1
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024; 32:3119-3161. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
2
|
Bajramagic S, Sever M, Rasic F, Staresinic M, Skrtic A, Beketic Oreskovic L, Oreskovic I, Strbe S, Loga Zec S, Hrabar J, Coric L, Prenc M, Blagaic V, Brcic K, Boban Blagaic A, Seiwerth S, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 and Intestinal Anastomoses Therapy in Rats-A Review. Pharmaceuticals (Basel) 2024; 17:1081. [PMID: 39204186 PMCID: PMC11357423 DOI: 10.3390/ph17081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
By introducing the healing of many distinctive anastomoses by BPC 157 therapy, this review practically deals with the concept of the resection and reconnection of the hollow parts of the gastrointestinal tract as one of the cornerstones of visceral surgery. In principle, the healing of quite distinctive anastomoses itself speaks for applied BPC 157 therapy, in particular, as a way in which the therapy of anastomoses can be successfully approached and carried out. Some of the anastomoses implicated were esophagogastric, colocolonic, jejunoileal, and ileoileal anastomoses, along with concomitant disturbances, such as esophagitis, sphincter dysfunction, failed intestinal adaptation, colitis, short bowel syndrome, major vessel occlusion, NO-system, and prostaglandins-system dysfunction, which were accordingly counteracted as well, and, finally, findings concerning other anastomoses healing (i.e., nerve and vessel). Moreover, the healing of fistulas, both external and internal, colocutaneous, gastrocutaneous, esophagocutaneous, duodenocutaneous, vesicovaginal, colovesical, and rectovaginal in rats, perceived as anastomoses made between two different tissues which are normally not connected, may also be indicative. This may be a particular reconnection of the parts of the gastrointestinal tract to re-establish adequate integrity depending on the tissue involved, given that both various intestinal anastomoses and various fistulas (intestinal and skin were accordingly healed simultaneously as the fistulas disappeared) were all healed.
Collapse
Affiliation(s)
- Salem Bajramagic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
- Clinic of General and Abdominal Surgery, Clinical Center University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Fran Rasic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Svjetlana Loga Zec
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Josip Hrabar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Matea Prenc
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.B.); (M.S.); (F.R.); (M.S.); (L.B.O.); (I.O.); (S.S.); (J.H.); (L.C.); (M.P.); (V.B.); (K.B.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Predrag Sikiric
- Clinic of General and Abdominal Surgery, Clinical Center University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Chen C, Dai W, Qin Y, Yuan C, Chen J, Zhang M. The protective effects and potential mechanisms of fulvic acid against ethanol-induced gastric mucosal injury in mice. Nat Prod Res 2024:1-6. [PMID: 38824682 DOI: 10.1080/14786419.2024.2360679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Fulvic acid (FA) is a kind of natural organic acids extracted from lignite, which is the active ingredient in Wujin oral liquid, a proprietary Chinese medicine used to treat gastric and duodenal ulcers. However, our understanding of the mechanisms of FA remains limited. Currently, the protection of FA and its mechanism were explored using the ethanol-induced gastric mucosal injury mouse model. The histopathological examinations showed FAs at three doses effectively reduced gastric congestion, oedema caused by ethanol, and prevented gastric epithelial cell fall-off. When compared to the model group, FAs reduced IL-1β and IL-6 levels in serum, as well as IL-1β, IL-6, TNF-α, and COX-2 expression levels in tissue. Furthermore, FAs significantly inhibited p65, P38 MAPK, and Erk1/2 phosphorylation in damaged gastric tissue. It was indicated FA has good protection against ethanol-induced gastric mucosa injuries in mice and this effect was related to NF-κB and MAPK signalling pathways.
Collapse
Affiliation(s)
- Chonglian Chen
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Weifeng Dai
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yi Qin
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Yuan
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jie Chen
- The Third People's Hospital of Kunming, Kunming, China
| | - Mi Zhang
- Center for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Sikiric P, Boban Blagaic A, Strbe S, Beketic Oreskovic L, Oreskovic I, Sikiric S, Staresinic M, Sever M, Kokot A, Jurjevic I, Matek D, Coric L, Krezic I, Tvrdeic A, Luetic K, Batelja Vuletic L, Pavic P, Mestrovic T, Sjekavica I, Skrtic A, Seiwerth S. The Stable Gastric Pentadecapeptide BPC 157 Pleiotropic Beneficial Activity and Its Possible Relations with Neurotransmitter Activity. Pharmaceuticals (Basel) 2024; 17:461. [PMID: 38675421 PMCID: PMC11053547 DOI: 10.3390/ph17040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Danijel Matek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Kresimir Luetic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
| | - Lovorka Batelja Vuletic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Mestrovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (A.B.B.); (S.S.); (L.B.O.); (I.O.); (S.S.); (M.S.); (M.S.); (A.K.); (I.J.); (D.M.); (L.C.); (I.K.); (A.T.); (K.L.); (L.B.V.); (P.P.); (T.M.); (I.S.); (S.S.)
