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
The tale of a resting gland: Transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon 2011; 57:695-703. [DOI: 10.1016/j.toxicon.2011.02.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 12/20/2022]
|
12
|
Escoubas P, Quinton L, Nicholson GM. Venomics: unravelling the complexity of animal venoms with mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:279-295. [PMID: 18302316 DOI: 10.1002/jms.1389] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Animal venoms and toxins are now recognized as major sources of bioactive molecules that may be tomorrow's new drug leads. Their complexity and their potential as drug sources have been demonstrated by application of modern analytical technologies, which have revealed venoms to be vast peptide combinatorial libraries. Structural as well as pharmacological diversity is immense, and mass spectrometry is now one of the major investigative tools for the structural investigation of venom components. Recent advances in its use in the study of venom and toxins are reviewed. The application of mass spectrometry techniques to peptide toxin sequence determination by de novo sequencing is discussed in detail, in the light of the search for novel analgesic drugs. We also present the combined application of LC-MALDI separation with mass fingerprinting and ISD fragmentation for the determination of structural and pharmacological classes of peptides in complex spider venoms. This approach now serves as the basis for the full investigation of complex spider venom proteomes, in combination with cDNA analysis.
Collapse
Affiliation(s)
- P Escoubas
- Université de Nice-Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, 06560 Valbonne, France.
| | | | | |
Collapse
|
13
|
De Lima ME, Figueiredo SG, Pimenta AMC, Santos DM, Borges MH, Cordeiro MN, Richardson M, Oliveira LC, Stankiewicz M, Pelhate M. Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:264-279. [PMID: 17218159 DOI: 10.1016/j.cbpc.2006.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 12/18/2022]
Abstract
Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors. Scorpions and spiders have provided the greatest number of the neurotoxins studied so far, for which, a good number of primary and 3D structures have been obtained. Structural features, comprising a folding that determines a similar spatial distribution of charged and hydrophobic side chains of specific amino acids, are strikingly common among the toxins from spider and scorpion venoms. Such similarities are, in turn, the key feature to target and bind these proteins to ionic channels. The search for new insecticidal compounds, as well as the study of their modes of action, constitutes a current approach to rationally design novel insecticides. This goal tends to be more relevant if the resistance to the conventional chemical products is considered. A promising alternative seems to be the biotechnological approach using toxin-expressing recombinant baculovirus. Spider and scorpion toxins having insecticidal activity are reviewed here considering their structures, toxicities and action mechanisms in sodium channels of excitable membranes.
Collapse
Affiliation(s)
- M E De Lima
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.
| | - S G Figueiredo
- Centro de Ciências Fisiológicas, CBM - Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A M C Pimenta
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - D M Santos
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - M H Borges
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M N Cordeiro
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M Richardson
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - L C Oliveira
- Departamento de Farmácia Bioquímica - Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, MG, Brasil
| | - M Stankiewicz
- Laboratory of Biophysics - Institute of General and Molecular Biology, N. Copernicus University, 87-100, Torun, Poland
| | - M Pelhate
- Lab. Récepteurs et Canaux Ioniques Membranaires, Université d'Angers, 49045, Angers, France
| |
Collapse
|
14
|
Chai ZF, Zhu MM, Bai ZT, Liu T, Tan M, Pang XY, Ji YH. Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J 2006; 399:445-53. [PMID: 16800812 PMCID: PMC1615898 DOI: 10.1042/bj20060035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, BmK alphaIV, a novel modulator of sodium channels, was cloned from venomous glands of the Chinese scorpion (Buthus martensi Karsch) and expressed successfully in Escherichia coli. The BmK alphaIV gene is composed of two exons separated by a 503 bp intron. The mature polypeptide contains 66 amino acids. BmK alphaIV has potent toxicity in mice and cockroaches. Surface-plasmon-resonance analysis found that BmK alphaIV could bind to both rat cerebrocortical synaptosomes and cockroach neuronal membranes, and shared similar binding sites on sodium channels with classical AaH II (alpha-mammal neurotoxin from the scorpion Androctonus australis Hector), BmK AS (beta-like neurotoxin), BmK IT2 (the depressant insect-selective neurotoxin) and BmK abT (transitional neurotoxin), but not with BmK I (alpha-like neurotoxin). Two-electrode voltage clamp recordings on rNav1.2 channels expressed in Xenopus laevis oocytes revealed that BmK alphaIV increased the peak amplitude and prolonged the inactivation phase of Na+ currents. The structural and pharmacological properties compared with those of other scorpion alpha-toxins suggests that BmK alphaIV represents a novel subgroup or functional hybrid of alpha-toxins and might be an evolutionary intermediate neurotoxin for alpha-toxins.
