1
|
Utharn S, Jantaro S. The adc1 knockout with proC overexpression in Synechocystis sp. PCC 6803 induces a diversion of acetyl-CoA to produce more polyhydroxybutyrate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:6. [PMID: 38218963 PMCID: PMC10788017 DOI: 10.1186/s13068-024-02458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Lack of nutrients, in particular nitrogen and phosphorus, has been known in the field to sense glutamate production via 2-oxoglutarate and subsequently accelerate carbon storage, including glycogen and polyhydroxybutyrate (PHB), in cyanobacteria, but a few studies have focused on arginine catabolism. In this study, we first time demonstrated that gene manipulation on proC and adc1, related to proline and polyamine syntheses in arginine catabolism, had a significant impact on enhanced PHB production during late growth phase and nutrient-modified conditions. We constructed Synechocystis sp. PCC 6803 with an overexpressing proC gene, encoding Δ1pyrroline-5-carboxylate reductase in proline production, and adc1 disruption resulted in lower polyamine synthesis. RESULTS Three engineered Synechocystis sp. PCC 6803 strains, including a ProC-overexpressing strain (OXP), adc1 mutant, and an OXP strain lacking the adc1 gene (OXP/Δadc1), certainly increased the PHB accumulation under nitrogen and phosphorus deficiency. The possible advantages of single proC overexpression include improved PHB and glycogen storage in late phase of growth and long-term stress situations. However, on day 7 of treatment, the synergistic impact created by OXP/Δadc1 increased PHB synthesis by approximately 48.9% of dry cell weight, resulting in a shorter response to nutrient stress than the OXP strain. Notably, changes in proline and glutamate contents in engineered strains, in particular OXP and OXP/Δadc1, not only partially balanced the intracellular C/N metabolism but also helped cells acclimate under nitrogen (N) and phosphorus (P) stress with higher chlorophyll a content in comparison with wild-type control. CONCLUSIONS In Synechocystis sp. PCC 6803, overexpression of proC resulted in a striking signal to PHB and glycogen accumulation after prolonged nutrient deprivation. When combined with the adc1 disruption, there was a notable increase in PHB production, particularly in situations where there was a strong C supply and a lack of N and P.
Collapse
Affiliation(s)
- Suthira Utharn
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Abeed AHA, Ali M, Eissa MA, Tammam SA. Impact of sewage water irrigation on Datura innoxia grown in sandy loam soil. BMC PLANT BIOLOGY 2022; 22:559. [PMID: 36460955 PMCID: PMC9716744 DOI: 10.1186/s12870-022-03935-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND A potential solution for recycling and reusing the massively produced sewage water (SW) is to irrigate certain plants instead of highly cost recycling treatment. Although the extensive and irrational application of SW may cause environmental pollution thus, continual monitoring of the redox status of the receiver plant and the feedback on its growth under application becomes an emergent instance. The impact of SW, along with well water (WW) irrigation of medicinal plant, Datura innoxia, was monitored by some physio-biochemical indices. RESULTS The SW application amplified the growth, yield, minerals uptake, and quality of D. innoxia plants compared to the WW irrigated plants. The total chlorophyll, carotenoid, non-enzymatic antioxidants, viz. anthocyanin, flavonoids, phenolic compounds, and total alkaloids increased by 85, 38, 81, 50, 19, and 37%, respectively, above WW irrigated plants. The experiment terminated in enhanced leaf content of N, P, and K by 43, 118, and 48%, respectively. Moreover, stimulation of carbon and nitrogen metabolites in terms of proteins, soluble sugars, nitrate reductase (NR) activity, and nitric oxide (NO) content showed significant earliness in flowering time. The SW application improved not only Datura plants' quality but also soil quality. After four weeks of irrigation, the WW irrigated plants encountered nutrient deficiency-induced stress evidenced by the high level of proline, H2O2, and MDA as well as high enzyme capabilities. Application of SW for irrigation of D. innoxia plant showed the improvement of secondary metabolites regulating enzyme phenylalanine ammonia-lyase (PAL), restored proline content, and cell redox status reflecting high optimal condition for efficient cellular metabolism and performance along the experiment duration. CONCLUSIONS These evidences approved the benefits of practicing SW to improve the yield and quality of D. innoxia and the feasibility of generalization on multipurpose plants grown in poor soil.