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Pinheiro JLS, Rodrigues LHM, Silva LDD, Santos VMRD, Gomes DA, Chagas FDDS, Chaves LDS, Melo MRS, Freitas ALP, Souza MHLP, Medeiros JVR, Damasceno ROS. Sulfated iota-carrageenan from marine alga Agardhiella ramosissima prevents gastric injury in rodents via its antioxidant properties. ALGAL RES 2024; 77:103371. [DOI: 10.1016/j.algal.2023.103371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Cho HS, Kwon TW, Kim JH, Lee R, Bae CS, Kim HC, Kim JH, Choi SH, Cho IH, Nah SY. Gintonin Alleviates HCl/Ethanol- and Indomethacin-Induced Gastric Ulcers in Mice. Int J Mol Sci 2023; 24:16721. [PMID: 38069044 PMCID: PMC10705886 DOI: 10.3390/ijms242316721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.
Collapse
Affiliation(s)
- Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Tae Woo Kwon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-City 54596, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si 18119, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| |
Collapse
|
7
|
Akbaş N, Süleyman B, Mammadov R, Gülaboğlu M, Akbaş EM, Süleyman H. Effect of felodipine on indomethacin-induced gastric ulcers in rats. Exp Anim 2023; 72:505-512. [PMID: 37316263 PMCID: PMC10658091 DOI: 10.1538/expanim.23-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Felodipine is a calcium channel blocker with antioxidant and anti-inflammatory properties. Researchers have stated that oxidative stress and inflammation also play a role in the pathophysiology of gastric ulcers caused by nonsteroidal anti-inflammatory drugs. The aim of this study was to investigate the antiulcer effect of felodipine on indomethacin-induced gastric ulcers in Wistar rats and compare it with that of famotidine. The antiulcer activities of felodipine (5 mg/kg) and famotidine were investigated biochemically and macroscopically in animals treated with felodipine (5 mg/kg) and famotidine in combination with indomethacin. The results were compared with those of the healthy control group and the group administered indomethacin alone. It was observed that felodipine suppressed the indomethacin-induced malondialdehyde increase (P<0.001); reduced the decrease in total glutathione amount (P<0.001), reduced the decrease superoxide dismutase (P<0.001), and catalase activities (P<0.001); and significantly inhibited ulcers (P<0.001) at the tested dose compared with indomethacin alone. Felodipine at a dose of 5 mg/kg reduced the indomethacin-induced decrease in cyclooxygenase-1 activity (P<0.001) but did not cause a significant reduction in the decrease in cyclooxygenase-2 activity. The antiulcer efficacy of felodipine was demonstrated in this experimental model. These data suggest that felodipine may be useful in the treatment of nonsteroidal anti-inflammatory drug-induced gastric injury.
Collapse
Affiliation(s)
- Nergis Akbaş
- Department of Medical Biochemistry, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Bahadır Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Mine Gülaboğlu
- Department of Biochemistry, School of Pharmacy, Atatürk University, 25400, #Erzurum, Türkiye
| | - Emin Murat Akbaş
- Department of Internal Medicine, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Halis Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| |
Collapse
|
8
|
Tepes M, Krezic I, Vranes H, Smoday IM, Kalogjera L, Zizek H, Vukovic V, Oroz K, Kovac KK, Madzar Z, Rakic M, Miskic B, Sikiric S, Barisic I, Strbe S, Antunovic M, Novosel L, Kavelj I, Vlainic J, Dobric I, Staresinic M, Skrtic A, Seiwerth S, Blagaic AB, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy: Effect on Reperfusion Following Maintained Intra-Abdominal Hypertension (Grade III and IV) in Rats. Pharmaceuticals (Basel) 2023; 16:1554. [PMID: 38004420 PMCID: PMC10675657 DOI: 10.3390/ph16111554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Given in reperfusion, the use of stable gastric pentadecapeptide BPC 157 is an effective therapy in rats. It strongly counteracted, as a whole, decompression/reperfusion-induced occlusion/occlusion-like syndrome following the worst circumstances of acute abdominal compartment and intra-abdominal hypertension, grade III and grade IV, as well as compression/ischemia-occlusion/occlusion-like syndrome. Before decompression (calvariectomy, laparotomy), rats had long-lasting severe intra-abdominal hypertension, grade III (25 mmHg/60 min) (i) and grade IV (30 mmHg/30 min; 40 mmHg/30 min) (ii/iii), and severe occlusion/occlusion-like syndrome. Further worsening was caused by reperfusion for 60 min (i) or 30 min (ii/iii). Severe vascular and multiorgan failure (brain, heart, liver, kidney, and