Collapse
Affiliation(s)
- Zhi-Fang Chai
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Mang-Mang Zhu
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Zhan-Tao Bai
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tong Liu
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Miao Tan
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xue-Yan Pang
- †School of Life Sciences of Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong-Hua Ji
- *Graduate School of the Chinese Academy of Sciences, Shanghai Institute of Physiology, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- †School of Life Sciences of Shanghai University, Shanghai 200444, People's Republic of China
- To whom correspondence should be addressed (email or )
| |
Collapse
|
15
|
Pimenta AMC, De Lima ME. Small peptides, big world: biotechnological potential in neglected bioactive peptides from arthropod venoms. J Pept Sci 2005; 11:670-6. [PMID: 16103988 DOI: 10.1002/psc.701] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Until recently, a toxinologist's tasks involved the search for highly toxic or lethal toxins in animal venoms that could explain the harmful effects in clinically observed symptoms. Most of these toxins were put on evidence using a function to structure approach, in which a biological phenomena observation usually guided the isolation and characterization of the causative molecule. Paving this way, many toxins were promptly purified because of their readily observed effect. Nevertheless, small molecules with micro-effects that are not easily visualized can be relatively neglected or poorly studied. This situation has changed now with the advent of the sensitivity, resolution and accuracy of techniques such as mass spectrometry and proteomic approaches used in toxinology. Taking advantage of these methodologies, small peptides with 'newly exploited' biological activities such as vasoactive, hormone-like, antimicrobial and others have been recently given much more attention, enlarging the known repertoire of bioactive molecules found in animal venoms. This article aims to review current knowledge on small biologically active peptides (<3 kDa) found in arthropod venoms and discuss their potentialities as new drug candidates or therapeutic lead compounds.
Collapse
Affiliation(s)
- Adriano M C Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | |
Collapse
|
16
|
Alami M, Vacher H, Bosmans F, Devaux C, Rosso JP, Bougis PE, Tytgat J, Darbon H, Martin-Eauclaire MF. Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochem J 2003; 375:551-60. [PMID: 12911331 PMCID: PMC1223727 DOI: 10.1042/bj20030688] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 08/01/2003] [Accepted: 08/11/2003] [Indexed: 11/17/2022]
Abstract
The venom of the scorpion Androctonus mauretanicus mauretanicus was screened by use of a specific serum directed against AaH II, the scorpion alpha-toxin of reference, with the aim of identifying new analogues. This led to the isolation of Amm VIII (7382.57 Da), which gave a highly positive response in ELISA, but was totally devoid of toxicity when injected subcutaneously into mice. In voltage-clamp experiments with rat brain type II Na+ channel rNa(v)1.2 or rat skeletal muscle Na+ channel rNa(v)1.4, expressed in Xenopus oocytes, the EC50 values of the toxin-induced slowing of inactivation were: 29+/-5 and 416+/-14 nM respectively for AmmVIII and 2.6+/-0.3 nM and 2.2+/-0.2 nM, respectively, for AaH II interactions. Accordingly, Amm VIII clearly discriminates neuronal versus muscular Na+ channel. The Amm VIII cDNA was amplified from a venom gland cDNA library and its oligonucleotide sequence determined. It shows 87% sequence homology with AaH II, but carries an unusual