1
|
Hajizade MS, Raee MJ, Faraji SN, Farvadi F, Kabiri M, Eskandari S, Tamaddon AM. Targeted drug delivery to the thrombus by fusing streptokinase with a fibrin-binding peptide (CREKA): an in silico study. Ther Deliv 2024; 15:399-411. [PMID: 38686829 DOI: 10.4155/tde-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Aim: Streptokinase has poor selectivity and provokes the immune response. In this study, we used in silico studies to design a fusion protein to achieve targeted delivery to the thrombus. Materials & methods: Streptokinase was analyzed computationally for mapping. The fusion protein modeling and quality assessment were carried out on several servers. The enzymatic activity and the stability of the fusion protein and its complex with plasminogen were assessed through molecular docking analysis and molecular dynamics simulation respectively. Results: Physicochemical properties analysis, protein quality assessments, protein-protein docking and molecular dynamics simulations predicted that the designed fusion protein is functionally active. Conclusion: Our results showed that this fusion protein might be a prospective candidate as a novel thrombolytic agent with better selectivity.
Collapse
Affiliation(s)
- Mohammad Soroosh Hajizade
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Seyed Nooreddin Faraji
- School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
2
|
El-Dabaa E, Okasha H, Samir S, Adel El-Kalamawy H, Mohamed Nasr S, Ali Saber M. Optimization of high expression and purification of recombinant streptokinase and in vitro Evaluation of its thrombolytic activity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
3
|
Zia MA. Streptokinase: An Efficient Enzyme in Cardiac Medicine. Protein Pept Lett 2020; 27:111-119. [PMID: 31612811 DOI: 10.2174/0929866526666191014150408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/22/2019] [Accepted: 08/06/2019] [Indexed: 01/27/2023]
Abstract
An imbalance in oxygen supply to cardiac tissues or formation of thrombus leads to deleterious results like pulmonary embolism, coronary heart disease and acute cardiac failure. The formation of thrombus requires clinical encounter with fibrinolytic agents including streptokinase, urokinase or tissue plasminogen activator. Irrespective to urokinase and tissue plasminogen activator, streptokinase is still a significant agent in treatment of cardiovascular diseases. Streptokinase, being so economical, has an important value in treating cardiac diseases in developing countries. This review paper will provide the maximum information to enlighten all the pros and cons of streptokinase up till now. It has been concluded that recent advances in structural/synthetic biology improved SK with enhanced half-life and least antigenicity. Such enzyme preparations would be the best thrombolytic agents.
Collapse
Affiliation(s)
- Muhammad A Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad-38040,Pakistan
| |
Collapse
|
4
|
Kringles of substrate plasminogen provide a 'catalytic switch' in plasminogen to plasmin turnover by Streptokinase. Biochem J 2020; 477:953-970. [PMID: 32069359 DOI: 10.1042/bcj20190909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
Abstract
To understand the role of substrate plasminogen kringles in its differential catalytic processing by the streptokinase - human plasmin (SK-HPN) activator enzyme, Fluorescence Resonance Energy Transfer (FRET) model was generated between the donor labeled activator enzyme and the acceptor labeled substrate plasminogen (for both kringle rich Lys plasminogen - LysPG, and kringle less microplasminogen - µPG as substrates). Different steps of plasminogen to plasmin catalysis i.e. substrate plasminogen docking to scissile peptide bond cleavage, chemical transformation into proteolytically active product, and the decoupling of the nascent product from the SK-HPN activator enzyme were segregated selectively using (1) FRET signal as a proximity sensor to score the interactions between the substrate and the activator during the cycle of catalysis, (2) active site titration studies and (3) kinetics of peptide bond cleavage in the substrate. Remarkably, active site titration studies and the kinetics of peptide bond cleavage have shown that post docking chemical transformation of the substrate into the product is independent of kringles adjacent to the catalytic domain (CD). Stopped-flow based rapid mixing experiments for kringle rich and kringle less substrate plasminogen derivatives under substrate saturating and single cycle turnover conditions have shown that the presence of kringle domains adjacent to the CD in the macromolecular substrate contributes by selectively speeding up the final step, namely the product release/expulsion step of catalysis by the streptokinase-plasmin(ogen) activator enzyme.
