1
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
2
|
Taibi T, Cheon S, Perna F, Vu LP. mRNA-based therapeutic strategies for cancer treatment. Mol Ther 2024; 32:2819-2834. [PMID: 38702886 PMCID: PMC11403232 DOI: 10.1016/j.ymthe.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
In the rapidly evolving landscape of medical research, the emergence of RNA-based therapeutics is paradigm shifting. It is mainly driven by the molecular adaptability and capacity to provide precision in targeting. The coronavirus disease 2019 pandemic crisis underscored the effectiveness of the mRNA therapeutic development platform and brought it to the forefront of RNA-based interventions. These RNA-based therapeutic approaches can reshape gene expression, manipulate cellular functions, and correct the aberrant molecular processes underlying various diseases. The new technologies hold the potential to engineer and deliver tailored therapeutic agents to tackle genetic disorders, cancers, and infectious diseases in a highly personalized and precisely tuned manner. The review discusses the most recent advancements in the field of mRNA therapeutics for cancer treatment, with a focus on the features of the most utilized RNA-based therapeutic interventions, current pre-clinical and clinical developments, and the remaining challenges in delivery strategies, effectiveness, and safety considerations.
Collapse
Affiliation(s)
- Thilelli Taibi
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sehyun Cheon
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Ly P Vu
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Gyanani V, Goswami R. Key Design Features of Lipid Nanoparticles and Electrostatic Charge-Based Lipid Nanoparticle Targeting. Pharmaceutics 2023; 15:1184. [PMID: 37111668 PMCID: PMC10144967 DOI: 10.3390/pharmaceutics15041184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid nanoparticles (LNP) have gained much attention after the approval of mRNA COVID-19 vaccines. The considerable number of currently ongoing clinical studies are testament to this fact. These efforts towards the development of LNPs warrant an insight into the fundamental developmental aspects of such systems. In this review, we discuss the key design aspects that confer efficacy to a LNP delivery system, i.e., potency, biodegradability, and immunogenicity. We also cover the underlying considerations regarding the route of administration and targeting of LNPs to hepatic and non-hepatic targets. Furthermore, since LNP efficacy is also a function of drug/nucleic acid release within endosomes, we take a holistic view of charged-based targeting approaches of LNPs not only in the context of endosomal escape but also in relation to other comparable target cell internalization strategies. Electrostatic charge-based interactions have been used in the past as a potential strategy to enhance the drug release from pH-sensitive liposomes. In this review, we cover such strategies around endosomal escape and cell internalization in low pH tumor micro-environments.
Collapse
Affiliation(s)
- Vijay Gyanani
- T.J.L. School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | | |
Collapse
|
4
|
Meng D, Song J, Yi Y, Li J, Zhang T, Shu Y, Wu X. Controlled released naringin-loaded liposome/sucrose acetate isobutyrate hybrid depot for osteogenesis in vitro and in vivo. Front Bioeng Biotechnol 2023; 10:1097178. [PMID: 36686256 PMCID: PMC9849584 DOI: 10.3389/fbioe.2022.1097178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: A common problem in bone tissue engineering is that the burst release of active osteogenic factors is not beneficial for osteogenesis. This study aimed to prepare naringin (Ng) liposomes to reduce the burst release of Ng and improve new bone formation. Methods: We synthesized Ng liposomes using the thin-film hydration method. Drug-encapsulation efficacy experiments were conducted using the ultracentrifugation technique. The morphology and size distributions of freezedried liposomes were determined by transmission electron microscopy and dynamic light scattering. The Ng liposomes and Ng-lipo/sucrose acetate isobutyrate (SAIB) depots were characterized using Fourier transform infrared spectroscopy and in vitro release studies. After implantation of the Ng-lipo/SAIB depots, in vitro osteoblast-liposome interactions and in vivo osteogenesis were tested. Results: The formulation of freeze-dried Ng liposomes via an optimized recipe yielded nanosized (136.9 nm) negatively charged particles with a high encapsulation efficiency (~76.3%). Their chemical structure did not change after adding SAIB to the Ng liposomes. The burst release was reduced dramatically from 74.4% to 23.7%. In vivo, after 8 weeks, the new bone formation rate in the calvarial defects of Sprague-Dawley rats receiving Ng-lipo/SAIB was 57% compared with 25.18% in the control group (p = .0003). Discussion: Our results suggested that Ng-lipo/SAIB hybrid depots could serve as candidate materials for drug delivery in bone regeneration applications.
Collapse
Affiliation(s)
- Di Meng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Yi
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jihong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Shu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,*Correspondence: Xiaohong Wu,
| |
Collapse
|
5
|
Sharma S, Mahajan SD, Chevli K, Schwartz SA, Aalinkeel R. Nanotherapeutic Approach to Delivery of Chemo- and Gene Therapy for Organ-Confined and Advanced Castration-Resistant Prostate Cancer. Crit Rev Ther Drug Carrier Syst 2023; 40:69-100. [PMID: 37075068 PMCID: PMC11007628 DOI: 10.1615/critrevtherdrugcarriersyst.2022043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatments for late-stage prostate cancer (CaP) have not been very successful. Frequently, advanced CaP progresses to castration-resistant prostate cancer (CRPC), with 50#37;-70% of patients developing bone metastases. CaP with bone metastasis-associated clinical complications and treatment resistance presents major clinical challenges. Recent advances in the formulation of clinically applicable nanoparticles (NPs) have attracted attention in the fields of medicine and pharmacology with applications to cancer and infectious and neurological diseases. NPs have been rendered biocompatible, pose little to no toxicity to healthy cells and tissues, and are engineered to carry large therapeutic payloads, including chemo- and genetic therapies. Additionally, if required, targeting specificity can be achieved by chemically coupling aptamers, unique peptide ligands, or monoclonal antibodies to the surface of NPs. Encapsulating toxic drugs within NPs and delivering them specifically to their cellular targets overcomes the problem of systemic toxicity. Encapsulating highly labile genetic therapeutics such as RNA within NPs provides a protective environment for the payload during parenteral administration. The loading efficiencies of NPs have been maximized while the controlled their therapeutic cargos has been released. Theranostic ("treat and see") NPs have developed combining therapy with imaging capabilities to provide real-time, image-guided monitoring of the delivery of their therapeutic payloads. All of these NP accomplishments have been applied to the nanotherapy of late-stage CaP, offering a new opportunity for a previously dismal prognosis. This article gives an update on current developments in the use of nanotechnology for treating late-stage, castration-resistant CaP.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Kent Chevli
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
6
|
Inoue M, Muta K, Mohammed AFA, Onodera R, Higashi T, Ouchi K, Ueda M, Ando Y, Arima H, Jono H, Motoyama K. Feasibility Study of Dendrimer-Based TTR-CRISPR pDNA Polyplex for Ocular Amyloidosis <i>in Vitro</i>. Biol Pharm Bull 2022; 45:1660-1668. [DOI: 10.1248/bpb.b22-00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masamichi Inoue
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kyosuke Muta
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University
| | - Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
7
|