extension at its C-terminal end, consisting of an additional Asp due to a point mutation in the cDNA penultimate codon. We hypothesized that this extra amino acid residue could induce steric hindrance and dramatically reduce recognition of the target by Amm VIII. We constructed a model of Amm VIII based on the X-ray structure of AaH II to clarify this point. Molecular modelling showed that this C-terminal extension does not lead to an overall conformational change in Amm VIII, but drastically modifies the charge repartition and, consequently, the electrostatic dipole moment of the molecule. At last, liquid-phase radioimmunassays with poly- and monoclonal anti-(AaH II) antibodies showed the loss of conformational epitopes between AaH II and Amm VIII.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Dose-Response Relationship, Drug
- Female
- Injections, Intraventricular
- Injections, Subcutaneous
- Lethal Dose 50
- Membrane Potentials/drug effects
- Mice
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Neurons/metabolism
- Oocytes/drug effects
- Oocytes/physiology
- Scorpion Venoms/chemistry
- Scorpion Venoms/genetics
- Scorpion Venoms/pharmacology
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Channels/drug effects
- Sodium Channels/genetics
- Sodium Channels/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Xenopus laevis
Collapse
Affiliation(s)
- Meriem Alami
- CNRS UMR 6560, Ingénierie des Protéines, Faculté de Médecine secteur Nord, Institut Jean Roche, Université de la Méditerranée, Bd Pierre Dramard, 13916, Marseille, Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gordon D, Ilan N, Zilberberg N, Gilles N, Urbach D, Cohen L, Karbat I, Froy O, Gaathon A, Kallen RG, Benveniste M, Gurevitz M. An 'Old World' scorpion beta-toxin that recognizes both insect and mammalian sodium channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2663-70. [PMID: 12787033 DOI: 10.1046/j.1432-1033.2003.03643.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Scorpion toxins that affect sodium channel (NaCh) gating in excitable cells are divided into alpha- and beta-classes. Whereas alpha-toxins have been found in scorpions throughout the world, anti-mammalian beta-toxins have been assigned, thus far, to 'New World' scorpions while anti-insect selective beta-toxins (depressant and excitatory) have been described only in the 'Old World'. This distribution suggested that diversification of beta-toxins into distinct pharmacological groups occurred after the separation of the continents, 150 million years ago. We have characterized a unique toxin, Lqhbeta1, from the 'Old World' scorpion, Leiurus quinquestriatus hebraeus, that resembles in sequence and activity both 'New World'beta-toxins as well as 'Old World' depressant toxins. Lqhbeta1 competes, with apparent high affinity, with anti-insect and anti-mammalian beta-toxins for binding to cockroach and rat brain synaptosomes, respectively. Surprisingly, Lqhbeta1 also competes with an anti-mammalian alpha-toxin on binding to rat brain NaChs. Analysis of Lqhbeta1 effects on rat brain and Drosophila Para NaChs expressed in Xenopus oocytes revealed a shift in the voltage-dependence of activation to more negative membrane potentials and a reduction in sodium peak currents in a manner typifying beta-toxin activity. Moreover, Lqhbeta1 resembles beta-toxins by having a weak effect on cardiac NaChs and a marked effect on rat brain and skeletal muscle NaChs. These multifaceted features suggest that Lqhbeta1 may represent an ancestral beta-toxin group in 'Old World' scorpions that gave rise, after the separation of the continents, to depressant toxins in 'Old World' scorpions and to various beta-toxin subgroups in 'New World' scorpions.