Collapse
|
5
|
Kazemi F, Arab SS, Mohajel N, Keramati M, Niknam N, Aslani MM, Roohvand F. Computational simulations assessment of mutations impact on streptokinase (SK) from a group G streptococci with enhanced activity - insights into the functional roles of structural dynamics flexibility of SK and stabilization of SK-μplasmin catalytic complex. J Biomol Struct Dyn 2018; 37:1944-1955. [PMID: 29726798 DOI: 10.1080/07391102.2018.1472668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Streptokinase (SK), a plasminogen activator (PA) that converts inactive plasminogen (Pg) to plasmin (Pm), is a protein secreted by groups A, C, and G streptococci (GAS, GCS, and GGS, respectively), with high sequence divergence and functional heterogeneity. While roles of some residual changes in altered SK functionality are shown, the underlying structural mechanisms are less known. Herein, using computational approaches, we analyzed the conformational basis for the increased activity of SK from a GGS (SKG132) isolate with four natural residual substitutions (Ile33Phe, Arg45Gln, Asn228Lys, Phe287Ile) compared to the standard GCS (SKC). Using the crystal structure of SK.Pm catalytic complex as main template SKC.μPm catalytic complex was modeled through homology modeling process and validated by several online validation servers. Subsequently, SKG132.μPm structure was constructed by altering the corresponding residual substitutions. Results of three independent MD simulations showed increased RMSF values for SKG132.μPm, indicating the enhanced structural flexibility compared to SKC.μPm, specially in 170 and 250 loops and three regions: R1 (149-161), R2 (182-215) and R3 (224-229). In parallel, the average number of Hydrogen bonds in 170 loop, R2 and R3 (especially for Asn228Lys) of SKG132 compared to that of the SKC was decreased. Accordingly, residue interaction networks (RINs) analyses indicated that Asn228Lys might induce more level of structural flexibility by generation of free Lys256, while Phe287Ile and Ile33Phe enhanced the stabilization of the SKG132.μPm catalytic complex. These results denoted the potential role of the optimal dynamic state and stabilized catalytic complex for increased PA potencies of SK as a thrombolytic drug.
Collapse
Affiliation(s)
- Faegheh Kazemi
- a Virology Department , Pasteur Institute of Iran , Tehran , Iran.,d Microbiology Department , Pasteur Institute of Iran , Tehran , Iran
| | - Seyed Shahriar Arab
- b Biophysics Department, Faculty of Biological Sciences , Tarbiat Modares University (TMU) , Tehran , Iran
| | - Nasir Mohajel
- a Virology Department , Pasteur Institute of Iran , Tehran , Iran
| | - Malihe Keramati
- c Nano-Biotechnology Department , Pasteur Institute of Iran , Tehran , Iran
| | - Niloofar Niknam
- b Biophysics Department, Faculty of Biological Sciences , Tarbiat Modares University (TMU) , Tehran , Iran
| | | | - Farzin Roohvand
- a Virology Department , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
6
|
Glinton K, Beck J, Liang Z, Qiu C, Lee SW, Ploplis VA, Castellino FJ. Variable region in streptococcal M-proteins provides stable binding with host fibrinogen for plasminogen-mediated bacterial invasion. J Biol Chem 2017; 292:6775-6785. [PMID: 28280245 DOI: 10.1074/jbc.m116.768937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Dimeric M-proteins (M-Prt) in group A Streptococcus pyogenes (GAS) are surface-expressed virulence factors implicated in processes that contribute to the pathogenicity of infection. Sequence analyses of various GAS M-Prts have shown that they contain a highly conserved sortase A-dependent cell wall-anchored C terminus, whereas the surface-exposed N terminus is highly variable, a feature used for identification and serotyping of various GAS strains. This variability also allows for strain-specific responses that suppress host defenses. Previous studies have indeed identified the N-terminal M-Prt B-domain as the site interacting with antiphagocytotic human-host fibrinogen (hFg). Herein, we show that hFg strongly interacts with M-Prts containing highly variable B-domains. We further demonstrate that specific GAS clinical isolates display high affinity for the D-domain of hFg, and this interaction allowed for subsequent surface binding of human-host plasminogen (hPg) to the E-domain of hFg. This GAS surface-bound hPg is then activated by GAS-secreted streptokinase, leading to the generation of an invasive proteolytic bacterial surface. Our results underscore the importance of the human fibrinolytic system in host-pathogen interactions in invasive GAS infections.
