1
|
Zeng F, Liao S, Kuang Z, Zhu Q, Wei H, Shi J, Zheng E, Xu Z, Huang S, Hong L, Gu T, Yang J, Yang H, Cai G, Moisyadi S, Urschitz J, Li Z, Wu Z. Genetically Engineered Pigs as Efficient Salivary Gland Bioreactors for Production of Therapeutically Valuable Human Nerve Growth Factor. Cells 2022; 11:cells11152378. [PMID: 35954224 PMCID: PMC9368069 DOI: 10.3390/cells11152378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Farm animal salivary glands hold great potential as efficient bioreactors for production of human therapeutic proteins. Nerve growth factor (NGF) is naturally expressed in animal salivary glands and has been approved for human clinical treatment. This study aims to employ transgenic (TG) pig salivary gland as bioreactors for efficient synthesis of human NGF (hNGF). hNGF-TG pigs were generated by cloning in combination with piggyBac transposon-mediated gene transfer. These hNGF-TG pigs specifically expressed hNGF protein in their salivary glands and secreted it at high levels into saliva. Surgical and nonsurgical approaches were developed to efficiently collect saliva from hNGF-TG pigs. hNGF protein was successfully purified from collected saliva and was verified to be biologically active. In an additional step, the double-transgenic pigs, where the endogenous porcine NGF (pNGF) gene was replaced by another copy of hNGF transgene, were created by cloning combined with CRISPR/Cas9-mediated homologous recombination. These double-transgenic pigs expressed hNGF but not pNGF, thus avoiding possible "contamination" of hNGF with pNGF protein during purification. In conclusion, TG pig salivary glands can be used as robust bioreactors for a large-scale synthesis of functional hNGF or other valuable proteins. This new animal pharming method will benefit both human health and biomedicine.
Collapse
Affiliation(s)
- Fang Zeng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Department of Aquaculture, College of Marine Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sha Liao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Kuang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Qingchun Zhu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China;
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.M.); (J.U.)
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (S.M.); (J.U.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-2085284985 (Z.L.); +86-2085280369 (Z.W.)
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (F.Z.); (S.L.); (Z.K.); (Q.Z.); (H.W.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Aniamal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-2085284985 (Z.L.); +86-2085280369 (Z.W.)
| |
Collapse
|
2
|
Deykin AV, Shcheblykina OV, Povetka EE, Golubinskaya PA, Pokrovsky VM, Korokina LV, Vanchenko OA, Kuzubova EV, Trunov KS, Vasyutkin VV, Radchenko AI, Danilenko AP, Stepenko JV, Kochkarova IS, Belyaeva VS, Yakushev VI. Genetically modified animals for use in biopharmacology: from research to production. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.76685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: In this review, the analysis of technologies for obtaining biologically active proteins from various sources is carried out, and the comparative analysis of technologies for creating producers of biologically active proteins is presented. Special attention is paid to genetically modified animals as bioreactors for the pharmaceutical industry of a new type. The necessity of improving the technology of development transgenic rabbit producers and creating a platform solution for the production of biological products is substantiated.
The advantages of using TrB for the production of recombinant proteins: The main advantages of using TrB are the low cost of obtaining valuable complex therapeutic human proteins in readily accessible fluids, their greater safety relative to proteins isolated directly from human blood, and the greater safety of the activity of the native protein.
The advantages of the mammary gland as a system for the expression of recombinant proteins: The mammary gland is the organ of choice for the expression of valuable recombinant proteins because milk is easy to collect in large volumes.
Methods for obtaining transgenic animals: The modern understanding of the regulation of gene expression and the discovery of new tools for gene editing can increase the efficiency of creating bioreactors for animals and help to obtain high concentrations of the target protein.
The advantages of using rabbits as bioreactors producing recombinant proteins in milk: The rabbit is a relatively small animal with a short duration of gestation, puberty and optimal size, capable of producing up to 5 liters of milk per year per female, receiving up to 300 grams of the target protein.