Collapse
Affiliation(s)
- Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Singer AG, Ghomashchi F, Le Calvez C, Bollinger J, Bezzine S, Rouault M, Sadilek M, Nguyen E, Lazdunski M, Lambeau G, Gelb MH. Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A2. J Biol Chem 2002; 277:48535-49. [PMID: 12359733 DOI: 10.1074/jbc.m205855200] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A(2) (sPLA(2)s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA(2)s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1-225 microm range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA(2)s, with Me-Indoxam being the most generally potent sPLA(2) inhibitor. A dramatic correlation exists between the ability of the sPLA(2)s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA(2)s are uniquely efficient in this regard.
Collapse
Affiliation(s)
- Alan G Singer
- Department of Chemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vacher H, Alami M, Crest M, Possani LD, Bougis PE, Martin-Eauclaire MF. Expanding the scorpion toxin alpha-KTX 15 family with AmmTX3 from Androctonus mauretanicus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6037-41. [PMID: 12473099 DOI: 10.1046/j.1432-1033.2002.03294.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel toxin, AmmTX3 (3823.5 Da), was isolated from the venom of the scorpion Androctonus mauretanicus. It showed 94% sequence homology with Aa1 from Androctonus australis and 91% with BmTX3 from Buthus martensi which, respectively, block A-type K+ current in cerebellum granular cells and striatum cultured neurons. Binding and displacement experiments using rat brain synaptosomes showed that AmmTX3 and Aa1 competed effectively with 125I-labelled sBmTX3 binding. They fully inhibited the 125I-labelled sBmTX3 binding (Ki values of 19.5 pm and 44.2 pm, respectively), demonstrating unambiguously that the three molecules shared the same target in rat brain. The specific binding parameters of 125I-labelled AmmTX3 for its site were determined at equilibrium (Kd = 66 pm, Bmax = 22 fmol per mg of protein). Finally, patch-clamp experiments on striatal neurons in culture demonstrated that AmmTX3 was able to inhibit the A-type K+ current (Ki = 131 nm).
Collapse
Affiliation(s)
- Hélène Vacher
- UMR 6560 CNRS and UMR 6150 CNRS, Université de la Méditerranée, Faculté de Médecine secteur Nord, IFR Jean Roche, Marseille, France
| | | | | | | | | | | |
Collapse
|
20
|
Ali SA, Stoeva S, Grossmann JG, Abbasi A, Voelter W. Purification, characterization, and primary structure of four depressant insect-selective neurotoxin analogs from scorpion (Buthus sindicus) venom. Arch Biochem Biophys 2001; 391:197-206. [PMID: 11437351 DOI: 10.1006/abbi.2001.2363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four depressant insect-selective neurotoxin analogs (termed Bs-dprIT1 to 4) from the venom of the scorpion Buthus sindicus were purified to homogeneity in a single step using reverse-phase HPLC. The molecular masses of the purified toxins were 6820.9, 6892.4, 6714.7, and 6657.1 Da, respectively, as determined by mass spectrometry. These long-chain neurotoxins were potent against insects with half lethal dose values of 67, 81, 103, and 78 ng/100 mg larva and 138, 160, 163, and 142 ng/100 mg cockroach, respectively, but were not lethal to mice even at the highest applied dose of 10 microg/20 g mouse. When injected into blowfly larvae (Sarcophaga falculata), Bs-dprIT1 to 4 induced classical manifestations of depressant toxins, i.e., a slow depressant flaccid paralysis. The primary structures of Bs-dprIT 1 to 4 revealed high sequence homology (60-75%) with other depressant insect toxins isolated from scorpion venoms. Despite the high sequence conservation, Bs-dprIT1 to 4 showed some remarkable features such as (i) the presence of methionine (Met(6) in Bs-dprIT1 and Met(24) in Bs-dprIT2 to 4) and histidine (His(53) and His(57) in Bs-dprIT1) residues, i.e., amino acid residues that are uncommon to this type of toxin; (ii) the substitution of two highly conserved tryptophan residues (Trp43 --> Ala and Trp53 --> His) in the sequence of Bs-dprIT1; and (iii) the occurrence of more positively charged amino acid residues at the C-terminal end than in other depressant insect toxins. Multiple sequence alignment, sequence analysis, sequence-based structure prediction, and 3D homology modeling studies revealed a protein fold and secondary structural elements similar to those of other scorpion toxins affecting sodium channel activation. The electrostatic potential calculated on the surface of the predicted 3D model of Bs-dprIT1 revealed a significant positive patch in the region of the toxin that is supposed to bind to the sodium channel.