gastrointestinal lesions), widespread thrombosis (peripherally and centrally) severe arrhythmias, intracranial (superior sagittal sinus) hypertension, portal and caval hypertension, and aortal hypotension were aggravated. Contrarily, BPC 157 therapy (10 µg/kg, 10 ng/kg sc) given at 3 min reperfusion times eliminated/attenuated venous hypertension (intracranial (superior sagittal sinus), portal, and caval) and aortal hypotension and counteracted the increases in organ lesions and malondialdehyde values (blood ˃ heart, lungs, liver, kidney ˃ brain, gastrointestinal tract). Vascular recovery promptly occurred (i.e., congested inferior caval and superior mesenteric veins reversed to the normal vessel presentation, the collapsed azygos vein reversed to a fully functioning state, the inferior caval vein-superior caval vein shunt was recovered, and direct blood delivery returned). BPC 157 therapy almost annihilated thrombosis and hemorrhage (i.e., intracerebral hemorrhage) as proof of the counteracted general stasis and Virchow triad circumstances and reorganized blood flow. In conclusion, decompression/reperfusion-induced occlusion/occlusion-like syndrome counteracted by BPC 157 therapy in rats is likely for translation in patients. It is noteworthy that by rapidly counteracting the reperfusion course, it also reverses previous ischemia-course lesions, thus inducing complete recovery.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
- PhD Program Translational Research in Biomedicine-TRIBE, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Katarina Kasnik Kovac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Zrinko Madzar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Mislav Rakic
- Department of Abdominal Surgery, Clinical Hospital Dubrava, 10040 Zagreb, Croatia;
| | - Blazenka Miskic
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, 31000 Osijek, Croatia;
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Institute Ruder Boskovic, 10000 Zagreb, Croatia;
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.K.); (H.V.); (I.M.S.); (L.K.); (H.Z.); (V.V.); (K.O.); (K.K.K.); (Z.M.); (I.B.); (S.S.); (L.N.); (I.K.); (A.B.B.)
| |
Collapse
|
9
|
Smoday IM, Krezic I, Kalogjera L, Vukovic V, Zizek H, Skoro M, Kovac KK, Vranes H, Barisic I, Sikiric S, Strbe S, Tepes M, Oroz K, Zubcic S, Stupnisek M, Beketic Oreskovic L, Kavelj I, Novosel L, Prenc M, Barsic Ostojic S, Dobric I, Sever M, Blagaic AB, Skrtic A, Staresinic M, Sjekavica I, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 as Therapy for Inferior Caval Vein Embolization: Recovery of Sodium Laurate-Post-Embolization Syndrome in Rats. Pharmaceuticals (Basel) 2023; 16:1507. [PMID: 37895979 PMCID: PMC10610251 DOI: 10.3390/ph16101507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
After inferior caval vein embolization therapy, post-embolization syndrome (sodium laurate 10 mg/kg, 0.1 mL into rat inferior caval vein, assessment at 15, 30, 60 min, prime lung lesions, thromboemboli occluding lung vessels), as a severe occlusion/occlusion-like syndrome, might be resolved as a whole by stable gastric pentadecapeptide BPC 157 therapy. At 5 min after laurate injection, stable gastric pentadecapeptide BPC 157 was implemented as therapy (10 µg/kg, 10 ng/kg intraperitoneally or intragastrically). As before, confronted with the occlusion of major vessel(s) or similar noxious procedures, such as rapidly acting Virchow triad circumstances, the particular effect of the therapy (i.e., collateral pathways activation, "bypassing vascular key", i.e., direct blood flow delivery via activation of azygos vein) assisted in the recovery of the vessel/s and counteracted multiorgan failure due to occlusion/occlusion-like syndrome as a whole in the laurate-injected rats. Along with prime lung lesions and thromboemboli occluding lung vessels, post-embolization syndrome rapidly occurred peripherally and centrally as a shared multiorgan and vessel failure, brain, heart, lung, liver, kidney, and gastrointestinal tract lesions, venous hypertension (intracranial (superior sagittal sinus), portal, and caval), aortal hypotension, progressing thrombosis in veins and arteries and stasis, congested and/or failed major veins, and severe ECG disturbances. Whatever the cause, these were all counteracted, eliminated, or attenuated by the application of BPC 157 therapy. As recovery with BPC 157 therapy commonly and rapidly occurred, reversing the collapsed azygos vein to the rescuing collateral pathway might initiate rapid direct blood delivery and start blood flow reorganization. In conclusion, we suggest BPC 157 therapy to resolve further vascular and embolization injuries.