Taheri RA, Bahramifar A, Jaafari MR, Fasihi-Ramandi M, Nikpoor AR, Emameh RZ, Haftcheshmeh SM, Ebrahimi MN. Designing new nanoliposomal formulations and evaluating their effects on myeloid-derived suppressor cells and regulatory T cells in a colon cancer model aiming to develop an efficient delivery system for cancer treatment; an in vitro and in vivo study. Biotechnol Appl Biochem 2021; 69:2151-2160. [PMID: 34698408 DOI: 10.1002/bab.2275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are common immunosuppressive cells in the tumor microenvironment. These cells, through various mechanisms, inhibit antitumor immune responses and impede effective therapies. Therefore, designing an efficient protocol for inducing immune surveillance in tumors is highly recommended. Recently, nanoliposomes have provided broad-spectrum and state-of-the-art vehicles to deliver antigens or immune system compartments in immunotherapies. It has been shown that different lipids in the structure of liposomes and various liposomal formulations can affect immune responses in the tumor microenvironment. This study was aimed to evaluate the effects of four different liposomal formulations on MDSCs and Tregs in C26 tumor-bearing mice. To this end, after preparing liposomes, they were injected into tumor-inoculated mice and analyzed MDSC and Treg population and functions in spleen and tumor tissues. Results showed that DOTAP-containing liposomes reduced MDSC population and activity in the spleen, but not tumor, compared with other groups significantly (P <0.05 and P <0.01, respectively). Moreover, DOTAP-containing liposomes reduced the expression of S100A8 and arginase-1 genes in splenic MDSCs (P < 0.05). In conclusion, we provided evidence that DOTAP-containing liposomes contributed to stimulating immune responses and provided a situation to inhibit immunosuppression in the tumor microenvironment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, 14965/161, Iran
| | | | - Maryam Nik Ebrahimi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Tang J, Rakshit M, Chua HM, Darwitan A, Nguyen LTH, Muktabar A, Venkatraman S, Ng KW. Liposome interaction with macrophages and foam cells for atherosclerosis treatment: effects of size, surface charge and lipid composition. NANOTECHNOLOGY 2021; 32:505105. [PMID: 34536952 DOI: 10.1088/1361-6528/ac2810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Liposomes are potential drug carriers for atherosclerosis therapy due to low immunogenicity and ease of surface modifications that allow them to have prolonged circulation half-life and specifically target atherosclerotic sites to increase uptake efficiency. However, the effects of their size, charge, and lipid compositions on macrophage and foam cell behaviour are not fully understood. In this study, liposomes of different sizes (60 nm, 100 nm and 180 nm), charges (-40 mV, -20 mV, neutral, +15 mV and +30 mV) and lipid compositions (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, L-a-phosphatidylcholine, and egg sphingomyelin) were synthesized, characterized and exposed to macrophages and foam cells. Compared to 100 nm neutral 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes, flow cytometry and confocal imaging indicated that cationic liposomes and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DSPC) liposomes were internalized more by both macrophages and foam cells. Through endocytosis inhibition, phagocytosis and clathrin-mediated endocytosis were identified as the dominant mechanisms of uptake. Anionic and DSPC liposomes induced more cholesterol efflux capacity in foam cells. These results provide a guide for the optimal size, charge, and lipid composition of liposomes as drug carriers for atherosclerosis treatment.
Collapse
Affiliation(s)
- Jinkai Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Anastasia Darwitan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, United States of America
| | - Aristo Muktabar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Subbu Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, United States of America
| |
Collapse
|
9
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
10
|
Huang J, Yuen D, Mintern JD, Johnston APR. Opportunities for innovation: Building on the success of lipid nanoparticle vaccines. Curr Opin Colloid Interface Sci 2021; 55:101468. [PMID: 34093062 PMCID: PMC8164502 DOI: 10.1016/j.cocis.2021.101468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.
Collapse
Affiliation(s)
- Jessica Huang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville VIC 3052, Australia
| |
Collapse
|
11
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Aggregation Behavior, Antibacterial Activity and Biocompatibility of Catanionic Assemblies Based on Amino Acid-Derived Surfactants. Int J Mol Sci 2020; 21:ijms21238912. [PMID: 33255401 PMCID: PMC7727793 DOI: 10.3390/ijms21238912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 01/18/2023] Open
Abstract
The surface activity, aggregates morphology, size and charge characteristics of binary catanionic mixtures containing a cationic amino acid-derived surfactant N(π), N(τ)-bis(methyl)-L-Histidine tetradecyl amide (DMHNHC14) and an anionic surfactant (the lysine-based surfactant Nα-lauroyl-Nεacetyl lysine (C12C3L) or sodium myristate) were investigated for the first time. The cationic surfactant has an acid proton which shows a strong pKa shift irrespective of aggregation. The resulting catanionic mixtures exhibited high surface activity and low critical aggregation concentration as compared with the pure constituents. Catanionic vesicles based on DMHNHC14/sodium myristate showed a monodisperse population of medium-size aggregates and good storage stability. According to Small-Angle X-Ray Scattering (SAXS), the characteristics of the bilayers did not depend strongly on the system composition for the positively charged vesicles. Negatively charged vesicles (cationic surfactant:myristate ratio below 1:2) had similar bilayer composition but tended to aggregate. The DMHNHC14-rich vesicles exhibited good antibacterial activity against Gram-positive bacteria and their bactericidal effectivity declined with the decrease of the cationic surfactant content in the mixtures. The hemolytic activity and cytotoxicity of these catanionic formulations against non-tumoral (3T3, HaCaT) and tumoral (HeLa, A431) cell lines also improved by increasing the ratio of cationic surfactant in the mixture. These results indicate that the biological activity of these systems is mainly governed by the cationic charge density, which can be modulated by changing the cationic/anionic surfactant ratio in the mixtures. Remarkably, the incorporation of cholesterol in those catanionic vesicles reduces their cytotoxicity and increases the safety of future biomedical applications of these systems.
Collapse
|
13
|
Effects of lipid composition in cationic liposomes on suppression of mast cell activation. Chem Phys Lipids 2020; 231:104948. [DOI: 10.1016/j.chemphyslip.2020.104948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
|
14
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Immunological and Toxicological Considerations for the Design of Liposomes. NANOMATERIALS 2020; 10:nano10020190. [PMID: 31978968 PMCID: PMC7074910 DOI: 10.3390/nano10020190] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
Liposomes hold great potential as gene and drug delivery vehicles due to their biocompatibility and modular properties, coupled with the major advantage of attenuating the risk of systemic toxicity from the encapsulated therapeutic agent. Decades of research have been dedicated to studying and optimizing liposomal formulations for a variety of medical applications, ranging from cancer therapeutics to analgesics. Some effort has also been made to elucidate the toxicities and immune responses that these drug formulations may elicit. Notably, intravenously injected liposomes can interact with plasma proteins, leading to opsonization, thereby altering the healthy cells they come into contact with during circulation and removal. Additionally, due to the pharmacokinetics of liposomes in circulation, drugs can end up sequestered in organs of the mononuclear phagocyte system, affecting liver and spleen function. Importantly, liposomal agents can also stimulate or suppress the immune system depending on their physiochemical properties, such as size, lipid composition, pegylation, and surface charge. Despite the surge in the clinical use of liposomal agents since 1995, there are still several drawbacks that limit their range of applications. This review presents a focused analysis of these limitations, with an emphasis on toxicity to healthy tissues and unfavorable immune responses, to shed light on key considerations that should be factored into the design and clinical use of liposomal formulations.