Collapse
|
3
|
Gu Y, Cao H, Li F, Yu J, Nian R, Feng D, Lin J, Song H, Liu W. Production of functional human nerve growth factor from the submandibular glands of mice using a CRISPR/Cas9 genome editing system. World J Microbiol Biotechnol 2020; 36:176. [PMID: 33103226 DOI: 10.1007/s11274-020-02951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
Nerve growth factor (NGF) is an essential trophic factor for the growth and survival of neurons in the central and peripheral nervous systems. For many years, mouse NGF (mNGF) has been used to treat various neuronal and non-neuronal disorders. However, the biological activity of human NGF (hNGF) is significantly higher than that of mNGF in human cells. Using the CRISPR/Cas9 system, we constructed the transgenic mice expressing hNGF specifically in their submandibular glands. As demonstrated by fluorescence immunohistochemical staining, these mice produced hNGF successfully, with 0.8 mg produced per gram of submandibular glands. hNGF with 99% purity was successfully extracted by two-step ion-exchange chromatography and one-step size-exclusion chromatography from the submandibular glands of these transgenic mice. Further, the purified hNGF was verified by LC-MS/MS. We analyzed the NH2-terminus of hNGF using both Edman degradation and LC-MS/MS-based methods. Both results showed that the obtained hNGF lost the NH2-terminal octapeptide (SSSHPIFH). Moreover, the produced hNGF demonstrated a strong promotion in the proliferation of TF1 cells.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, China
| | - Hui Cao
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jianli Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Dongxiao Feng
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jingtao Lin
- Dalang Hospital of Dongguan, No. 85 Jinlangzhong Road, Dalang, 523770, Dongguan, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
4
|
Zacchigna S, Giacca M. The global role of biotechnology for non communicable disorders. J Biotechnol 2018; 283:115-119. [PMID: 30077584 DOI: 10.1016/j.jbiotec.2018.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 01/07/2023]
Abstract
The World Health Organization (WHO) has tagged non-communicable diseases (NCDs) as one of the twenty-first century's major development challenges. NCDs account for over 15 million deaths annually and over 80% of those deaths occur in developing countries and among the poorest populations. Biotechnology presents unique opportunities to improve the early diagnosis and the treatment of NCDs. This review describes the major applications of biotechnology for a better clinical management of NCDs, i.e. the implementation of innovative diagnostic approaches and the production of innovative treatments, including those based on monoclonal antibodies, recombinant proteins, regulatory nucleic acids and cell-based therapies for regenerative medicine. In this context, it also examines the major challenges faced by biotechnology in developing countries.
Collapse
Affiliation(s)
- Serena Zacchigna
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| | - Mauro Giacca
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
5
|
Zeng F, Li Z, Zhu Q, Dong R, Zhao C, Li G, Li G, Gao W, Jiang G, Zheng E, Cai G, Moisyadi S, Urschitz J, Yang H, Liu D, Wu Z. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors. Sci Rep 2017; 7:41270. [PMID: 28117418 PMCID: PMC5259756 DOI: 10.1038/srep41270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023] Open
Abstract
The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins.