Collapse
Affiliation(s)
- S A Ali
- Abteilung für Physikalische Biochemie, Physiologisch-Chemisches Institut der Universität Tübingen, Hoppe-Seyler-Strasse 4, Tübingen, D-72076, Germany.
| | | | | | | | | |
Collapse
|
21
|
Craig AG, Park M, Fischer WH, Kang J, Compain P, Piller F. Enzymatic glycosylation of contulakin-G, a glycopeptide isolated from Conus venom, with a mammalian ppGalNAc-transferase. Toxicon 2001; 39:809-15. [PMID: 11137540 DOI: 10.1016/s0041-0101(00)00211-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have determined that the mammalian uridine diphospho-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase T1 (EC 2.4.1.41) has the appropriate acceptor substrate specificity to recognize the non-glycosylated form of contulakin-G (ZSEEGGSNATKKPYIL-OH where Z=pyroglutamic acid) and to transfer GalNAc to the peptide. Both [Thr(10)] contulakin-G and a pre-contulakin-G(30-66) (RGLVPDDITPQLILGSLISRRQSEEGGSNATKKPYIL-OH) were shown to be acceptors for the mammalian enzyme. The site of attachment of the GalNAc residue was determined using chemical and radioactive sequencing techniques. The mammalian enzyme was highly specific for Thr(10) residue, in which the native peptide was found to be glycosylated, compared with either Ser(2) or Ser(7). In the case of pre-contulakin-G, the enzyme was also highly specific for the equivalent threonine residue. These results suggest that the Cone snail uses an enzyme with similar acceptor specificity to that of the mammalian polypeptide N-acetylgalactosaminyltransferase for glycosylating contulakin-G.
Collapse
Affiliation(s)
- A G Craig
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pimenta AM, Stöcklin R, Favreau P, Bougis PE, Martin-Eauclaire MF. Moving pieces in a proteomic puzzle: mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1562-1572. [PMID: 11713783 DOI: 10.1002/rcm.415] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Scorpion venoms are very complex mixtures of molecules, most of which are peptides that display different kinds of biological activity. These venoms have been studied in the light of their pharmacological targets and their constituents are able to bind specifically to a variety of ionic channels located in prey tissues, resulting in neurotoxic effects. Toxins that modulate Na(+), K(+), Ca(++) and Cl(-) currents have been described in scorpion venoms. Mass spectrometry was employed to analyze toxic fractions from the venom of the Brazilian scorpion Tityus serrulatus in order to shed light on the molecular composition of this venom and to facilitate the search for novel pharmacologically active compounds. T. serrulatus venom was first subjected to gel filtration to separate its constituents according to their molecular size. The resultant fractions II and III, which account for 90 and 10% respectively of the whole venom toxic effect, were further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray mass spectrometry (LC/ESMS) and off-line LC/MALDI-TOFMS in order to establish their mass fingerprints. The molecular masses in fraction II were predominantly between 6500 and 7500 Da. This corresponds to long-chain toxins that mainly act on voltage-gated Na(+) channels. Fraction III is more complex and predominantly contained molecules with masses between 2500 and 5000 Da. This corresponds to the short-chain toxin family, most of which act on K(+) channels, and other unknown peptides. Finally, we were able to measure the molecular masses of 380 different compounds present in the two fractions investigated. To our knowledge, this is the largest number of components ever detected in the venom of a single animal species. Some of the toxins described previously from T. serrulatus venom could be detected by virtue of their molecular masses. The interpretation of this large set of data has provided us with useful proteomic information on the venom, and the implications of these findings are discussed.