Collapse
|
16
|
Essential Role of Host Double-Stranded DNA Released from Dying Cells by Cationic Liposomes for Mucosal Adjuvanticity. Vaccines (Basel) 2019; 8:vaccines8010008. [PMID: 31892192 PMCID: PMC7157664 DOI: 10.3390/vaccines8010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
Infectious disease remains a substantial cause of death. To overcome this issue, mucosal vaccine systems are considered to be a promising strategy. Yet, none are approved for clinical use, except for live-attenuated mucosal vaccines, mainly owing to the lack of effective and safe systems to induce antigen-specific immune responses in the mucosal compartment. We have reported that intranasal vaccination of an antigenic protein, with cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl], induced antigen-specific mucosal and systemic antibody responses in mice. However, precise molecular mechanism(s) underlying the mucosal adjuvant effects of cationic liposomes remain to be uncovered. Here, we show that a host double-stranded DNA (dsDNA), released at the site of cationic liposome injection, plays an essential role for the mucosal adjuvanticity of the cationic liposome. Namely, we found that nasal administration of the cationic liposomes induced localized cell death, at the site of injection, resulting in extracellular leakage of host dsDNA. Additionally, in vivo DNase I treatment markedly impaired OVA-specific mucosal and systemic antibody production exerted by cationic liposomes. Our report reveals that host dsDNA, released from local dying cells, acts as a damage-associated molecular pattern that mediates the mucosal adjuvant activity of cationic liposomes.
Collapse
|
17
|
Immunogenicity and Protection Efficacy of a Naked Self-Replicating mRNA-Based Zika Virus Vaccine. Vaccines (Basel) 2019; 7:vaccines7030096. [PMID: 31450775 PMCID: PMC6789535 DOI: 10.3390/vaccines7030096] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
To combat emerging infectious diseases like Zika virus (ZIKV), synthetic messenger RNAs (mRNAs) encoding viral antigens are very attractive as they allow a rapid, generic, and flexible production of vaccines. In this work, we engineered a self-replicating mRNA (sr-mRNA) vaccine encoding the pre-membrane and envelope (prM-E) glycoproteins of ZIKV. Intradermal electroporation of as few as 1 µg of this mRNA-based ZIKV vaccine induced potent humoral and cellular immune responses in BALB/c and especially IFNAR1-/- C57BL/6 mice, resulting in a complete protection of the latter mice against ZIKV infection. In wild-type C57BL/6 mice, the vaccine resulted in very low seroconversion rates and antibody titers. The potency of the vaccine was inversely related to the dose of mRNA used in wild-type BALB/c or C57BL/6 mice, as robust type I interferon (IFN) response was determined in a reporter mice model (IFN-β+/Δβ-luc). We further investigated the inability of the sr-prM-E-mRNA ZIKV vaccine to raise antibodies in wild-type C57BL/6 mice and found indications that type I IFNs elicited by this naked sr-mRNA vaccine might directly impede the induction of a robust humoral response. Therefore, we assume that the efficacy of sr-mRNA vaccines after intradermal electroporation might be increased by strategies that temper their inherent innate immunogenicity.
Collapse
|
18
|
Pawlowska D, Janich C, Langner A, Dobner B, Wölk C, Brezesinski G. The Impact of Alkyl-Chain Purity on Lipid-Based Nucleic Acid Delivery Systems - Is the Utilization of Lipid Components with Technical Grade Justified? Chemphyschem 2019; 20:2110-2121. [PMID: 31265754 PMCID: PMC6771585 DOI: 10.1002/cphc.201900480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/29/2019] [Indexed: 11/17/2022]
Abstract
The physicochemical properties and transfection efficacies of two samples of a cationic lipid have been investigated and compared in 2D (monolayers at the air/liquid interface) and 3D (aqueous bulk dispersions) model systems using different techniques. The samples differ only in their chain composition due to the purity of the oleylamine (chain precursor). Lipid 8 (using the oleylamine of technical grade for cost-efficient synthesis) shows lateral phase separation in the Langmuir layers. However, the amount of attached DNA, determined by IRRAS, is for both samples the same. In 3D systems, lipid 8 p forms cubic phases, which disappear after addition of DNA. At physiological temperatures, both lipids (alone and in mixture with cholesterol) assemble to lamellar aggregates and exhibit comparable DNA delivery efficiency. This study demonstrates that non-lamellar structures are not compulsory for high transfection rates. The results legitimate the utilization of oleyl chains of technical grade in the synthesis of cationic transfection lipids.
Collapse
Affiliation(s)
- Dorota Pawlowska
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-GolmAm Mühlenberg 114476PotsdamGermany
- Warsaw University of Technology, Faculty of ChemistryInstitute of Biotechnologyul. Noakowskiego 300-664WarsawPoland
| | - Christopher Janich
- Martin Luther University Halle-WittenbergInstitute of Pharmacy, Research Group Biochemical PharmacyWolfgang-Langenbeck-Str. 406120 Halle (Saale)Germany
| | - Andreas Langner
- Martin Luther University Halle-WittenbergInstitute of Pharmacy, Research Group Biochemical PharmacyWolfgang-Langenbeck-Str. 406120 Halle (Saale)Germany
| | - Bodo Dobner
- Martin Luther University Halle-WittenbergInstitute of Pharmacy, Research Group Biochemical PharmacyWolfgang-Langenbeck-Str. 406120 Halle (Saale)Germany
| | - Christian Wölk
- Martin Luther University Halle-WittenbergInstitute of Pharmacy, Research Group Biochemical PharmacyWolfgang-Langenbeck-Str. 406120 Halle (Saale)Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-GolmAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
19
|
Nikpoor AR, Jaafari MR, Zamani P, Teymouri M, Gouklani H, Saburi E, Darban SA, Badiee A, Bahramifar A, Fasihi-Ramandi M, Taheri RA. Cell cytotoxicity, immunostimulatory and antitumor effects of lipid content of liposomal delivery platforms in cancer immunotherapies. A comprehensive in-vivo and in-vitro study. Int J Pharm 2019; 567:118492. [PMID: 31271815 DOI: 10.1016/j.ijpharm.2019.118492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 11/25/2022]
Abstract
Liposome is one of the promising technologies for antigen delivery in cancer immunotherapies. It seems that the phospholipid content of liposomes can act as immunostimulatory molecules in cancer immunotherapy. In the present study, the immunological properties of different phospholipid content of liposomal antigen delivery platforms were investigated. To this aim, F1 to F4 naïve liposomes (without tumor-specific loaded antigens) of positively charged DOTAP/Cholesterol/DOPE (4/4/4 mol ratio), negatively charged DMPC/DMPG/Cholesterol/DOPE (15/2/3/5), negatively charged DSPC/DSPG/Cholesterol/DOPE (15/2/3/5) and PEGylated HSPC/mPEG2000-DSPE/Cholesterol (13/110) liposomal compositions were administered in mice bearing C26 colon carcinoma to assess tumor therapy. Moreover, In-vitro studies were conducted, including cytotoxicity assay, serum cytokines measurements, IFN-γ and IL-4 ELISpot assay, T cells subpopulation frequencies assay. The liposomes containing DOTAP and DOPE (F1 liposomes) were able to stimulate cytotoxic T lymphocytes signals such as IFN-γ secretions. In parallel, the aforementioned phospholipids stimulated secretion of IL-4 and IL-17 cytokines from T helper cells. However, these liposomes did not improve survival indices in mice. As conclusion, DOTAP and DOPE contained liposomes (F1 liposomes) stimulate a mixture of Th1 and Th2 immune responses in a tumor-specific antigens-free manner in mice bearing C26 colon carcinoma. Therefore, phospholipid composition of liposomes merits consideration in designing antigen-containing liposomes for cancer immunotherapy.