Collapse
Affiliation(s)
- Fang Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingchun Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Dong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcheng Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guoling Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guo Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenchao Gao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Gelong Jiang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 96822, USA
- Manoa BioSciences, 1717 Mott-Smith Dr. #3213, Honolulu, 96822, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 96822, USA
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Weber T, Bötticher B, Arndt MA, Mier W, Sauter M, Exner E, Keller A, Krämer S, Leotta K, Wischnjow A, Grosse-Hovest L, Strumberg D, Jäger D, Gröne HJ, Haberkorn U, Brem G, Krauss J. Preclinical evaluation of a diabody-based 177Lu-radioimmunoconjugate for CD22-directed radioimmunotherapy in a non-Hodgkin lymphoma mouse model. Cancer Lett 2016; 381:296-304. [DOI: 10.1016/j.canlet.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
|
7
|
Wang Y, Zhao S, Bai L, Fan J, Liu E. Expression systems and species used for transgenic animal bioreactors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:580463. [PMID: 23586046 PMCID: PMC3613084 DOI: 10.1155/2013/580463] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Transgenic animal bioreactors can produce therapeutic proteins with high value for pharmaceutical use. In this paper, we compared different systems capable of producing therapeutic proteins (bacteria, mammalian cells, transgenic plants, and transgenic animals) and found that transgenic animals were potentially ideal bioreactors for the synthesis of pharmaceutical protein complexes. Compared with other transgenic animal expression systems (egg white, blood, urine, seminal plasma, and silkworm cocoon), the mammary glands of transgenic animals have enormous potential. Compared with other mammalian species (pig, goat, sheep, and cow) that are currently being studied as bioreactors, rabbits offer many advantages: high fertility, easy generation of transgenic founders and offspring, insensitivity to prion diseases, relatively high milk production, and no transmission of severe diseases to humans. Noticeably, for a small- or medium-sized facility, the rabbit system is ideal to produce up to 50 kg of protein per year, considering both economical and hygienic aspects; rabbits are attractive candidates for the mammary-gland-specific expression of recombinant proteins. We also reviewed recombinant proteins that have been produced by targeted expression in the mammary glands of rabbits and discussed the limitations of transgenic animal bioreactors.
Collapse
Affiliation(s)
- Yanli Wang
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
- Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
8
|
Jung EM, An BS, Kim YK, Hwang I, Lee JY, Shin TY, Hyun SH, Hwang WS, Jeung EB. Establishment of transgenic fibroblasts for producing recombinant human interferon-α and erythropoietin in bovine milk. Mol Med Rep 2012; 7:406-12. [PMID: 23151730 DOI: 10.3892/mmr.2012.1182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/07/2012] [Indexed: 11/06/2022] Open
Abstract
Human interferon α (IFN-α) and erythropoietin (EPO) have been used for a variety of purposes in clinical medicine. Human IFN-α has been used to treat several types of viral infection and cancer, as well as renal anemia, via stimulation of erythrocyte formation in the bone marrow. Transgenic cattle are excellent candidates for pharmaceutical production for humans due to their ability to produce recombinant proteins in milk. The purpose of the present study was to generate bovine transgenic fibroblasts capable of producing recombinant human IFN-α and EPO proteins in transgenic cattle milk. First, we analyzed the promoter activities of various bovine milk protein genes in HC11 mouse mammary epithelial cells. The bovine milk protein gene promoters were cloned into the Luc gene in a promoter-less pGL3-Basic vector. Presence of the αS1-casein promoter (-175 to +796 nt) resulted in an up to 16-fold increase in luciferase activity compared with that of the promoter-less construct. In addition, the human IFN-α and EPO genes were identified as significantly overexpressed in HC11 cells compared with the promoter-less construct. Together, the present results demonstrate that the construct with the αS1-casein promoter may induce secretion of recombinant human IFN-α and EPO into bovine milk. Furthermore, we generated transgenic fibroblasts expressing human IFN-α and EPO cDNA controlled by the αS1-casein promoter and two screening markers, enhanced green fluorescent protein and neomycin resistance. These transgenic fibroblasts may be a source of somatic cells for generating transgenic cattle that produce recombinant human IFN-α and EPO proteins during lactation.
Collapse
Affiliation(s)
- Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, Sanati MH, Shahverdi AH, Fakheri R, Vazirinasab H, Daneshzadeh MT, Vojgani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ataei F, Bahraminejad E, Masoudi N, Rezazadeh Valojerdi M, Gourabi H. Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 2012; 22:131-42. [PMID: 22869287 DOI: 10.1007/s11248-012-9634-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
Abstract
There are growing numbers of recombinant proteins that have been expressed in milk. Thus one can consider the placement of any gene of interest under the control of the regulatory elements of a milk protein gene in a dairy farm animal. Among the transgene introducing techniques, only nuclear transfer (NT) allows 100 % efficiency and bypasses the mosaicism associated with counterpart techniques. In this study, in an attempt to produce a transgenic goat carrying the human coagulation factor IX (hFIX) transgene, goat fetal fibroblasts were electroporated with a linearized marker-free construct in which the transgene was juxtaposed to β-casein promoter designed to secret the recombinant protein in goat milk. Two different lines of transfected cells were used as donors for NT to enucleated oocytes. Two transgenic goats were liveborn. DNA sequencing of the corresponding transgene locus confirmed authenticity of the cloning procedure and the complementary experiments on the whey demonstrated expression of human factor IX in the milk of transgenic goats. In conclusion, our study has provided the groundwork for a prosperous and promising approach for large-scale production and therapeutic application of hFIX expressed in transgenic goats.