Collapse
Affiliation(s)
- Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Marija Skoro
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Katarina Kasnik Kovac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Mirjana Stupnisek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Ivana Kavelj
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Luka Novosel
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Matea Prenc
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Sanja Barsic Ostojic
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb,10000 Zagreb, Croatia; (I.D.); (M.S.)
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb,10000 Zagreb, Croatia; (I.D.); (M.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb,10000 Zagreb, Croatia; (I.D.); (M.S.)
| | - Ivica Sjekavica
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, 10000 Zagreb, Croatia; (M.S.); (I.K.); (L.N.); (M.P.); (S.B.O.); (I.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (K.K.K.); (H.V.); (I.B.); (S.S.); (M.T.); (K.O.); (S.Z.); (M.S.); (L.B.O.); (A.B.B.)
| |
Collapse
|
10
|
Sikiric P, Kokot A, Kralj T, Zlatar M, Masnec S, Lazic R, Loncaric K, Oroz K, Sablic M, Boljesic M, Antunovic M, Sikiric S, Strbe S, Stambolija V, Beketic Oreskovic L, Kavelj I, Novosel L, Zubcic S, Krezic I, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S, Staresinic M. Stable Gastric Pentadecapeptide BPC 157-Possible Novel Therapy of Glaucoma and Other Ocular Conditions. Pharmaceuticals (Basel) 2023; 16:1052. [PMID: 37513963 PMCID: PMC10385428 DOI: 10.3390/ph16071052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, stable gastric pentadecapeptide BPC 157 therapy by activation of collateral pathways counteracted various occlusion/occlusion-like syndromes, vascular, and multiorgan failure, and blood pressure disturbances in rats with permanent major vessel occlusion and similar procedures disabling endothelium function. Thereby, we revealed BPC 157 cytoprotective therapy with strong vascular rescuing capabilities in glaucoma therapy. With these capabilities, BPC 157 therapy can recover glaucomatous rats, normalize intraocular pressure, maintain retinal integrity, recover pupil function, recover retinal ischemia, and corneal injuries (i.e., maintained transparency after complete corneal abrasion, corneal ulceration, and counteracted dry eye after lacrimal gland removal or corneal insensitivity). The most important point is that in glaucomatous rats (three of four episcleral veins cauterized) with high intraocular pressure, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, nor- mal retinal and choroidal blood vessel presentation, and normal optic nerve presentation. The one episcleral vein rapidly upgraded to accomplish all functions in glaucomatous rats may correspond with occlusion/occlusion-like syndromes of the activated rescuing collateral pathway (azygos vein direct blood flow delivery). Normalized intraocular pressure in glaucomatous rats corresponded to the counteracted intra-cranial (superior sagittal sinus), portal, and caval hypertension, and aortal hypotension in occlusion/occlusion-like syndromes, were all attenuated/eliminated by BPC 157 therapy. Furthermore, given in other eye disturbances (i.e., retinal ischemia), BPC 157 instantly breaks a noxious chain of events, both at an early stage and an already advanced stage. Thus, we further advocate BPC 157 as a therapeutic agent in ocular disease.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.S.); (M.B.)
| | - Tamara Kralj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Mirna Zlatar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Sanja Masnec
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Ratimir Lazic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Marko Sablic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.S.); (M.B.)
| | - Marta Boljesic
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.S.); (M.B.)