Collapse
Affiliation(s)
- A M Pimenta
- UMR CNRS 6560, Université de la Méditerranée, Institut Jean Roche, Marseille, France
| | | | | | | | | |
Collapse
|
23
|
Kolarich D, Altmann F. N-Glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal Biochem 2000; 285:64-75. [PMID: 10998264 DOI: 10.1006/abio.2000.4737] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A method has been developed which allows the analysis of glycoproteins separated by SDS-PAGE. The procedure, though applicable to N-glycosylated glycoproteins of any origin, is particularly devised for glycoproteins potentially containing fucose in alpha1,3-linkage to the reducing GlcNAc as may be found in plants and invertebrates, e.g., insects and parasitic helminths. Starting with an established procedure for mass spectrometric peptide mapping, the analysis of N-glycans by matrix-assisted laser desorption/ionization mass spectrometry involved the use of peptide:N-glycosidase A, a triphasic microcolumn for sample cleanup, and a new matrix mixture consisting of 2,5-dihyhydroxybenzoic acid, 1-hydroxyisoquinoline, and arabinosazone. The method was tested on proteins with N-glycans of known structure, i.e., as horseradish peroxidase, zucchini ascorbate oxidase, soybean agglutinin, honeybee venom hyaluronidase, bovine ribonuclease B, and bovine fetuin. An electrophoretic band corresponding to 4 microg of glycoprotein was generally sufficient to allow detection of the major N-glycan species. As an additional benefit, a peptide mass map is generated which serves to identify the analyzed protein. The method was applied to glycoprotein allergens whose glycan structures were unknown. Ara h 1 and Ole e 1, major allergens from peanut and olive pollen, respectively, contained mainly xylosylated N-glycans with the composition Man(3(-4))XylGlcNAc(2) in the case of Ara h 1 and GlcNAc(1-2)Man(3)XylGlcNAc(2) in the case of Ole e 1 where also some GlcNAc(0-2)Man(3)XylFucGlcNAc(2) was found.
Collapse
Affiliation(s)
- D Kolarich
- Glycobiology Division, Institute of Chemistry, Vienna, Austria
| | | |
Collapse
|
24
|
van Tetering A, Schiphorst WE, van den Eijnden DH, van Die I. Characterization of a core alpha1-->3-fucosyltransferase from the snail Lymnaea stagnalis that is involved in the synthesis of complex-type N-glycans. FEBS Lett 1999; 461:311-4. [PMID: 10567717 DOI: 10.1016/s0014-5793(99)01489-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a core alpha1-->3-fucosyltransferase activity in the albumin and prostate glands of the snail Lymnaea stagnalis. Incubation of albumin gland extracts with GDP-[(14)C]Fuc and asialo/agalacto-glycopeptides from human fibrinogen resulted in a labeled product in 50% yield. Analysis of the product by 400 MHz (1)H-NMR spectroscopy showed the presence of a Fuc residue alpha1-->3-linked to the Asn-linked GlcNAc. Therefore, the enzyme can be identified as a GDP-Fuc:GlcNAc (Asn-linked) alpha1-->3-fucosyltransferase. The enzyme acts efficiently on asialo/agalacto-glycopeptides from both human fibrinogen and core alpha1-->6-fucosylated human IgG, whereas bisected asialo/agalacto-glycopeptide could not serve as an acceptor. We propose that the enzyme functions in the synthesis of core alpha1-->3-fucosylated complex-type glycans in L. stagnalis. Core alpha1-->3-fucosylation of the asparagine-linked GlcNAc of plant- and insect-derived glycoproteins is often associated with the allergenicity of such glycoproteins. Since allergic reactions have been reported after consumption of snails, the demonstration of core alpha1-->3-fucosylation in L. stagnalis may be clinically relevant.
Collapse
Affiliation(s)
- A van Tetering
- Department of Medical Chemistry, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|