Collapse
Affiliation(s)
- Amany H. A. Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo 11753, Egypt, Desert Research Center, Cairo, 11753 Egypt
| | - Mamdouh A. Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526 Egypt
| | - Suzan A. Tammam
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
3
|
Rácz D, Szőke L, Tóth B, Kovács B, Horváth É, Zagyi P, Duzs L, Széles A. Examination of the Productivity and Physiological Responses of Maize ( Zea mays L.) to Nitrapyrin and Foliar Fertilizer Treatments. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112426. [PMID: 34834792 PMCID: PMC8620664 DOI: 10.3390/plants10112426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nutrient stress has been known as the main limiting factor for maize growth and yield. Nitrapyrin, as a nitrification inhibitor-which reduces nitrogen loss-and foliar fertilizer treatments have been successfully used to enhance the efficiency of nutrient utilization, however, the impacts of these two technologies on physiological development, enzymatic responses, and productivity of maize are poorly studied. In this paper, the concentration of each stress indicator, such as contents of proline, malondialdehyde (MDA), relative chlorophyll, photosynthetic pigments, and the activity of superoxide dismutase (SOD) were measured in maize leaf tissues. In addition, biomass growth, as well as quantitative and qualitative parameters of yield production were examined. Results confirm the enhancing impact of nitrapyrin on the nitrogen use of maize. Furthermore, lower activity of proline, MDA, SOD, as well as higher photosynthetic activity were shown in maize with a more favorable nutrient supply due to nitrapyrin and foliar fertilizer treatments. The obtained findings draw attention to the future practical relevance of these technologies that can be implemented to enhance the physiological development and productivity of maize. However, this paper also highlights the importance of irrigation, as nutrient uptake from soil by the crops decreases during periods of drought.
Collapse
Affiliation(s)
- Dalma Rácz
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - Lóránt Szőke
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (B.T.); (B.K.)
| | - Brigitta Tóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (B.T.); (B.K.)
| | - Béla Kovács
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (B.T.); (B.K.)
| | - Éva Horváth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - Péter Zagyi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - László Duzs
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| | - Adrienn Széles
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Land Use, Engineering and Precision Farming Technology, University of Debrecen, 138 Böszörményi St., 4032 Debrecen, Hungary; (D.R.); (É.H.); (P.Z.); (L.D.); (A.S.)
| |
Collapse
|
4
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
5
|
He J, Qin L. Impacts of Reduced Nitrate Supply on Nitrogen Metabolism, Photosynthetic Light-Use Efficiency, and Nutritional Values of Edible Mesembryanthemum crystallinum. FRONTIERS IN PLANT SCIENCE 2021; 12:686910. [PMID: 34149787 PMCID: PMC8213338 DOI: 10.3389/fpls.2021.686910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/06/2021] [Indexed: 05/13/2023]
Abstract
Mesembryanthemum crystallinum (common ice plant), as a nutritious ready-to-eat salad in Singapore, has become popular in recent years. However, basic data about the impacts of NO3 - supply on its NO3 - accumulation and nutritional quality are lacking. In this study, all plants were first grown indoor hydroponically in 10% artificial seawater (ASW) with modified full-strength Netherlands Standard Composition nutrient solution for 11 days, before transferring them to different reduced NO3 - solutions. All plants grew well and healthy after 7 days of treatment. However, plants grown with 3/4 N and 1/2 N were bigger with higher shoot and root fresh weight (FW), greater leaf number, and total leaf area (TLA) than those grown with full nitrogen (N), 1/4 N, and 0 N. Mesembryanthemum crystallinum grown with full N, 3/4 N, and 1/4 N had similar specific leaf area (SLA), while 0 N plants had significantly lower SLA. All plants had similar leaf succulence (LS). However, leaf water content (LWC) was lower, while leaf dry matter accumulation (LDMC) was higher in 0 N plants after 7 days of treatment. Compared with plants grown with full N, shoot NO3 - concentrations in 3/4 N, 1/2 N, and 1/4 N plants were constant or slightly increased during the treatments. For 0 N plants, shoot NO3 - concentration decreased significantly during the treatment compared with other plants. Shoot NO3 - accumulation was associated with nitrate reductase activity (NRA). For instance, after 7 days of treatment, shoot NO3 - concentration and NRA on a FW basis in 0 N plants were, respectively, 45 and 31% of full N plants. After transferring full N to 0 N for 7 days, all M. crystallinum had higher chlorophyll (Chl) content coupled with higher electron transport rate (ETR) and higher effective quantum yield of PSII, while full N plants had higher non-photochemical quenching (NPQ). The 0N plants had much higher concentrations of proline, total soluble sugar (TSS), and total ascorbic acid (ASC) than other plants. In conclusion, totally withdrawing NO3 - from the growth media prior to harvest could be one of the strategies to reduce shoot NO3 - concentration. Reduced NO3 - supply further enhanced nutritional values as concentrations of proline, TSS, and ASC were enhanced markedly in M. crystallinum plants after transferring them from full N to 0 N.