Collapse
Affiliation(s)
- Kristofor Glinton
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Julia Beck
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Zhong Liang
- From the W.M. Keck Center for Transgene Research and
| | - Cunjia Qiu
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Shaun W Lee
- From the W.M. Keck Center for Transgene Research and.,Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- From the W.M. Keck Center for Transgene Research and.,the Departments of Chemistry and Biochemistry and
| | - Francis J Castellino
- From the W.M. Keck Center for Transgene Research and .,the Departments of Chemistry and Biochemistry and
| |
Collapse
|
7
|
He C, Li H. Staphylokinase Displays Surprisingly Low Mechanical Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1077-1083. [PMID: 28040904 DOI: 10.1021/acs.langmuir.6b04425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulations have revealed that shear topology is an important structural feature for mechanically stable proteins. Proteins containing a β-grasp fold display the typical shear topology and are generally of significant mechanical stability. In an effort to experimentally identify mechanically strong proteins using single-molecule atomic force microscopy, we found that staphylokinase (SAK), which has a typical β-grasp fold and was predicted to be mechanically stable in coarse-grained MD simulations, displays surprisingly low mechanical stability. At a pulling speed of 400 nm/s, SAK unfolds at ∼60 pN, making it the mechanically weakest protein among the β-grasp fold proteins that have been characterized experimentally. In contrast, its structural homologous protein streptokinase β domain displays significant mechanical stability under the same experimental condition. Our results showed that the large malleability of native-state SAK is largely responsible for its low mechanical stability. The molecular origin of this large malleability of SAK remains unknown. Our results reveal a hidden complexity in protein mechanics and call for a detailed investigation into the molecular determinants of the protein mechanical malleability.
Collapse
Affiliation(s)
- Chengzhi He
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
8
|
Abstract
Group A streptococci (GAS) express soluble and surface-bound virulence factors. Secreted streptokinase (SK) allelic variants exhibit varying abilities to activate host plasminogen (Pg), and GAS pathogenicity is associated with Pg activation and localization of the resulting plasmin (Pm) on the bacterial surface to promote dissemination. The various mechanisms by which GAS usurp the host proteolytic system are discussed, including the molecular sexuality mechanism of conformational activation of the Pg zymogen (Pg*) and subsequent proteolytic activation of substrate Pg by the S•KPg* and SK•Pm catalytic complexes. Substantial progress has been made to delineate both processes in a unified mechanism. Pm coats the bacteria by direct and indirect binding pathways involving plasminogen-binding group A streptococcal M-like (PAM) protein and host fibrin(ogen). Transgenic mouse models using human Pg are being optimized to mimic infections by SK variants in humans and to define in vivo combined mechanisms of these variants and PAM.
Collapse
Affiliation(s)
- I M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - P R Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - P E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
9
|
Chwastyk M, Galera-Prat A, Sikora M, Gómez-Sicilia À, Carrión-Vázquez M, Cieplak M. Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins 2014; 82:717-26. [DOI: 10.1002/prot.24436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Mateusz Chwastyk
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Albert Galera-Prat
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED; Av. Doctor Arce, 37 28002 Madrid Spain
| | - Mateusz Sikora
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46 02-668 Warsaw Poland
- Institute of Science and Technology Austria; Klosterneuburg Austria
| | - Àngel Gómez-Sicilia
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED; Av. Doctor Arce, 37 28002 Madrid Spain
| | - Mariano Carrión-Vázquez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), IMDEA Nanociencias and CIBERNED; Av. Doctor Arce, 37 28002 Madrid Spain
| | - Marek Cieplak
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences; Aleja Lotników 32/46 02-668 Warsaw Poland
| |
Collapse
|
10
|
Aneja R, Datt M, Yadav S, Sahni G. Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase-plasmin activator complex. Biochemistry 2013; 52:8957-68. [PMID: 23919427 DOI: 10.1021/bi400142s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To examine the global function of the key surface-exposed loops of streptokinase, bearing substrate-specific exosites, namely, the 88-97 loop in the α domain, the 170 loop in the β domain, and the coiled-coil region (Leu321-Asn338) in the γ domain, mutagenic as well as peptide inhibition studies were carried out. Peptides corresponded to the primary structure of an exosite, either individual or stoichiometric mixtures of various disulfide-constrained synthetic peptide(s) inhibited plasminogen activation by streptokinase. Remarkably, pronounced inhibition of substrate plasminogen activation by the preformed streptokinase-plasmin activator complex was observed when complementary mixtures of different peptides were used compared to the same overall concentrations of individual peptides, suggesting co-operative interactions between the exosites. This observation was confirmed with streptokinase variants mutated at one, two, or three sites simultaneously. The single/double/triple exosite mutants of streptokinase showed a nonadditive, synergistic decline in kcat for substrate plasminogen activation in the order single > double > triple exosite mutant. Under the same conditions, zymogen activation by the various mutants remained essentially native- like in terms of nonproteolytic activation of partner plasminogen. Multisite mutants also retain affinity to form 1:1 stoichiometric activator complexes with plasmin when probed through sensitive equilibrium fluorescence studies. Thus, the present results strongly support a model of streptokinase action, wherein catalysis by the streptokinase-plasmin complex operates through a distributed network of substrate-interacting exosites resident across all three domains of the cofactor protein.