Collapse
Affiliation(s)
- Amir Amiri Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhao S, Wei K, Yu Q, Li Y, Cheng F, Wang Y, Yang P, Fan J, Liu E. General topic: applications of transgenic rabbits in biomedical research - based on literature search. WORLD RABBIT SCIENCE 2010. [DOI: 10.4995/wrs.2010.7279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
He Z, Zhao Y, Mei G, Li N, Chen Y. Could protein tertiary structure influence mammary transgene expression more than tissue specific codon usage? Transgenic Res 2010; 19:519-33. [PMID: 20563642 PMCID: PMC2902731 DOI: 10.1007/s11248-010-9411-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 05/19/2010] [Indexed: 12/03/2022]
Abstract
Animal mammary glands have been successfully employed to produce therapeutic recombinant human proteins. However, considerable variation in animal mammary transgene expression efficiency has been reported. We now consider whether aspects of codon usage and/or protein tertiary structure underlie this variation in mammary transgene expression.
Collapse
Affiliation(s)
- Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells. Mol Biol Rep 2010; 37:4083-90. [DOI: 10.1007/s11033-010-0068-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
13
|
Expression of Recombinant Human Nerve Growth Factor Beta in Milk of Goats by Recombinant Replication-Defective Adenovirus. Appl Biochem Biotechnol 2008; 157:357-66. [DOI: 10.1007/s12010-008-8346-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
|
14
|
Xiao B, Li QW, Feng B, Han ZS, Gao DW, Li J, Li K, Zhao R, Jiang ZL, Hu JH, Zhi XB. High-level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. J Biosci Bioeng 2008; 105:327-34. [PMID: 18499047 DOI: 10.1263/jbb.105.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/25/2007] [Indexed: 11/17/2022]
Abstract
The technology for the large-scale production of therapeutic recombinant proteins remains a challenge in the biopharmaceutical industry. In this study, we reported a nontransgenic approach to producing a large quantity of human nerve growth factor beta (hNGF-beta) in rabbit milk by employing a recombinant adenoviral expression system. After directly instilling hNGF-beta recombinant adenoviruses into rabbit mammary glands, a polypeptide with a molecular weight of 13.2 kDa was detected in rabbit milk. The maximal expression level of hNGF-beta reached 346 mug/ml. The biological activity of recombinant hNGF-beta was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. Our data suggest that instilling recombinant adenovirus directly into the mammary gland of mammals is an efficient approach to producing a large quantity of hNGF-beta.
Collapse
Affiliation(s)
- Bo Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bösze Z, Baranyi M, Whitelaw CBA. Producing recombinant human milk proteins in the milk of livestock species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 606:357-93. [PMID: 18183938 DOI: 10.1007/978-0-387-74087-4_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Recombinant human proteins produced by the mammary glands of genetically modified transgenic livestock mammals represent a special aspect of milk bioactive components. For therapeutic applications, the often complex posttranslational modifications of human proteins should be recapitulated in the recombinant products. Compared to alternative production methods, mammary gland production is a viable option, underlined by a number of transgenic livestock animal models producing abundant biologically active foreign proteins in their milk. Recombinant proteins isolated from milk have reached different phases of clinical trials, with the first marketing approval for human therapeutic applications from the EMEA achieved in 2006.