Collapse
Affiliation(s)
- Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manouchehr Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ehsan Saburi
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Amiri Darban
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Huysmans H, De Temmerman J, Zhong Z, Mc Cafferty S, Combes F, Haesebrouck F, Sanders NN. Improving the Repeatability and Efficacy of Intradermal Electroporated Self-Replicating mRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:388-395. [PMID: 31307005 PMCID: PMC6626868 DOI: 10.1016/j.omtn.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022]
Abstract
Local administration of naked self-replicating mRNA (sr-mRNA) in the skin or muscle using electroporation is effective but hampered by low repeatability. In this manuscript, we demonstrated that intradermal electroporation of sr-mRNA in combination with a protein-based RNase inhibitor increased the expression efficiency, success rate, and repeatability of the data. The RNase inhibitor should be added just before administration because storage of the inhibitor together with the sr-mRNA at −80°C resulted in a partial loss of the beneficial effect. Furthermore, the location of intradermal electroporation also had a major effect on the expression of the sr-mRNA, with the highest and longest expression observed at the tail base of the mice. In contrast with previous work, we did not observe a beneficial effect of calcium ions on the efficacy of naked sr-mRNA after intradermal injection. Finally, another important finding was that the traditional representation of in vivo bioluminescence data as means in logarithmic graphs can mask highly variable data. A more truthful representation can be obtained by showing the individual data points or by displaying median values in combination with interquartile ranges. In conclusion, intradermal sr-mRNA electroporation can be improved by adding an RNase inhibitor and injecting at the tail base.
Collapse
Affiliation(s)
- Hanne Huysmans
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Zifu Zhong
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Séan Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, Merelbeke, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, Merelbeke, Belgium.
| |
Collapse
|
21
|
Yang B, Mao J, Jiang S, Wei J, Li Y, Gao B, Lu X. Cholesterol depletion induced by RNA interference targeting DHCR24 protects cells from liposome-induced cytotoxicity. Prep Biochem Biotechnol 2019; 49:453-458. [PMID: 30896287 DOI: 10.1080/10826068.2019.1591979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Existing evidence has demonstrated liposomes as the gene transporter induce the cytotoxicity during the transfection process through several known pathways. In the present study, we investigated the possibility of siRNAs targeting 3-β-hydroxysterol △-24-reductase (DHCR24), which encodes an enzyme catalyzing the last step of cholesterol biosynthesis, to suppress the liposome cytotoxicity induced by lipid-based transfection reagent in the neuroblastoma cell line N2A. We found that the siRNAs targeting DHCR24 mRNA protect cells from the liposome-induced cell death, probably through the effect of siDHCR24s on the reduction of the cellular cholesterol and decrease in the generation of reactive oxygen species (ROS). This suggests that siRNAs targeting DHCR24 or other methods that reduce the intracellular cholesterol levels might be a good strategy for avoiding the cytotoxicity of liposomes, without impairing its efficiency of gene-delivering.
Collapse
Affiliation(s)
- Baoyu Yang
- a School of Life Science , Liaoning University , Shenyang , China
| | - Jing Mao
- a School of Life Science , Liaoning University , Shenyang , China
| | - Shan Jiang
- a School of Life Science , Liaoning University , Shenyang , China
| | - Jie Wei
- a School of Life Science , Liaoning University , Shenyang , China
| | - Yang Li
- b Institute of Basic Medical Sciences , Shenyang Medical College , Shenyang , China
| | - Bing Gao
- b Institute of Basic Medical Sciences , Shenyang Medical College , Shenyang , China
| | - Xiuli Lu
- a School of Life Science , Liaoning University , Shenyang , China
| |
Collapse
|
22
|
Bae CS, Ahn T. Diacylglycerol in Cationic Nanoparticles Stimulates Oxidative Stress-Mediated Death of Cancer Cells. Lipids 2019; 53:1059-1067. [DOI: 10.1002/lipd.12124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/20/2018] [Accepted: 12/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Chun-Sik Bae
- College of Veterinary Medicine; Chonnam National University; 77 Yongbong-ro, Buk-gu, Gwangju 61186 Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine; Chonnam National University; 77 Yongbong-ro, Buk-gu, Gwangju 61186 Republic of Korea
| |
Collapse
|
23
|
Jiang Z, Cui W, Prasad P, Touve MA, Gianneschi NC, Mager J, Thayumanavan S. Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA-Polymer Complexes for RNA Delivery. Biomacromolecules 2018; 20:435-442. [PMID: 30525500 DOI: 10.1021/acs.biomac.8b01321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) requires the intracellular delivery of RNA molecules to initiate the neutralization of targeted mRNA molecules, inhibiting the expression or translation of the targeted gene. Current polymers and lipids that are used to deliver RNA molecules are generally required to be positively charged, to achieve complexation with RNA and the cellular internalization. However, positive surface charge has been implicated as the reason for toxicity in many of these systems. Herein, we report a novel strategy to generate noncationic RNA-polymer complexes for RNA delivery with low cytotoxicity. We use an in situ electrostatic complexation using a methylated pyridinium group, which is simultaneously removed during the RNA binding step. The resultant complexes demonstrate successful knockdown in preimplantation mammalian embryos, thus providing a new approach for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Mollie A Touve
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | - Nathan C Gianneschi
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92093 , United States
| | | | | |
Collapse
|
24
|
Xiang J, Liu X, Zhou Z, Zhu D, Zhou Q, Piao Y, Jiang L, Tang J, Liu X, Shen Y. Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43352-43362. [PMID: 30465424 DOI: 10.1021/acsami.8b13291] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The application of nonviral gene vectors has been limited by their insufficient transfection efficiency because of poor serum stability, high endosomal entrapment, limited intracellular release, and low accumulation in the targeted organelle. It is still challenging to design gene carriers with properties that can overcome all of the barriers. We previously developed a reactive oxygen species (ROS)-responsive cationic polymer, poly[(2-acryloyl)ethyl( p-boronic acid benzyl) diethylammonium bromide] (B-PDEAEA), which switches the charge at high concentrations of intracellular ROS to promote intracellular DNA release. However, its gene-delivery efficiency has been limited by serum instability and lysosomal trapping, and coating with an anionic PEGylated lipid only showed mild enhancement. Herein, we coated the ROS-responsive B-PDEAEA polymer with two cationic lipids to form ROS-responsive lipopolyplexes with integrated properties to overcome multiple delivery barriers. The surface cationic lipids endowed the nanocarrier with improved serum stability, effective cellular uptake, and lysosomal evasion. The interior B-PDEAEA/DNA polyplexes, which were highly stable in the extracellular environment, but quickly dissociated, released DNA, promoted nuclei localization, and achieved efficient transcription. The mechanisms of the ROS-responsive and charge-switchable properties of B-PDEAEA were quantitatively studied. The transfection efficiency and antitumor activity of lipopolyplexes were studied in vitro and in vivo. We found that the ROS-responsive lipopolyplexes effectively delivered therapeutic genes into cell nuclei and caused high tumor inhibition in mice bearing peritoneal or lung metastases.