Collapse
Affiliation(s)
- Rachna Aneja
- The Institute of Microbial Technology (CSIR) , Sector 39-A, Chandigarh-160036, India
| | | | | | | |
Collapse
|
11
|
Dahiya M, Singh S, Rajamohan G, Sethi D, Ashish, Dikshit KL. Intermolecular interactions in staphylokinase-plasmin(ogen) bimolecular complex: Function of His43 and Tyr44. FEBS Lett 2011; 585:1814-20. [DOI: 10.1016/j.febslet.2011.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 11/29/2022]
|
12
|
Yadav S, Aneja R, Kumar P, Datt M, Sinha S, Sahni G. Identification through combinatorial random and rational mutagenesis of a substrate-interacting exosite in the gamma domain of streptokinase. J Biol Chem 2010; 286:6458-69. [PMID: 21169351 DOI: 10.1074/jbc.m110.152355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the β domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315-340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.
Collapse
Affiliation(s)
- Suman Yadav
- Institute of Microbial Technology (Council of Scientific and Industrial Research), Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
13
|
Aneja R, Datt M, Singh B, Kumar S, Sahni G. Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. J Biol Chem 2009; 284:32642-50. [PMID: 19801674 DOI: 10.1074/jbc.m109.046573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the beta-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the beta-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in k(cat) without any alteration in apparent substrate affinity (K(m)) as compared with wild-type streptokinase and identified the importance of Lys(180) as well as Pro(177) in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in "partner" plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in k(cat) as that observed in the case of full-length plasminogen, with no concomitant change in K(m). These results strongly suggest that the 170 loop of the beta-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se.
Collapse
Affiliation(s)
- Rachna Aneja
- Department of Molecular Biology and Protein Engineering, The Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160036, India
| | | | | | | | | |
Collapse
|
14
|
Tharp AC, Laha M, Panizzi P, Thompson MW, Fuentes-Prior P, Bock PE. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate. J Biol Chem 2009; 284:19511-21. [PMID: 19473980 PMCID: PMC2740577 DOI: 10.1074/jbc.m109.005512] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/19/2009] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK) conformationally activates the central zymogen of the fibrinolytic system, plasminogen (Pg). The SK.Pg* catalytic complex binds Pg as a specific substrate and cleaves it into plasmin (Pm), which binds SK to form the SK.Pm complex that propagates Pm generation. Catalytic complex formation is dependent on lysine-binding site (LBS) interactions between a Pg/Pm kringle and the SK COOH-terminal Lys(414). Pg substrate recognition is also LBS-dependent, but the kringle and SK structural element(s) responsible have not been identified. SK mutants lacking Lys(414) with Ala substitutions of charged residues in the SK beta-domain 250-loop were evaluated in kinetic studies that resolved conformational and proteolytic Pg activation. Activation of [Lys]Pg and mini-Pg (containing only kringle 5 of Pg) by SK with Ala substitutions of Arg(253), Lys(256), and Lys(257) showed decreases in the bimolecular rate constant for Pm generation, with nearly total inhibition for the SK Lys(256)/Lys(257) double mutant. Binding of bovine Pg (BPg) to the SK.Pm complex containing fluorescently labeled Pm demonstrated LBS-dependent assembly of a SK.labeled Pm.BPg ternary complex, whereas BPg did not bind to the complex containing the SK Lys(256)/Lys(257) mutant. BPg was activated by SK.Pm with a K(m) indistinguishable from the K(D) for BPg binding to form the ternary complex, whereas the SK Lys(256)/Lys(257) mutant did not support BPg activation. We conclude that SK residues Arg(253), Lys(256), and Lys(257) mediate Pg substrate recognition through kringle 5 of the [Lys]Pg and mini-Pg substrates. A molecular model of the SK.kringle 5 complex identifies the putative interactions involved in LBS-dependent Pg substrate recognition.
Collapse
Affiliation(s)
- Anthony C. Tharp
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Malabika Laha
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Peter Panizzi
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Michael W. Thompson
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Pablo Fuentes-Prior
- the Institut de Recerca, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Paul E. Bock
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
15
|
Ward PN, Abu-Median ABAK, Leigh JA. Structural consideration of the formation of the activation complex between the staphylokinase-like streptococcal plasminogen activator PadA and bovine plasminogen. J Mol Biol 2008; 381:734-47. [PMID: 18588895 DOI: 10.1016/j.jmb.2008.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/02/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
The characteristics of a streptococcal plasminogen activator (PA) displaying specificity for ruminant plasminogen (Plg) were defined using molecular approaches. The 16-kDa secreted protein PadA was found to be prevalent in Streptococcus dysgalactiae subspecies dysgalactiae isolated from cases of bovine mastitis and septic arthritis in lambs. PadA was able to activate bovine, ovine and caprine Plg, but not human Plg. Amino acid sequence analysis identified a limited level of homology to other streptococcal PAs, including streptokinase; however, PadA was found to align well with and match in size the staphylococcal PA, staphylokinase. Recombinant PadA was used to investigate interaction with bovine Plg, leading to formation of an activator complex that was capable of recruiting and converting further substrate Plg into plasmin. Individual non-overlapping peptides of PadA or bovine microplasminogen were found to block the interaction between PadA and bovine Plg, preventing the formation of the activation complex. Homology modelling based upon structures of staphylokinase complexed with human microplasminogen supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.