Collapse
|
16
|
Bosze Z, Hiripi L, Carnwath JW, Niemann H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 2004; 12:541-53. [PMID: 14601653 DOI: 10.1023/a:1025816809372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Until recently, transgenic rabbits were produced exclusively by pronuclear microinjection which results in additive random insertional transgenesis; however, progress in somatic cell cloning based on nuclear transfer will soon make it possible to produce rabbits with modifications to specific genes by the combination of homologous recombination and subsequent prescreening of nuclear donor cells. Transgenic rabbits have been found to be excellent animal models for inherited and acquired human diseases including hypertrophic cardiomyopathy, perturbed lipoprotein metabolism and atherosclerosis. Transgenic rabbits have also proved to be suitable bioreactors for the production of recombinant protein both on an experimental and a commercial scale. This review summarizes recent research based on the transgenic rabbit model.
Collapse
Affiliation(s)
- Zs Bosze
- Department of Animal Biology, Agricultural Biotechnology Center Gödöllo, Hungary.
| | | | | | | |
Collapse
|
17
|
Abstract
Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.
| | | |
Collapse
|
18
|
Lui VCH, Tam PKH, Leung MYK, Lau JYB, Chan JKY, Chan VSF, Dallman M, Cheah KSE. Mammary gland-specific secretion of biologically active immunosuppressive agent cytotoxic-T-lymphocyte antigen 4 human immunoglobulin fusion protein (CTLA4Ig) in milk by transgenesis. J Immunol Methods 2003; 277:171-83. [PMID: 12799049 DOI: 10.1016/s0022-1759(03)00071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major challenge in the field of transplantation is to prevent graft rejection and prolong graft survival. Tolerance induction is a promising way to achieve long-term graft survival without the need for potent immunosuppression and its associated side effects. The recent success of co-stimulatory blockade by the chimeric protein CTLA4Ig in the modulation of the recipient's immune system and the prolongation of graft survival in animal models suggests a possible application of CTLA4Ig in clinical transplantation. To produce sufficient amounts of CTLA4Ig for future clinical application, we sought to use the mammary gland as a bioreactor and produce CTLA4Ig in the milk of transgenic farm animals. Prior to the generation of transgenic farm animals, we tested our strategy in mice. Using the promoter of the sheep beta-lactoglobulin gene, we expressed our CTLA4Ig chimeric gene in the mammary gland of transgenic mice. The yield of CTLA4Ig was fivefold higher in transgenic milk than that from transfected cells. Purified milk-derived CTLA4Ig is biologically active and suppresses T cell activation. We showed that the production of CTLA4Ig in the milk has no adverse immunosuppression effect on the transgenic animals and the offsprings that were fed with the transgenic milk. The findings suggest that the approach to produce CTLA4Ig in milk by transgenesis is feasible; further studies involving farm animals are warranted.
Collapse
Affiliation(s)
- Vincent C H Lui
- Division of Paediatric Surgery, Department of Surgery, The University of Hong Kong Medical Centre, Queen Mary Hospital, SAR, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Coulibaly S, Besenfelder U, Miller I, Zinovieva N, Lassnig C, Kotler T, Jameson JL, Gemeiner M, Müller M, Brem G. Expression and characterization of functional recombinant bovine follicle-stimulating hormone (boFSHalpha/beta) produced in the milk of transgenic rabbits. Mol Reprod Dev 2002; 63:300-8. [PMID: 12237945 DOI: 10.1002/mrd.90013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bovine follicle-stimulating hormone (boFSH) is a heterodimeric glycoprotein that belongs to the pituitary gonadotropins. Bioactive FSH is composed of alpha and beta subunits which require extensive N-glycosylation and sialylation. The mammary gland of transgenic livestock is an attractive source for the synthesis of post-translationally modified proteins. Two mammary gland-specific gene constructs with the cDNA for the boFSH alpha (boFSHalpha) and beta (boFSHbeta) subunits controlled by bovine alpha-s1 casein regulatory sequences were co-microinjected into fertilized rabbit oocytes. Two FSHalpha/FSHbeta double transgenic rabbit lines were established. The transgene expression was strictly lactation and mammary gland specific. Protein analysis revealed the presence of the boFSH heterodimer in the milk of transgenic rabbits showing a molecular weight similar to that of purified pituitary gland derived boFSH (boFSH-P). Subunit specific antibodies detected both polypeptides with the expected molecular sizes. Biochemical characterization demonstrated the expected isoelectric points of the recombinant boFSH. The presence of the post-translationally added terminal sialic acid residues was indicated by wheat germ agglutinin (WGA) lectin Western blotting. The biological activity of the recombinant mammary gland produced boFSH was determined using a FSH-dependent reporter cell line. The bioactivity of the recombinant boFSH was comparable to that of purified boFSH-P.