| | - Marko Antunovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Vasilije Stambolija
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (T.K.); (M.Z.); (S.M.); (R.L.); (K.L.); (K.O.); (M.A.); (S.S.); (V.S.); (L.B.O.); (I.K.); (L.N.); (S.Z.); (I.K.); (I.J.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Kalogjera L, Krezic I, Smoday IM, Vranes H, Zizek H, Yago H, Oroz K, Vukovic V, Kavelj I, Novosel L, Zubcic S, Barisic I, Beketic Oreskovic L, Strbe S, Sever M, Sjekavica I, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Stomach perforation-induced general occlusion/occlusion-like syndrome and stable gastric pentadecapeptide BPC 157 therapy effect. World J Gastroenterol 2023; 29:4289-4316. [PMID: 37545637 PMCID: PMC10401663 DOI: 10.3748/wjg.v29.i27.4289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Using rat stomach perforation as a prototypic direct lesion applied in cytoprotection research, we focused on the first demonstration of the severe occlusion/ occlusion-like syndrome induced by stomach perforation. The revealed stomach-induced occlusion/occlusion-like syndrome corresponds to the previously described occlusion/occlusion-like syndromes in rats suffering multicausal pathology and shared severe vascular and multiorgan failure. This general point was particularly reviewed. As in all the described occlusion/occlusion-like syndromes with permanent occlusion of major vessels, peripheral and central, and other similar noxious procedures that severely affect endothelium function, the stable gastric pentadecapeptide BPC 157 was resolving therapy. AIM To reveal the stomach perforation-induced general occlusion/occlusion-like syndrome and BPC 157 therapy effect. METHODS The procedure included deeply anesthetized rats, complete calvariectomy, laparotomy at 15 min thereafter, and stomach perforation to rapidly induce vascular and multiorgan failure occlusion/occlusion-like syndrome. At 5 min post-perforation time, rats received therapy [BPC 157 (10 µg or 10 ng/kg) or saline (5 mL/kg, 1 mL/rat) (controls)] into the perforated defect in the stomach). Sacrifice was at 15 min or 60 min post-perforation time. Assessment (gross and microscopy; volume) included: Brain swelling, peripheral vessels (azygos vein, superior mesenteric vein, portal vein, inferior caval vein) and heart, other organs lesions (i.e., stomach, defect closing or widening); superior sagittal sinus, and peripherally the portal vein, inferior caval vein, and abdominal aorta blood pressures and clots; electrocardiograms; and bleeding time from the perforation(s). RESULTS BPC 157 beneficial effects accord with those noted before in the healing of the perforated defect (raised vessel presentation; less bleeding, defect contraction) and occlusion/occlusion-like syndromes counteraction. BPC 157 therapy (into the perforated defect), induced immediate shrinking and contraction of the whole stomach (unlike considerable enlargement by saline application). Accordingly, BPC 157 therapy induced direct blood delivery via the azygos vein, and attenuated/eliminated the intracranial (superior sagittal sinus), portal and caval hypertension, and aortal hypotension. Thrombosis, peripherally (inferior caval vein, portal vein, abdominal aorta) and centrally (superior sagittal sinus) BPC 157 therapy markedly reduced/annihilated. Severe lesions in the brain (swelling, hemorrhage), heart (congestion and arrhythmias), lung (hemorrhage and congestion), and marked congestion in the liver, kidney, and gastrointestinal tract were markedly reduced. CONCLUSION We revealed stomach perforation as a severe occlusion/occlusion-like syndrome, peripherally and centrally, and rapid counteraction by BPC 157 therapy. Thereby, further BPC 157 therapy may be warranted.
Collapse
Affiliation(s)
- Luka Kalogjera
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Haidi Yago
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Luka Novosel
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Lidija Beketic Oreskovic
- Division of Oncology and Radiotherapy, University Hospital for Tumors, Sestre milosrdnice University Hospital Centre, Zagreb 10000, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Marko Sever
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Ivica Sjekavica
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, Zagreb 10000, Croatia
| | | | - Sven Seiwerth
- Department of Pathology, School of Medicine, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|
12
|
Premuzic Mestrovic I, Smoday IM, Kalogjera L, Krezic I, Zizek H, Vranes H, Vukovic V, Oroz K, Skorak I, Brizic I, Hriberski K, Novosel L, Kavelj I, Barisic I, Beketic Oreskovic L, Zubcic S, Strbe S, Mestrovic T, Pavic P, Staresinic M, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Antiarrhythmic Sotalol, Occlusion/Occlusion-like Syndrome in Rats, and Stable Gastric Pentadecapeptide BPC 157 Therapy. Pharmaceuticals (Basel) 2023; 16:977. [PMID: 37513889 PMCID: PMC10383471 DOI: 10.3390/ph16070977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
We focused on the first demonstration that antiarrhythmics, particularly class II and class III antiarrhythmic and beta-blocker sotalol can induce severe occlusion/occlusion-like syndrome in rats. In this syndrome, as in similar syndromes with permanent occlusion of major vessels, peripheral and central, and other similar noxious procedures that severely disable endothelium function, the stable gastric pentadecapeptide BPC 157-collateral pathways activation, was a resolving therapy. After a high dose of sotalol (80 mg/kg intragastrically) in 180 min study, there were cause-consequence lesions in the brain (swelling, intracerebral hemorrhage), congestion in the heart, lung, liver, kidney, and gastrointestinal tract, severe bradycardia, and intracranial (superior sagittal sinus), portal and caval hypertension, and aortal hypotension, and widespread thrombosis, peripherally and centrally. Major vessels failed (congested inferior caval and superior mesenteric vein, collapsed azygos vein). BPC 157 therapy (10 µg, 10 ng/kg given intragastrically at 5 min or 90 min sotalol-time) effectively counteracted sotalol-occlusion/occlusion-like syndrome. In particular, eliminated were heart dilatation, and myocardial congestion affecting coronary veins and arteries, as well as myocardial vessels; eliminated were portal and caval hypertension, lung parenchyma congestion, venous and arterial thrombosis, attenuated aortal hypotension, and centrally, attenuated intracranial (superior sagittal sinus) hypertension, brain lesions and pronounced intracerebral hemorrhage. Further, BPC 157 eliminated and/or markedly attenuated liver, kidney, and gastrointestinal tract congestion and major veins congestion. Therefore, azygos vein activation and direct blood delivery were essential for particular BPC 157 effects. Thus, preventing such and similar events, and responding adequately when that event is at risk, strongly advocates for further BPC 157 therapy.