Collapse
Affiliation(s)
- Philip N Ward
- Nuffield Department of Clinical Laboratory Sciences, Oxford University, John Radcliffe Hospital, Headington OX3 9DU, UK.
| | | | | |
Collapse
|
16
|
Abstract
The beta domain of streptokinase is required for plasminogen activation and contains a region of sequence diversity associated with infection and disease in group A streptococci. We report that mutagenesis of this polymorphic region does not alter plasminogen activation, which suggests an alternative function for this molecular motif in streptococcal disease.
Collapse
Affiliation(s)
- Sergio Lizano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
17
|
Zadoks RN, Schukken YH, Wiedmann M. Multilocus sequence typing of Streptococcus uberis provides sensitive and epidemiologically relevant subtype information and reveals positive selection in the virulence gene pauA. J Clin Microbiol 2005; 43:2407-17. [PMID: 15872274 PMCID: PMC1153724 DOI: 10.1128/jcm.43.5.2407-2417.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 11/07/2004] [Accepted: 01/14/2005] [Indexed: 12/28/2022] Open
Abstract
Control of the bovine mastitis pathogen Streptococcus uberis requires sensitive and epidemiologically meaningful subtyping methods that can provide insight into this pathogen's epidemiology and evolution. Development of a multilocus sequence typing (MLST) scheme based on six housekeeping and virulence genes allowed differentiation of 40 sequence types among 50 S. uberis isolates from the United States (n = 30) and The Netherlands (n = 20). MLST was more discriminatory than EcoRI or PvuII ribotyping and provided subtype data with better epidemiological relevance, e.g., by discriminating isolates with identical ribotypes obtained from different farms. Phylogenetic analyses of MLST data revealed indications of reticulate evolution between genes, preventing construction of a core phylogeny based on concatenated DNA sequences. However, all individual gene phylogenies clearly identified a distinct pauA-negative subtaxon of S. uberis for which housekeeping alleles closely resembled those of Streptococcus parauberis. While the average GC content for five genes characterized was between 0.38 and 0.40, pauA showed a considerably lower GC content (0.34), suggesting acquisition through horizontal transfer. pauA also showed a higher nonsynonymous/synonymous rate ratio (dN/dS) (1.2) compared to the other genes sequenced (dN/dS < 0.12), indicating positive selection in this virulence gene. In conclusion, our data show that (i) MLST provides for highly discriminatory and epidemiologically relevant subtyping of S. uberis; (ii) S. uberis has a recombinatorial population structure; (iii) phylogenetic analysis of MLST data reveals an S. uberis subtaxon resembling S. parauberis; and (iv) horizontal gene transfer and positive selection contribute to evolution of certain S. uberis genes, such as the virulence gene pauA.
Collapse
Affiliation(s)
- Ruth N Zadoks
- Department of Food Service, Cornell University, Ithaca, NY 14850, USA.
| | | | | |
Collapse
|
18
|
Dahiya M, Rajamohan G, Dikshit KL. Enhanced plasminogen activation by staphylokinase in the presence of streptokinase β/βγ domains: Plasminogen kringles play a role. FEBS Lett 2005; 579:1565-72. [PMID: 15757642 DOI: 10.1016/j.febslet.2005.01.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 01/17/2005] [Indexed: 11/22/2022]
Abstract
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK.
Collapse
Affiliation(s)
- Monika Dahiya
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
19
|
Ward PN, Field TR, Rosey EL, Abu-Median AB, Lincoln RA, Leigh JA. Complex interactions between bovine plasminogen and streptococcal plasminogen activator PauA. J Mol Biol 2004; 342:1101-14. [PMID: 15351638 DOI: 10.1016/j.jmb.2004.07.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 07/22/2004] [Indexed: 11/17/2022]
Abstract
The interactions between bovine plasminogen and the streptococcal plasminogen activator PauA that culminate in the generation of plasmin are not fully understood. Formation of an equimolar activation complex comprising PauA and plasminogen by non-proteolytic means is a prerequisite to the recruitment of substrate plasminogen; however the determinants that facilitate these interactions have yet to be defined. A mutagenesis strategy comprising nested deletions and random point substitutions indicated roles for both amino and carboxyl-terminal regions of PauA and identified further essential residues within the alpha domain of the plasminogen activator. A critical region within the alpha domain was identified using non-overlapping PauA peptides to block the interaction between PauA and bovine plasminogen, preventing formation of the activation complex. Homology modelling of the activation complex based upon the known structures of streptokinase complexed with human plasmin supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.