Collapse
Affiliation(s)
- S Coulibaly
- Ludwig Boltzmann Institute for Immunogenetic, Cytogenetic and Molecular Genetic Research, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Position effects in animal transgenesis have prevented the reproducible success and limited the initial expectations of this technique in many biotechnological projects. Historically, several strategies have been devised to overcome such position effects, including the progressive addition of regulatory elements belonging to the same or to a heterologous expression domain. An expression domain is thought to contain all regulatory elements that are needed to specifically control the expression of a given gene in time and space. The lack of profound knowledge on the chromatin structure of expression domains of biotechnological interest, such as mammary gland-specific genes, explains why most standard expression vectors have failed to drive high-level, position-independent, and copy-number-dependent expression of transgenes in a reproducible manner. In contrast, the application of artificial chromosome-type constructs to animal transgenesis usually ensures optimal expression levels. YACs, BACs, and PACs have become crucial tools in animal transgenesis, allowing the inclusion of distant key regulatory sequences, previously unknown, that are characteristic for each expression domain. These elements contribute to insulating the artificial chromosome-type constructs from chromosomal position effects and are fundamental in order to guarantee the correct expression of transgenes.
Collapse
Affiliation(s)
- Lluís Montoliu
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Molecular and Cellular Biology, Madrid, Spain.
| |
Collapse
|
21
|
Düchler M, Pengg M, Schüller S, Pfneisl F, Bugingo C, Brem G, Wagner E, Schellander K, Müller M. Somatic gene transfer into the lactating ovine mammary gland. J Gene Med 2002; 4:282-91. [PMID: 12112645 DOI: 10.1002/jgm.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Somatic gene therapy requires safe and efficient techniques for the gene transfer procedure. The ovine mammary gland is described as a model system for the evaluation of somatic gene transfer methods. METHODS Different gene delivery formulations were retrogradely injected into the mammary gland of lactating sheep. The efficiency of the gene transfer was subsequently measured by the detection of the secreted transgene products in the milk. To counteract the milk flow in the lactating gland caused by the permanent milk production, a newly developed pretreatment of the mammary gland with hyperosmotic solutions was applied. In addition, in vivo electroporation of DNA into the mammary gland is described. RESULTS Gene transfer using naked DNA or simple complexes of DNA with polycations did not result in traceable amounts of reporter gene products. However, utilizing the complex cationic lipid DOSPER, a peak expression of about 400 ng/ml was observed 6 days after transfection. Maximum expression rates of more than 1 microg/ml were obtained by combining hyperosmotic pretreatment and receptor-mediated gene transfer. For the in vivo electroporation, the proof of principle for this technique in the mammary gland is reported. CONCLUSIONS The ovine mammary gland turned out to be a very well suited as a model system for evaluation and optimization of various gene transfer protocols.