Collapse
Affiliation(s)
| | - Xin Liu
- Center for Stem Cell and Tissue Engineering, School of Medicine , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Xinyue Biotechnology Co. Ltd. , Hangzhou 311121 , China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Niu X, Gao Z, Qi S, Su L, Yang N, Luan X, Li J, Zhang Q, An Y, Zhang S. Macropinocytosis activated by oncogenic Dbl enables specific targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Int J Nanomedicine 2018; 13:4895-4911. [PMID: 30214196 PMCID: PMC6122892 DOI: 10.2147/ijn.s171361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Successful implementation of gene therapy heavily relies on efficiently delivering genetic materials and specific targeting into cells. Oncogene-driven endocytosis stimulates nutrient uptake and also develops an endocytosis-mediated defense against therapeutic agents. Cell-penetrating peptides, typically HIV-Tat, are well known for efficient delivery of nucleic acid drugs but lack targeting specificity. Various passive targeting strategies were pursued to enhance the tumor targeting efficiency; however, they are still limited by complicated cellular endocytosis routes and the heterogeneity of cancer types. METHODS Tat/pDNA complexes were noncovalently compacted and their physiochemical properties were determined. The siRNA pool and pLV-RNAi-GFP lentivirus were used to knock down dbl oncogene (originally isolated from diffuse B-cell lymphoma) expression, and its overexpression was performed by plasmid transient transfection. The cellular uptake of fluorescent ligands was quantified by confocal imaging and flow cytometry analysis. The transgene efficiency was determined by the Luciferase expression assay. Rho GTPase activation was checked by the GST-Rho GTPase-binding domain pull-down assay. RESULTS pGL3 plasmid DNA was noncovalently compacted with the Tat peptide into nano-size complexes at high N/P ratios. Macropinocytosis, a clathrin- and caveolin-independent endocytosis process, was shown to contribute to the uptake of middle-sized (∼600 nm) Tat/pGL3 complexes. Cell-type-specific variation in macropinocytosis was essentially controlled by the action of the Dbl oncogene. Onco-Dbl presentation constantly induced a high level of macropinocytosis activity in ovarian cancer cells. Onco-Dbl overexpression hyperstimulated macropinocytosis enhancement in cells mainly through actin cytoskeleton reorganization mediated by the PH domain and Rac1 activation. The Dbl-driven Rho GTPase signaling collectively determined the cell-type-specific macropinocytosis phenotype. CONCLUSION Such an aspect can be exploited to selectively confer targeted delivery of Tat/pDNA nano-complexes into ovarian cancer cells. Our work provides a novel alternative for targeted delivery of cell-penetrating peptide-based nucleic acid drugs into certain tumor types if specific endocytosis pathways are used.
Collapse
Affiliation(s)
- Xiuran Niu
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Zhihui Gao
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Shanshan Qi
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Linjia Su
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Nan Yang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Xiuli Luan
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Jia Li
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, People's Republic of China,
| |
Collapse
|
26
|
Hattori Y, Hattori K, Suzuki T, Palikhe S, Matsuda N. Nucleic-acid based gene therapy approaches for sepsis. Eur J Pharmacol 2018; 833:403-410. [PMID: 29935173 DOI: 10.1016/j.ejphar.2018.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Despite advances in overall medical care, sepsis and its sequelae continue to be an embarrassing clinical entity with an unacceptably high mortality rate. The central reason for high morbidity and high mortality of sepsis and its sequelae is the lack of an effective treatment. Previous clinical trials have largely failed to identify an effective therapeutic target to improve clinical outcomes in sepsis. Thus, the key goal favoring the outcome of septic patients is to devise innovative and evolutionary therapeutic strategies. Gene therapy can be considered as one of the most promising novel therapeutic approaches for nasty disorders. Since a number of transcription factors, such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), play a pivotal role in the pathophysiology of sepsis that can be characterized by the induction of multiple genes and their products, sepsis may be regarded as a gene-related disorder and gene therapy may be considered a promising novel therapeutic approach for treatment of sepsis. In this review article, we provide an up-to-date summary of the gene-targeting approaches, which have been developed in animal models of sepsis. Our review sheds light on the molecular basis of sepsis pathology for the development of novel gene therapy approaches and leads to the conclusion that future research efforts may fully take into account gene therapy for the treatment of sepsis.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
27
|
Kulkarni JA, Cullis PR, van der Meel R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther 2018; 28:146-157. [DOI: 10.1089/nat.2018.0721] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jayesh A. Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roy van der Meel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
28
|
Muripiti V, Brijesh L, Rachamalla HK, Marepally SK, Banerjee R, Patri SV. α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection. Bioorg Chem 2018; 82:178-191. [PMID: 30326400 DOI: 10.1016/j.bioorg.2018.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.
Collapse
Affiliation(s)
| | | | - Hari Krishnareddy Rachamalla
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | | - Rajkumar Banerjee
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | |
Collapse
|
29
|
Bonechi C, Donati A, Tamasi G, Leone G, Consumi M, Rossi C, Lamponi S, Magnani A. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophys Chem 2017; 233:55-63. [PMID: 29174505 DOI: 10.1016/j.bpc.2017.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
Abstract
Natural antioxidants show many pharmacological properties, but poor solubility and inability to cross cell membrane. Liposomes are biocompatible and phospholipid vesicles able to carry hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the synthesis of anionic, cationic and zwitterionic liposomes, loaded with quercetin or rutin, and on the evaluation of their cytotoxicity and protective effects against oxidative stress. Chemical characterization was obtained by dynamic light scattering and z-potential experiments. In vitro cell behavior was evaluated by Neutral Red Uptake test. All liposomes, empty and loaded with antioxidants, are stable. The cytotoxicity of both quercetin and rutin encapsulated in zwitterionic and anionic liposomes is higher than that of their solutions. Quercetin and rutin loaded in cationic liposomes are able to inhibit the toxic effect of empty liposomes. The encapsulation of rutin at 5.0×10-5 and 5.0×10-4M, in zwitterionic and anionic liposomes, protects fibroblasts by H2O2 treatment, while the loading with quercetin does not have effect on improving cell viability. All data suggest that the tested liposomes are stable and able to include quercetin and rutin. The liposomes encapsulation of antioxidants makes easier their internalization by cells. Moreover, zwitterionic and anionic liposomes loaded with rutin protect cells by oxidative stress. Liposomes stability together with their good in vitro cytocompatibility, both empty and loaded with antioxidant molecules, makes these systems suitable candidates as drug delivery systems. Moreover, the encapsulation of rutin, is able to protect cells by oxidative stress.