Collapse
Affiliation(s)
- Philip N Ward
- Institute for Animal Health, Compton Laboratory, Compton, Berkshire, RG20 7NN, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
A failure of hemostasis and consequent formation of blood clots in the circulatory system can produce severe outcomes such as stroke and myocardial infraction. Pathological development of blood clots requires clinical intervention with fibrinolytic agents such as urokinase, tissue plasminogen activator and streptokinase. This review deals with streptokinase as a clinically important and cost-effective plasminogen activator. The aspects discussed include: the mode of action; the structure and structure-function relationships; the structural modifications for improving functionality; recombinant streptokinase; microbial production; and recovery of this protein from crude broths.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali) 160062 Punjab, India
| | | | | |
Collapse
|
21
|
Sundram V, Nanda JS, Rajagopal K, Dhar J, Chaudhary A, Sahni G. Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem 2003; 278:30569-77. [PMID: 12773528 DOI: 10.1074/jbc.m303799200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To explore the interdomain co-operativity during human plasminogen (HPG) activation by streptokinase (SK), we expressed the cDNAs corresponding to each SK domain individually (alpha, beta, and gamma), and also their two-domain combinations, viz. alphabeta and betagamma in Escherichia coli. After purification, alpha and beta showed activator activities of approximately 0.4 and 0.05%, respectively, as compared with that of native SK, measured in the presence of human plasmin, but the bi-domain constructs alphabeta and betagamma showed much higher co-factor activities (3.5 and 0.7% of native SK, respectively). Resonant Mirror-based binding studies showed that the single-domain constructs had significantly lower affinities for "partner" HPG, whereas the affinities of the two-domain constructs were remarkably native-like with regards to both binary-mode as well as ternary mode ("substrate") binding with HPG, suggesting that the vast difference in co-factor activity between the two- and three-domain structures did not arise merely from affinity differences between activator species and HPG. Remarkably, when the co-factor activities of the various constructs were measured with microplasminogen, the nearly 50-fold difference in the co-factor activity between the two- and three-domain SK constructs observed with full-length HPG as substrate was found to be dramatically attenuated, with all three types of constructs now exhibiting a low activity of approximately 1-2% compared to that of SK.HPN and HPG. Thus, the docking of substrate through the catalytic domain at the active site of SK-plasmin(ogen) is capable of engendering, at best, only a minimal level of co-factor activity in SK.HPN. Therefore, apart from conferring additional substrate affinity through kringle-mediated interactions, reported earlier (Dhar et al., 2002; J. Biol. Chem. 277, 13257), selective interactions between all three domains of SK and the kringle domains of substrate vastly accelerate the plasminogen activation reaction to near native levels.
Collapse
|
22
|
Gladysheva IP, Turner RB, Sazonova IY, Liu L, Reed GL. Coevolutionary patterns in plasminogen activation. Proc Natl Acad Sci U S A 2003; 100:9168-72. [PMID: 12878727 PMCID: PMC170890 DOI: 10.1073/pnas.1631716100] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The generation of plasmin by plasminogen (Pg) activators (PAs) is a physiologic process in animals that dissolves blood clots and promotes wound healing, blood vessel growth, and the migration of normal and cancerous cells. Pathogenic bacteria have evolved PAs [e.g., streptokinase (SK) and staphylokinase] that exploit the Pg system to infect animals. Animal PAs have a conserved ability to cleave a wide spectrum of animal Pgs, but the ability of bacterial PAs to cleave different animal Pgs is surprisingly restricted. We show that the spectrum of activity of an archetypal bacterial PA (SK) with animal Pgs can be profoundly altered by mutations that affect intermolecular complementarity at sites that participate in complex formation or substrate binding. Comparative sequence analysis of animal plasmins vs. close structural homologues (trypsin and chymotrypsin) that are not molecular targets for invading bacteria indicates that the sites in plasmin that interact with SK are preferentially targeted for mutation. Conversely, intermolecular contact sites in SKs that activate human Pg are more highly conserved than other loci in the molecule or than the same sites in other SKs that activate non-human Pgs. We propose that active modulation of intermolecular complementarity at sites of contact between SK and Pg may represent a competitive evolutionary strategy in a survival battle, whereby animals seek to evade bacterial invasion, and bacteria endeavor to invade their animal hosts.