Collapse
Affiliation(s)
- Jie He
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
6
|
Wang C, He R, Lu J, Zhang Y. Selection and regeneration of Vitis vinifera Chardonnay hydroxyproline-resistant calli. PROTOPLASMA 2018; 255:1413-1422. [PMID: 29569157 DOI: 10.1007/s00709-018-1240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Proline (Pro) accumulation protects plant cell under abiotic stress. Hydroxyproline (Hyp) as selection agent is a toxic analog of proline and promotes Pro overaccumulation. In this study, Chardonnay calli were firstly irradiated with different dosages of 60Co and then cultured on a Hyp-added medium. Finally, some stable hydroxyproline-resistant (HR) calli were obtained. When calli were cultured on 4 mM Hyp medium for 7 days, intracellular Pro content of the HR calli was five times higher than that detected in the normal calli. The regeneration of HR calli into plantlets was much slower than that of normal ones. When cultured on woody plant medium (WPM) containing 10 mM NaCl for 14 days, HR plantlets still grew well with lower Pro than withered normal plantlets. qRT-PCR results of Pro biosynthesis-related genes in HR plantlets showed that three genes VvP5CS, VvOAT, and VvP5CDH were conducive for Pro accumulation. These results confirmed that HR plantlets acquired salt tolerance ability. We prospect that this procedure to obtain salt-tolerant plants may be valuable to breed programs and improve grapevine genotypes with increased tolerance to salt and other abiotic stresses.
Collapse
Affiliation(s)
- Chaoxia Wang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Rongrong He
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, 200024, People's Republic of China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Pérez-Arellano I, Carmona-Alvarez F, Martínez AI, Rodríguez-Díaz J, Cervera J. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 2010; 19:372-82. [PMID: 20091669 DOI: 10.1002/pro.340] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyrroline-5-carboxylate synthase (P5CS) is a bifunctional enzyme that exhibits glutamate kinase (GK) and gamma-glutamyl phosphate reductase (GPR) activities. The enzyme is highly relevant in humans because it belongs to a combined route for the interconversion of glutamate, ornithine and proline. The deficiency of P5CS activity in humans is associated with a rare, inherited metabolic disease. It is well established that some bacteria and plants accumulate proline in response to osmotic stress. The alignment of P5CSs from different species and analysis of the solved structures of GK and GPR reveal high sequence and structural conservation. The information acquired from different mutant enzymes with increased osmotolerant properties, together with the position of the insertion found in the longer human isoform, permit the delimitation of the regulatory site of GK and P5CS and the proposal of a model of P5CS architecture. Additionally, the GK moiety of the human enzyme has been modeled and the known clinical mutations and polymorphisms have been mapped.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Molecular Recognition Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | |
Collapse
|
8
|
The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genomics 2008; 281:87-97. [PMID: 19002717 DOI: 10.1007/s00438-008-0396-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Many plants synthesize and accumulate proline in response to osmotic stress conditions. A central enzyme in the proline biosynthesis is the bifunctional enzyme Delta(1)-pyrroline-5-carboxylate synthase (P5CS) that includes two functional catalytic domains: the gamma-glutamyl kinase and the glutamic-gamma-semialdehyde dehydrogenase. This enzyme catalyzes the first two steps of the proline biosynthetic pathway and plays a central role in the regulation of this process in plants. To determine the evolutionary events that occurred in P5CS genes, partial sequences from four Neotropical trees were cloned and compared to those of other plant taxa. Molecular phylogenetic analysis indicated that P5CS duplication events have occurred several times following the emergence of flowering plants and at different frequencies throughout the evolution of monocots and dicots. Despite the high number of conserved residues in plant P5CS sequences, positive selection was observed at different regions of P5CS paralogous genes and also when dicots and monocots were contrasted.
Collapse
|
9
|
|
10
|
Die Akkumulation von Prolin in Nadeln geschädigter Fichten (Picea abies [L.] Karst.). ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf02740731] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|