Collapse
Affiliation(s)
- Claudia Bonechi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Alessandro Donati
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Gabriella Tamasi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Gemma Leone
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze. Italy
| | - Marco Consumi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze. Italy
| | - Claudio Rossi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Stefania Lamponi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze. Italy
| | - Agnese Magnani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze. Italy.
| |
Collapse
|
30
|
Inoh Y, Haneda A, Tadokoro S, Yokawa S, Furuno T. Cationic liposomes suppress intracellular calcium ion concentration increase via inhibition of PI3 kinase pathway in mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2461-2466. [PMID: 28966111 DOI: 10.1016/j.bbamem.2017.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes (antisense DNA, plasmid DNA, siRNA, etc.) into target cells. Cationic liposomes are also known to affect cellular immunocompetences such as the mast cell function in allergic reactions. In particular, we previously showed that the cationic liposomes bound to the mast cell surface suppress the degranulation induced by cross-linking of high affinity IgE receptors in a time- and dose-dependent manner. This suppression is mediated by impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via inhibition of store-operated Ca2+ entry (SOCE). Here we study the mechanism underlying an impaired [Ca2+]i increase by cationic liposomes in mast cells. We show that cationic liposomes inhibit the phosphorylation of Akt and PI3 kinases but not Syk and LAT. As a consequence, SOCE is suppressed but Ca2+ release from endoplasmic reticulum (ER) is not. Cationic liposomes inhibit the formation of STIM1 puncta, which is essential to SOCE by interacting with Orai1 following the Ca2+ concentration decrease in the ER. These data suggest that cationic liposomes suppress SOCE by inhibiting the phosphorylation of PI3 and Akt kinases in mast cells.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Aki Haneda
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Satoshi Tadokoro
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
31
|
Delivery of cationic quantum dots using fusogenic liposomes in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:43-49. [DOI: 10.1016/j.jphotobiol.2017.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/17/2017] [Accepted: 04/22/2017] [Indexed: 11/20/2022]
|
32
|
Eriksen AZ, Brewer J, Andresen TL, Urquhart AJ. The diffusion dynamics of PEGylated liposomes in the intact vitreous of the ex vivo porcine eye: A fluorescence correlation spectroscopy and biodistribution study. Int J Pharm 2017; 522:90-97. [PMID: 28267579 DOI: 10.1016/j.ijpharm.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
The diffusion dynamics of nanocarriers in the vitreous and the influence of nanocarrier physicochemical properties on these dynamics is an important aspect of the efficacy of intravitreal administered nanomedicines for the treatment of posterior segment eye diseases. Here we use fluorescence correlation spectroscopy (FCS) to determine liposome diffusion coefficients in the intact vitreous (DVit) of ex vivo porcine eyes using a modified Miyake-Apple technique to minimize the disruption of the vitreous fine structure. We chose to investigate whether the zeta potential of polyethylene glycol functionalized (i.e. PEGylated) liposomes altered liposome in situ diffusion dynamics in the vitreous. Non-PEGylated cationic nanocarriers have previously shown little to no diffusion in the vitreous, whilst neutral and anionic have shown diffusion. The liposomes investigated had diameters below 150nm and zeta potentials ranging from -20 to +12mV. We observed that PEGylated cationic liposomes had significantly lower DVit values (1.14μm2s-1) than PEGylated neutral and anionic liposomes (2.78 and 2.87μm2s-1). However, PEGylated cationic liposomes had a similar biodistribution profile across the vitreous to the other systems. These results show that PEGylated cationic liposomes with limited cationic charge can diffuse across the vitreous and indicate that the vitreous as a barrier to nanocarriers (Ø<500nm) is more complicated than simply an electrostatic barrier as previously suggested.
Collapse
Affiliation(s)
- Anne Z Eriksen
- Department for Micro- and Nanotechnology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Thomas L Andresen
- Department for Micro- and Nanotechnology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark
| | - Andrew J Urquhart
- Department for Micro- and Nanotechnology, Technical University of Denmark, Building 345C, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
33
|
Takahashi S, Tada R, Negishi Y, Aramaki Y. Mechanisms of Enhanced Antigen Delivery to Murine Dendritic Cells by the Cationic Liposomes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/oji.2017.74007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:406-416. [PMID: 28183626 DOI: 10.1016/j.msec.2016.12.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
Abstract
Despite continuous research and availability of 25 different active compounds for treating chronic HIV-1 infection, there is no absolute cure for this deadly disease. Primarily, the residual viremia remains hidden in latently infected reservoir sites and persistently release the viral RNA into the blood stream. The study proposes the dual utilization of the prepared stavudine-containing nanoformulations to control the residual viremia as well as target the reservoir sites. Gelatin nanoformulations containing very low dosage of stavudine were prepared through classical desolvation process and were later loaded in soya lecithin-liposomes. The nanoformulations were characterized through dynamic light scattering (DLS), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and ATR-FTIR. All the formulations were in nano regime with high hemocompatibility and exhibited dose-dependent cytotoxicity towards Raw 264.7 macrophages. Among the various formulations, SG-3 (Stavudine-Gelatin Nanoformulation sample 3) and SG-LP-3 (Stavudine-Gelatin Nano-Liposome formulation sample 3) showed the best results in terms of yield, size, charge, encapsulation efficiency, hemocompatibility and % cell viability. For the first time, liposomal delivery of antiretroviral drugs using nanocarriers has been demonstrated using very low dosage (lower than the recommended WHO dosage) showing the prominent linear release of stavudine for up to 12h which would reduce the circulatory viremia as well as reach the sanctuary reservoir sites due to their nanosize. This method of liposomal delivery of antiretroviral drugs in very low concentrations using nanocarriers could provide a novel therapeutic alternative to target HIV reservoir sites.
Collapse
Affiliation(s)
- Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Ankita Boxi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Neethi Chandra Thathapudi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela 769008, Odisha, India.
| |
Collapse
|
35
|
Misic V, El-Mogy M, Haj-Ahmad Y. Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells. BIOCHEMISTRY (MOSCOW) 2016; 81:163-75. [PMID: 27260396 DOI: 10.1134/s0006297916020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endonuclease G (EndoG) is a well-conserved mitochondrial-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four-day time course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances, it may nonspecifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from nonviral DNA vectors in gene therapy efforts.