Collapse
Affiliation(s)
- Markus Düchler
- Institute of Biotechnology in Animal Production, University of Veterinary Medicine, IFA Tulln, Konrad Lorenzstrasse 20, A-3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstracts from the Second International Workshop on Mammary Gland Biotechnology. Lecture Hall of the National Committee for Technical Development (OMFB), Budapest, Hungary, August 30–31, 2001. CLONING AND STEM CELLS 2001. [DOI: 10.1089/153623001753205133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Abstract
The production of recombinant proteins is one of the major successes of biotechnology. Animal cells are required to synthesize proteins with the appropriate post-translational modifications. Transgenic animals are being used for this purpose. Milk, egg white, blood, urine, seminal plasma and silk worm cocoon from transgenic animals are candidates to be the source of recombinant proteins at an industrial scale. Although the first recombinant protein produced by transgenic animals is expected to be in the market in 2000, a certain number of technical problems remain to be solved before the various systems are optimized. Although the generation of transgenic farm animals has become recently easier mainly with the technique of animal cloning using transfected somatic cells as nuclear donor, this point remains a limitation as far as cost is concerned. Numerous experiments carried out for the last 15 years have shown that the expression of the transgene is predictable only to a limited extent. This is clearly due to the fact that the expression vectors are not constructed in an appropriate manner. This undoubtedly comes from the fact that all the signals contained in genes have not yet been identified. Gene constructions thus result sometime in poorly functional expression vectors. One possibility consists in using long genomic DNA fragments contained in YAC or BAC vectors. The other relies on the identification of the major important elements required to obtain a satisfactory transgene expression. These elements include essentially gene insulators, chromatin openers, matrix attached regions, enhancers and introns. A certain number of proteins having complex structures (formed by several subunits, being glycosylated, cleaved, carboxylated...) have been obtained at levels sufficient for an industrial exploitation. In other cases, the mammary cellular machinery seems insufficient to promote all the post-translational modifications. The addition of genes coding for enzymes involved in protein maturation has been envisaged and successfully performed in one case. Furin gene expressed specifically in the mammary gland proved to able to cleave native human protein C with good efficiency. In a certain number of cases, the recombinant proteins produced in milk have deleterious effects on the mammary gland function or in the animals themselves. This comes independently from ectopic expression of the transgenes and from the transfer of the recombinant proteins from milk to blood. One possibility to eliminate or reduce these side-effects may be to use systems inducible by an exogenous molecule such as tetracycline allowing the transgene to be expressed only during lactation and strictly in the mammary gland. The purification of recombinant proteins from milk is generally not particularly difficult. This may not be the case, however, when the endogenous proteins such as serum albumin or antibodies are abundantly present in milk. This problem may be still more crucial if proteins are produced in blood. Among the biological contaminants potentially present in the recombinant proteins prepared from transgenic animals, prions are certainly those raising the major concern. The selection of animals chosen to generate transgenics on one hand and the elimination of the potentially contaminated animals, thanks to recently defined quite sensitive tests may reduce the risk to an extremely low level. The available techniques to produce pharmaceutical proteins in milk can be used as well to optimize milk composition of farm animals, to add nutriceuticals in milk and potentially to reduce or even eliminate some mammary infectious diseases.
Collapse
Affiliation(s)
- L M Houdebine
- Unite de Biologie du Développement et Biotechnologie, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| |
Collapse
|
24
|
Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM. Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 1999; 231:147-57. [PMID: 10648934 PMCID: PMC7125573 DOI: 10.1016/s0022-1759(99)00151-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombinant antibodies and their derivatives are increasingly being used as therapeutic agents. Clinical applications of antibodies often require large amounts of highly purified molecules, sometimes for multiple treatments. The development of very efficient expression systems is essential to the full exploitation of the antibody technology. Production of recombinant protein in the milk of transgenic dairy animals is currently being tested as an alternative to plasma fractionation for the manufacture of a number of blood factors (human antithrombin, human alpha-1-antitrypsin, human serum albumin, factor IX). The ability to routinely yield mg/ml levels of antibodies and the scale-up flexibility make transgenic production an attractive alternative to mammalian cell culture as a source of large quantities of biotherapeutics. The following review examines the potential of transgenic expression for the production of recombinant therapeutic antibodies.
Collapse
Affiliation(s)
- D P Pollock
- Genzyme Transgenics, One Mountain Rd, Framingham, MA 01701-9322, USA
| | | | | | | | | | | |
Collapse
|