Collapse
Affiliation(s)
- Ivica Premuzic Mestrovic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Ivan Skorak
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Ivan Brizic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Klaudija Hriberski
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Luka Novosel
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Tomislav Mestrovic
- Department of Surgery, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (T.M.); (P.P.)
| | - Predrag Pavic
- Department of Surgery, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (T.M.); (P.P.)
| | - Mario Staresinic
- Department of Surgery, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (T.M.); (P.P.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia;
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (I.P.M.); (I.M.S.); (L.K.); (I.K.); (H.Z.); (H.V.); (V.V.); (K.O.); (I.S.); (I.B.); (K.H.); (L.N.); (I.K.); (I.B.); (L.B.O.); (S.Z.); (S.S.); (A.B.B.)
| |
Collapse
|
13
|
Strbe S, Smoday IM, Krezic I, Kalogjera L, Vukovic V, Zizek H, Gojkovic S, Vranes H, Barisic I, Sikiric S, Tepes M, Oroz K, Brkic F, Drinkovic M, Beketic Oreskovic L, Popic J, Boban Blagaic A, Skrtic A, Staresinic M, Seiwerth S, Sikiric P. Innate Vascular Failure by Application of Neuroleptics, Amphetamine, and Domperidone Rapidly Induced Severe Occlusion/Occlusion-like Syndromes in Rats and Stable Gastric Pentadecapeptide BPC 157 as Therapy. Pharmaceuticals (Basel) 2023; 16:788. [PMID: 37375736 PMCID: PMC10303627 DOI: 10.3390/ph16060788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Even before behavioral disturbances, neuroleptics, amphetamine, and domperidone application rapidly emerged severe occlusion/occlusion-like syndrome, shared innate vascular and multiorgan failure in rats, comparable to occlusion/occlusion-like syndrome described with vessel(s) occlusion or similar noxious procedures application. As therapy, i.e., activation of the collateral pathways, "bypassing key" (activated azygos vein pathway, direct blood flow delivery), the stable gastric pentadecapeptide BPC 157 is a novel solution. Recently, BPC 157 therapy particularly counteracted neuroleptic- or L-NAME-induced catalepsy, lithium intoxication, and schizophrenia positive and negative symptoms (amphetamine/methamphetamine/apomorphine/ketamine). In rats with complete calvariectomy, medication (BPC 157 10 µg/kg, 10 ng/kg ip or ig) was given 5 min after distinctive dopamine agents (mg/kg ip) (haloperidol (5), fluphenazine (5), clozapine (10), risperidone (5), olanzapine (10), quetiapine (10), or aripiprazole (10), domperidone (25), amphetamine (10), and combined amphetamine and haloperidol) and assessed at 15 min thereafter. All neuroleptic-, domperidone-, and amphetamine-induced comparable vascular and multiorgan failure severe syndrome was alleviated with BPC 157 therapy as before major vessel(s) occlusion or other similar noxious procedures. Specifically, all severe lesions in the brain (i.e., immediate swelling, hemorrhage), heart (i.e., congestion, arrhythmias), and lung (i.e., congestion, hemorrhage), as well as congestion in the liver, kidney, and gastrointestinal (stomach) tract, were resolved. Intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were attenuated or eliminated. BPC 157 therapy almost annihilated arterial and venous thrombosis, peripherally and centrally. Thus, rapidly acting Virchow triad circumstances that occur as dopamine central/peripheral antagonists and agonist essential class-points, fully reversed by BPC 157 therapy, might be overwhelming for both neuroleptics and amphetamine.