Collapse
Affiliation(s)
- Inna P Gladysheva
- Cardiovascular Biology Laboratory, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Parhami-Seren B, Seavey M, Krudysz J, Tsantili P. Structural correlates of a functional streptokinase antigenic epitope: serine 138 is an essential residue for antibody binding. J Immunol Methods 2003; 272:93-105. [PMID: 12505715 DOI: 10.1016/s0022-1759(02)00435-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We determined the pattern of cross-reactivity of a panel of anti-streptokinase (SK) monoclonal antibodies (mAbs) with SK variants in order to map the antigenic and functional epitope of SK. Comparison of the pattern of cross-reactivity of the anti-SK mAb A4.3 with SK variants and sequence alignments of SK variants and native (n) SK suggested that mutation of Ser 138 to Lys results in loss of binding of mAb A4.3 to SK variants. However, this mutation does not affect formation of activator complex by these proteins. The epitope specificity of the mAb A4.3 was further confirmed by mutating Ser 138 to Lys in n SK. Monoclonal Ab A4.3 did not bind to mutant SK (Ser138Lys). Activator activity of mutant SK (Ser138Lys) was indistinguishable from that of n SK and recombinant n SK. Since addition of A4.3 mAb to an equimolar mixture of SK and human plasminogen inhibits activator complex formation, the sequences spanning position 138 are likely important for formation of streptokinase-plasminogen activator complex or processing of the plasminogen substrate.
Collapse
Affiliation(s)
- Behnaz Parhami-Seren
- Department of Biochemistry, College of Medicine, Given Building, University of Vermont, 89 Beaumont Street, Burlington 05405-0068, USA.
| | | | | | | |
Collapse
|
24
|
Parhami-Seren B, Krudysz J, Tsantili P. Affinity panning of peptide libraries using anti-streptokinase monoclonal antibodies: selection of an inhibitor of plasmin(ogen) active site. J Immunol Methods 2002; 267:185-98. [PMID: 12165440 DOI: 10.1016/s0022-1759(02)00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To select sequences complementary to their binding sites, two anti-streptokinase (SK) monoclonal antibodies (mAbs), A4.5 and A5.5, were used in biopanning of 15-mer and hexamer phage-displayed peptide libraries, respectively. mAb A4.5 inhibits the catalytic activity of streptokinase-plasminogen activator complex (SKPAC), the binding of plasminogen to SK and the binding of human anti-SK polyclonal Abs to SK. All clones selected from the 15-mer peptide library by mAb A4.5 had identical nucleotide and amino acid sequences, RSVYRCSPFVGCWFG. An 11-mer peptide (peptide A4.5, YRCSPFVGCWF) derived from this sequence inhibited the binding of mAb A4.5 and human anti-SK polyclonal Abs to SK as well as the catalytic activity of both SKPAC and plasmin. The binding of the second mAb (mAb A5.5) to SK is lost upon interaction of SK with plasminogen, suggesting that sequences selected by this mAb are likely associated with the C-terminal cleavage site of SK. Biopanning of a hexamer peptide library with mAb A5.5 selected the sequence RYLQDY that is homologous to residues 324-328, adjacent to one possible C-terminal cleavage site in SK. A 10-mer synthetic peptide (LDFRDLYDPR) corresponding to residues 321-330 in SK specifically inhibited the binding of mAb A5.5 to SK. The selection and characterization of these two peptides enhances our understanding of SK structure, maps an antigenic epitope, and identifies a peptide inhibitor of plasminogen activation.
Collapse
Affiliation(s)
- Behnaz Parhami-Seren
- Department of Biochemistry, College of Medicine, University of Vermont, Given Building, Room C444, 89 Beaumont Avenue, Burlington 05405-0068, USA.
| | | | | |
Collapse
|
25
|
Wakeham N, Terzyan S, Zhai P, Loy JA, Tang J, Zhang XC. Effects of deletion of streptokinase residues 48-59 on plasminogen activation. Protein Eng Des Sel 2002; 15:753-61. [PMID: 12456874 DOI: 10.1093/protein/15.9.753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptokinase (SK) is a thrombolytic agent widely used for the clinical treatment of clotting disorders such as heart attack. The treatment is based on the ability of SK to bind plasminogen (Pg) or plasmin (Pm), forming complexes that proteolytically activate other Pg molecules to Pm, which carries out fibrinolysis. SK contains three major domains. The N-terminal domain, SKalpha, provides the complex with substrate recognition towards Pg. SKalpha contains a unique mobile loop, residues 45-70, absent in the corresponding domains of other bacterial Pg activators. To study the roles of this loop, we deleted 12 residues in this loop in both full-length SK and the SKalpha fragment. Kinetic data indicate that this loop participates in the recognition of substrate Pg, but does not function in the active site formation in the activator complex. Two crystal structures of the deletion mutant of SKalpha (SKalpha(delta)) complexed with the protease domain of Pg were determined. While the structure of SKalpha(delta) is essentially the same as this domain in full-length SK, the mode of SK-Pg interaction was however different from a previously observed structure. Even though mutagenesis studies indicated that the current complex represents a minor interacting form in solution, the binding to SKalpha(delta) triggered similar conformational changes in the Pg active site in both crystal forms.