Collapse
Affiliation(s)
- V Misic
- Brock University, Department of Biological Sciences, St. Catharines, ON, L2S 3A1, Canada.
| | | | | |
Collapse
|
36
|
Misic V, El-Mogy M, Geng S, Haj-Ahmad Y. Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells. Mol Biol 2016. [DOI: 10.1134/s0026893316020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Yun CH, Bae CS, Ahn T. Cargo-Free Nanoparticles Containing Cationic Lipids Induce Reactive Oxygen Species and Cell Death in HepG2 Cells. Biol Pharm Bull 2016; 39:1338-46. [DOI: 10.1248/bpb.b16-00264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University
| |
Collapse
|
38
|
Formulation, high throughput in vitro screening and in vivo functional characterization of nanoemulsion-based intranasal vaccine adjuvants. PLoS One 2015; 10:e0126120. [PMID: 25962136 PMCID: PMC4427474 DOI: 10.1371/journal.pone.0126120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/29/2015] [Indexed: 01/08/2023] Open
Abstract
Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies. We have constructed a library of 112 intranasal adjuvant candidate formulations consisting of oil-in-water nanoemulsions that contain various cationic and nonionic surfactants. To facilitate adjuvant development we first evaluated this library in a series of high-throughput, in vitro assays for activities associated with innate and adaptive immune activation in vivo. These in vitro assays screened for the ability of the adjuvant to bind to mucin, induce cytotoxicity, facilitate antigen uptake in epithelial and dendritic cells, and activate cellular pathways. We then sought to determine how these parameters related to adjuvant activity in vivo. While the in vitro assays alone were not enough to predict the in vivo adjuvant activity completely, several interesting relationships were found with immune responses in mice. Furthermore, by varying the physicochemical properties of the surfactant components (charge, surfactant polar head size and hydrophobicity) and the surfactant blend ratio of the formulations, the strength and type of the immune response generated (TH1, TH2, TH17) could be modulated. These findings suggest the possibility of using high-throughput screens to aid in the design of custom adjuvants with unique immunological profiles to match specific mucosal vaccine applications.
Collapse
|
39
|
Liang CH, Yeh LH, Liao PW, Chou TH. Characterization and in vitro biocompatibility of catanionic assemblies formed with oppositely charged dicetyl amphiphiles. Colloids Surf B Biointerfaces 2015; 126:10-7. [DOI: 10.1016/j.colsurfb.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023]
|
40
|
Sudhakar G, Bathula SR, Banerjee R. Development of new estradiol-cationic lipid hybrids: Ten-carbon twin chain cationic lipid is a more suitable partner for estradiol to elicit better anticancer activity. Eur J Med Chem 2014; 86:653-63. [DOI: 10.1016/j.ejmech.2014.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 02/09/2023]
|
41
|
Inoh Y, Tadokoro S, Tanabe H, Inoue M, Hirashima N, Nakanishi M, Furuno T. Inhibitory effects of a cationic liposome on allergic reaction mediated by mast cell activation. Biochem Pharmacol 2013; 86:1731-8. [PMID: 24099793 DOI: 10.1016/j.bcp.2013.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Several studies have shown that cationic liposomes exert immunomodulatory effects with low immunogenicity and toxicity, and offer advantages such as easy preparation and targeting. Cationic liposomes not only transport DNA to immune cells but also enhance the function of antigen presenting cells such as dendritic cells and macrophages. Here, we investigated the effect of a particular cationic liposome on mast cell function during allergic reaction. We found that the cationic liposomes bound to the mast cell surface suppressed degranulation induced by cross-linking of high affinity immunoglobulin E receptors in a time- and dose-dependent manner. The suppression of degranulation was mediated by impairment of the sustained level of intracellular Ca(2+) concentration ([Ca(2+)]i) derived from the inhibition of store-operated Ca(2+) entry. The decrease in sustained elevation of [Ca(2+)]i led to the suppression of phosphorylation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins such as SNAP-23, syntaxin-4, which are necessary for membrane fusion between secretory granules and the plasma membrane during degranulation. Furthermore, the cationic liposomes suppressed vascular permeability elevation induced by mast cell activation in mice. These results showed that cationic liposomes possess the novel property of inhibiting mast cell activation, suggesting the possibility of developing cationic liposomes as anti-allergic effectors.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liang CH, Ho WY, Yeh LH, Cheng YS, Chou TH. Effects of 1-hexadecyl-3-methylimidazolium ionic liquids on the physicochemical characteristics and cytotoxicity of phosphatidylcholine vesicles. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery. J Nanobiotechnology 2013; 11:18. [PMID: 23800286 PMCID: PMC3707807 DOI: 10.1186/1477-3155-11-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/14/2013] [Indexed: 01/02/2023] Open
Abstract
Background Gene therapy is most effective when delivery is both efficient and safe. However, it has often proven difficult to find a balance between efficiency and safety in case of viral or polymeric vectors for gene therapy. Peptide based delivery systems may be attractive alternatives but their relative instability to proteolysis is a major concern in realizing their potential application in biomedical sciences. In this work we report gene delivery potential of nanoparticles (Nps) synthesized from cationic dipeptides containing a non-protein amino acid α, β-dehydrophenylalanine (∆Phe) residue. Methods Dipeptides were synthesized using solution phase peptide synthesis method. Nps were formed using self-assembly. Nps were characterized using light scattering, electron microscopy. Transfection efficiency was tested in hepatocellular carcinoma (HuH 7) cells. Results The cationic dipeptides condensed plasmid DNA into discrete vesicular nanostructures. Dipeptide Nps are non-cytotoxic, protected the condensed DNAs from enzymatic degradation and ferried them successfully inside different types of cells. GFP encoding plasmid DNA loaded dipeptide Nps showed positive transfection and gene expression in HuH 7 cells. Conclusions The cationic dipeptide Nps can successfully deliver DNA without exerting any cytotoxic effect. Owing to their simple dipeptide origin, ease of synthesis, enhanced enzymatic stability as well unmatched biocompatibility, these could be successfully developed as vehicles for effective gene therapy.
Collapse
|
44
|
Lonez C, Vandenbranden M, Ruysschaert JM. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 2012; 64:1749-58. [PMID: 22634161 DOI: 10.1016/j.addr.2012.05.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
Cationic liposomes are commonly used as a transfection reagent for DNA, RNA or proteins and as a co-adjuvant of antigens for vaccination trials. A high density of positive charges close to cell surface is likely to be recognized as a signal of danger by cells or contribute to trigger cascades that are classically activated by endogenous cationic compounds. The present review provides evidence that cationic liposomes activate several cellular pathways like pro-apoptotic and pro-inflammatory cascades. An improved knowledge of the relationship between the cationic lipid properties (nature of the lipid hydrophilic moieties, hydrocarbon tail, mode of organization) and the activation of these pathways opens the way to the use and design of cationic tailored for a specific application (e.g. for gene transport or as adjuvants).