Collapse
Affiliation(s)
- Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Filip Brkic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Martin Drinkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Jelena Popic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| |
Collapse
|
14
|
Pessoa RT, Alcântara IS, da Silva LYS, da Costa RHS, Silva TM, de Morais Oliveira-Tintino CD, Ramos AGB, de Oliveira MRC, Martins AOBPB, de Lacerda BCGV, de Andrade EM, Ribeiro-Filho J, Gonçalves Lima CM, Coutinho HDM, Menezes IRAD. Ximenia americana L.: Chemical Characterization and Gastroprotective Effect. ANALYTICA 2023; 4:141-158. [DOI: 10.3390/analytica4020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Ximenia americana L., popularly known in Brazil as “ameixa do-mato, ameixa-brava, and ameixa-do-sertão,” is widely used in folk medicine to treat several intestinal disorders. The present study assessed the potential mechanisms of action underlying the gastroprotective activity of the hydroethanolic extract of Ximenia americana L. (EHXA) stem bark. The acute toxicity of EHXA was estimated, and later, the gastroprotective effect in mice was assessed through acute models of gastric lesions induced by acidified or absolute ethanol and indomethacin, where the following mechanisms were pharmacologically analyzed: the involvement of prostaglandins (PG), histamine (H2) receptors, ATP-dependent potassium channels, sulfhydryl groups (SH), α2 adrenergic receptors, nitric oxide (NO), myeloperoxidase (MPO), gastric mucus production, and acetylcholine-mediated intestinal motility. Regarding toxicity, EHXA did not cause deaths or signs of toxicity (LD50 greater than or equal to 2000 mg/kg/p.o.). When the gastroprotective effect was assessed, EHXA (50, 100, and 200 mg/kg/p.o.) reduced the rate of lesions induced by acidified ethanol by 65.63; 53.66, and 58.02% in absolute ethanol at 88.91, 78.82, and 74.68%, respectively, when compared to the negative control group. In the indomethacin-induced gastric injury model, the reductions were 84.69, 55.99, 55.99, and 42.50%, respectively. The study revealed that EHXA might stimulate mucus production and reduce intestinal motility through SH groups, NO production, and activation of α2 adrenergic receptors. The results indicated that EHXA had significant gastroprotective activity in the evaluated models. However, further investigation is required to elucidate the cellular and molecular events underlying the action of EHXA components and to correlate them with the modulation of the signaling pathways, as demonstrated by the current pharmacological approach. Therefore, the results demonstrated in the present study, as well as previously reported findings, support the recommendation of using this species in traditional communities in Brazil.
Collapse
Affiliation(s)
- Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Roger Henrique Souza da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Tarcísio Mendes Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Cícera Datiane de Morais Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), State University of Ceará (UECE), Av. Dr. Silas Munguba, 1700, Fortaleza 60741-000, CE, Brazil
| | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | | | | | - Jaime Ribeiro-Filho
- Department of Biotechnology, Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio, Fortaleza 60180-190, CE, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| |
Collapse
|
15
|
Sikiric P, Gojkovic S, Krezic I, Smoday IM, Kalogjera L, Zizek H, Oroz K, Vranes H, Vukovic V, Labidi M, Strbe S, Baketic Oreskovic L, Sever M, Tepes M, Knezevic M, Barisic I, Blagaic V, Vlainic J, Dobric I, Staresinic M, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157 May Recover Brain-Gut Axis and Gut-Brain Axis Function. Pharmaceuticals (Basel) 2023; 16:676. [PMID: 37242459 PMCID: PMC10224484 DOI: 10.3390/ph16050676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Conceptually, a wide beneficial effect, both peripherally and centrally, might have been essential for the harmony of brain-gut and gut-brain axes' function. Seen from the original viewpoint of the gut peptides' significance and brain relation, the favorable stable gastric pentadecapeptide BPC 157 evidence in the brain-gut and gut-brain axes' function might have been presented as a particular interconnected network. These were the behavioral findings (interaction with main systems, anxiolytic, anticonvulsive, antidepressant effect, counteracted catalepsy, and positive and negative schizophrenia symptoms models). Muscle healing and function recovery appeared as the therapeutic effects of BPC 157 on the various muscle disabilities of a multitude of causes, both peripheral and central. Heart failure was counteracted (including arrhythmias and thrombosis), and smooth muscle function recovered. These existed as a multimodal muscle axis impact on muscle function and healing as a function of the brain-gut axis and gut-brain axis as whole. Finally, encephalopathies, acting simultaneously in both the periphery and central nervous system, BPC 157 counteracted stomach and liver lesions and various encephalopathies in NSAIDs and insulin rats. BPC 157 therapy by rapidly activated collateral pathways counteracted the vascular and multiorgan failure concomitant to major vessel occlusion and, similar to noxious procedures, reversed initiated multicausal noxious circuit of the occlusion/occlusion-like syndrome. Severe intracranial (superior sagittal sinus) hypertension, portal and caval hypertensions, and aortal hypotension were attenuated/eliminated. Counteracted were the severe lesions in the brain, lungs, liver, kidney, and gastrointestinal tract. In particular, progressing thrombosis, both peripherally and centrally, and heart arrhythmias and infarction that would consistently occur were fully counteracted and/or almost annihilated. To conclude, we suggest further BPC 157 therapy applications.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - May Labidi