Collapse
Affiliation(s)
- N Wakeham
- Crystallography Research Program and Protein Studies Program, Oklahoma Medical Research Foundation, 825 N E 13th Street,Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Dhar J, Pande AH, Sundram V, Nanda JS, Mande SC, Sahni G. Involvement of a nine-residue loop of streptokinase in the generation of macromolecular substrate specificity by the activator complex through interaction with substrate kringle domains. J Biol Chem 2002; 277:13257-67. [PMID: 11821385 DOI: 10.1074/jbc.m108422200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selective deletion of a discrete surface-exposed epitope (residues 254-262; 250-loop) in the beta domain of streptokinase (SK) significantly decreased the rates of substrate human plasminogen (HPG) activation by the mutant (SK(del254-262)). A kinetic analysis of SK(del254-262) revealed that its low HPG activator activity arose from a 5-6-fold increase in K(m) for HPG as substrate, with little alteration in k(cat) rates. This increase in the K(m) for the macromolecular substrate was proportional to a similar decrease in the binding affinity for substrate HPG as observed in a new resonant mirror-based assay for the real-time kinetic analysis of the docking of substrate HPG onto preformed binary complex. In contrast, studies on the interaction of the two proteins with microplasminogen showed no difference between the rates of activation of microplasminogen under conditions where HPG was activated differentially by nSK and SK(del254-262). The involvement of kringles was further indicated by a hypersusceptibility of the SK(del254-262).plasmin activator complex to epsilon-aminocaproic acid-mediated inhibition of substrate HPG activation in comparison with that of the nSK.plasmin activator complex. Further, ternary binding experiments on the resonant mirror showed that the binding affinity of kringles 1-5 of HPG to SK(del254-262).HPG was reduced by about 3-fold in comparison with that of nSK.HPG . Overall, these observations identify the 250 loop in the beta domain of SK as an important structural determinant of the inordinately stringent substrate specificity of the SK.HPG activator complex and demonstrate that it promotes the binding of substrate HPG to the activator via the kringle(s) during the HPG activation process.
Collapse
Affiliation(s)
- Jayeeta Dhar
- Institute of Microbial Technology, Sector 39-A, Chandigarh-160036, India
| | | | | | | | | | | |
Collapse
|
27
|
Sazonova IY, Houng AK, Chowdhry SA, Robinson BR, Hedstrom L, Reed GL. The mechanism of a bacterial plasminogen activator intermediate between streptokinase and staphylokinase. J Biol Chem 2001; 276:12609-13. [PMID: 11278483 DOI: 10.1074/jbc.m009265200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic properties of plasminogen activators are dictated by their mechanism of action. Unlike staphylokinase, a single domain protein, streptokinase, a 3-domain (alpha, beta, and gamma) molecule, nonproteolytically activates human (h)-plasminogen and protects plasmin from inactivation by alpha(2)-antiplasmin. Because a streptokinase-like mechanism was hypothesized to require the streptokinase gamma-domain, we examined the mechanism of action of a novel two-domain (alpha,beta) Streptococcus uberis plasminogen activator (SUPA). Under conditions that quench trace plasmin, SUPA nonproteolytically generated an active site in bovine (b)-plasminogen. SUPA also competitively inhibited the inactivation of plasmin by alpha(2)-antiplasmin. Still, the lag phase in active site generation and plasminogen activation by SUPA was at least 5-fold longer than that of streptokinase. Recombinant streptokinase gamma-domain bound to the b-plasminogen.SUPA complex and significantly reduced these lag phases. The SUPA-b.plasmin complex activated b-plasminogen with kinetic parameters comparable to those of streptokinase for h-plasminogen. The SUPA-b.plasmin complex also activated h-plasminogen but with a lower k(cat) (25-fold) and k(cat)/K(m) (7.9-fold) than SK. We conclude that a gamma-domain is not required for a streptokinase-like activation of b-plasminogen. However, the streptokinase gamma-domain enhances the rates of active site formation in b-plasminogen and this enhancing effect may be required for efficient activation of plasminogen from other species.
Collapse
Affiliation(s)
- I Y Sazonova
- Cardiovascular Biology Laboratory, Harvard School of Public Health and the Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|