Collapse
|
45
|
Fumoto S, Nakajima S, Mine T, Yoshikawa N, Kitahara T, Sasaki H, Miyamoto H, Nishida K. Efficient in vivo gene transfer by intraperitoneal injection of plasmid DNA and calcium carbonate microflowers in mice. Mol Pharm 2012; 9:1962-70. [PMID: 22670625 DOI: 10.1021/mp2006592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene transfer to intraperitoneal organs is thought to be a promising approach to treat such conditions as peritoneal fibrosis and peritoneal dissemination of cancers. We previously discovered that simple instillation of naked plasmid DNA (pDNA) onto intraperitoneal organs such as the liver and stomach could effectively transfer foreign genes in mice. In this study, we developed a novel nonviral method to enhance transfection efficiency of naked pDNA to intraperitoneal organs using a calcium carbonate suspension containing pDNA. Using commercially available calcium carbonate, we successfully transfected pDNA to the stomach. Handling of commercially available calcium carbonate, however, was troublesome owing to rapid precipitation and caking. To obtain slowly settling particles of calcium carbonate, we tried to synthesize novel versions of such particles and succeeded in creating flower-shaped particles, named calcium carbonate microflowers. Sedimentation of calcium carbonate microflowers was sufficiently slow for in vivo experiments. Moreover, the transfection efficiency of the suspension of calcium carbonate microflowers to the stomach was more effective than that of commercially available calcium carbonate, especially at low concentrations. Intraperitoneal injection of the suspension of calcium carbonate microflowers containing pDNA greatly enhanced naked pDNA transfer to whole intraperitoneal organs in mice. Furthermore, lactate dehydrogenase activities in intraperitoneal fluid and plasma were not raised by the suspension of calcium carbonate microflowers.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Takano K, Sato K, Negishi Y, Aramaki Y. Involvement of actin cytoskeleton in macrophage apoptosis induced by cationic liposomes. Arch Biochem Biophys 2011; 518:89-94. [PMID: 22203089 DOI: 10.1016/j.abb.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 01/24/2023]
Abstract
We clarified whether actin cytoskeleton is involved in the macrophage apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes). Externalization of phosphatidylserine induced by SA-liposomes was suppressed by cytochalasin D, a specific inhibitor of polymerization of F-actin. Furthermore, activation of PKCδ and reactive oxygen species (ROS) generation, which could be involved in the macrophage apoptosis, were inhibited by cytochalasin D. Microscopical observation revealed the co-localization of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled SA-liposomes and fluorescein-labeled phalloidin, which specifically binds to F-actin, and this co-localization was also inhibited by cytochalasin D. Co-localization of SA-liposomes and F-actin was also inhibited by the pre-treatment of cells with chondroitinase ABC. These findings could be the first observation concerning the contribution of the proteoglycan-actin cytoskeleton-ROS generation pathway to apoptosis induced by SA-liposomes in macrophages.
Collapse
Affiliation(s)
- Katsuki Takano
- Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Arisaka M, Takano K, Negishi Y, Arima H, Aramaki Y. Involvement of lipid rafts in macrophage apoptosis induced by cationic liposomes. Arch Biochem Biophys 2011; 508:72-7. [PMID: 21315683 DOI: 10.1016/j.abb.2011.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/15/2022]
Abstract
We have demonstrated that protein kinase Cδ (PKCδ) could be involved in macrophage apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes), but the detailed mechanism of how SA-liposomes activate PKCδ has remained unclear. In this paper, we clarified whether lipid rafts are involved in the PKCδ activation induced by SA-liposomes. Co-localization of SA-liposomes and Cholera toxin B subunit (CBT), which specifically binds to ganglioside GM1 on lipid rafts, was found by microscopic observation. The incorporation of SA-liposomes into lipid rafts was clearly inhibited by the pretreatment of cells with an agent, 2,6-di-O-methyl-α-cyclodextrin (DM-α-CD) which disrupts lipid rafts. Activation of PKCδ and externalization of phosphatidylserine induced by SA-liposomes were also suppressed by DM-α-CD, which extracts sphingolipids and proteins from lipid rafts. Reactive oxygen species (ROS) generation, which could be involved in the macrophage apoptosis, was also inhibited by DM-α-CD. Furthermore, apoptosis induced by SA-liposomes was clearly inhibited when the cells were pre-treated with DM-α-CD, but not nystatin, a cholesterol-sequestering agent that disrupt lipid rafts. These findings suggest that sphingolipids in lipid rafts are involved in the activation of PKCδ which leads to apoptosis induced by cationic liposomes, SA-liposomes.
Collapse
Affiliation(s)
- Masaya Arisaka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
48
|
KONGKANERAMIT LALANA, WITOONSARIDSILP WASU, PEUNGVICHA PENCHOM, INGKANINAN KORNKANOK, WARANUCH NETI, SARISUTA NARONG. Antioxidant activity and antiapoptotic effect of Asparagus racemosus root extracts in human lung epithelial H460 cells. Exp Ther Med 2011; 2:143-148. [PMID: 22977482 PMCID: PMC3440636 DOI: 10.3892/etm.2010.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/16/2010] [Indexed: 11/06/2022] Open
Abstract
The present study examined the antioxidant activity and protective effect of extracts from Asparagus racemosus roots against Lipofectamine-induced apoptosis. Five fractions from a successive extraction process ranging from non-polar to more polar solvents were obtained. The total saponin content as a marker in terms of diosgenin equivalent value of the root extracts was found to be in the range of 240-420 μg/mg extract, with higher values for the ethanol and aqueous fractions. The antioxidant activity measured using the DPPH method in terms of mean effective concentration (EC(50)) of the aqueous fraction was found to be 600 μg/ml as compared to 1.5 μg/ml of ascorbic acid. It is proposed that Asparagus racemosus root extracts effectively inhibit Lipofectamine-induced apoptosis by their protective effect, and may serve as an advantageous alternative option for gene delivery.
Collapse
Affiliation(s)
| | | | | | - KORNKANOK INGKANINAN
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000,
Thailand
| | - NETI WARANUCH
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000,
Thailand
| | | |
Collapse
|
49
|
Hattori Y, Takano KI, Teramae H, Yamamoto S, Yokoo H, Matsuda N. Insights into sepsis therapeutic design based on the apoptotic death pathway. J Pharmacol Sci 2010; 114:354-65. [PMID: 21081836 DOI: 10.1254/jphs.10r04cr] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Sepsis remains the leading cause of death in critically ill patients. A major problem contributing to sepsis-related high mortality is the lack of effective medical treatment. Thus, the key goal in critical care medicine is to develop novel therapeutic strategies that will impact favorably on septic patient outcome. While it is generally accepted that sepsis is an inflammatory state resulting from the systemic response to infection, apoptosis is implicated to be an important mechanism of the death of lymphocytes, gastrointestinal and lung epithelial cells, and vascular endothelial cells associated with the development of multiple organ failure in sepsis. The pivotal role of cell apoptosis is now highlighted by multiple studies demonstrating that prevention of cell apoptosis can improve survival in clinically relevant animal models of sepsis. In this review article, we address the scientific rationale for remedying apoptotic cell death in sepsis and propose that therapeutic efforts aimed at blocking cell signaling pathways leading to apoptosis may represent an attractive target for sepsis therapy.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Gasparri J, Speroni L, Chiaramoni NS, Valle Alonso SD. Relationship between the adjuvant and cytotoxic effects of the positive charges and polymerization in liposomes. J Liposome Res 2010; 21:124-33. [DOI: 10.3109/08982104.2010.491073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|