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Lidija Baketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijan Tepes
- Department of Clinical Medicine, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Vladimir Blagaic
- Department of Obstetrics and Gynecology, Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, 10000 Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Sikiric P, Gojkovic S, Knezevic M, Tepes M, Strbe S, Vukojevic J, Duzel A, Kralj T, Krezic I, Zizek H, Oroz K, Vranes H, Smoday IM, Kalogjera L, Vlainic J, Kokot A, Jurjevic I, Blagaic AB, Skrtic A, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157: Prompt Particular Activation of Collateral Pathways. Curr Med Chem 2023; 30:1568-1573. [PMID: 36200148 DOI: 10.2174/0929867329666221005111553] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marijan Tepes
- Department of Clinical Medicine, Faculty of Dental Medicine and Health, University of Osijek, Osijek, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jaksa Vukojevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonija Duzel
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tamara Kralj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Staresinic M, Japjec M, Vranes H, Prtoric A, Zizek H, Krezic I, Gojkovic S, Smoday IM, Oroz K, Staresinic E, Dretar V, Yago H, Milavic M, Sikiric S, Lovric E, Batelja Vuletic L, Simeon P, Dobric I, Strbe S, Kokot A, Vlainic J, Blagaic AB, Skrtic A, Seiwerth S, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle. Biomedicines 2022; 10:3221. [PMID: 36551977 PMCID: PMC9775659 DOI: 10.3390/biomedicines10123221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application).
Collapse
Affiliation(s)
- Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mladen Japjec
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Prtoric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Eva Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vilim Dretar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Haidi Yago
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Paris Simeon
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Gamulin O, Oroz K, Coric L, Krajacic M, Skrabic M, Dretar V, Strbe S, Talapko J, Juzbasic M, Krezic I, Lozic M, Stambolija V, Zizek H, Jurca I, Jurjevic I, Blagaic AB, Skrtic A, Seiwerth S, Sikiric P. Fourier Transform Infrared Spectroscopy Reveals Molecular Changes in Blood Vessels of Rats Treated with Pentadecapeptide BPC 157. Biomedicines 2022; 10:3130. [PMID: 36551886 PMCID: PMC9775416 DOI: 10.3390/biomedicines10123130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, it was found that when confronted with major vessel occlusion and vascular failure, stable gastric pentadecapeptide BPC 157 therapy might rapidly functionally improve minor vessels to take over the function of disabled major vessels, reorganize blood flow, and compensate failed vessel function. We focused on the BPC 157 therapy effect obtained by giving 10 ng/kg ip to rats 5 min before sacrifice on the rat thoracic aorta, which we assessed with Fourier transform infrared spectroscopy (FTIR) 90 min thereafter. We applied a principal component analysis (PCA). The PCA model showed, with a clear distinction being mostly due to the PC1 score, differences between the spectra of BPC 157- and saline-treated rats. The comparison of the averaged spectra of these two groups with their differential spectrum and PC loadings allowed us to identify the parts of the FTIR spectra that contributed the most to the spectral separation of the two observed groups. The PC1 loadings and the differential spectrum showed that the main bands affecting the separation were the amid I band around 1650 cm-1, the amid II band around 1540 cm-1, and the vibrational band around 1744 cm-1. Fitting the spectral range between 1450 and 1800 cm-1 showed changes in protein conformation and confirmed the appearance of the vibrational band at 1744 cm-1. Controls had a substantially more intense vibrational band at 1744 cm-1. These spectral results showed the cells from saline-treated (control) rats to be in the early stage of cell death, while the samples from BPC 157-rats were protected. Thus, BPC 157 therapy changed the lipid contents and protein secondary structure conformation, with a rapid effect on vessels, within a short time upon application.
Collapse
Affiliation(s)
- Ozren Gamulin
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Maria Krajacic
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Skrabic
- Department of Physics and Biophysics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vilim Dretar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Juzbasic
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marin Lozic
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Vasilije Stambolija
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurca
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Sikiric P, Udovicic M, Barisic I, Balenovic D, Zivanovic Posilovic G, Strinic D, Uzun S, Sikiric S, Krezic I, Zizek H, Yago H, Gojkovic S, Smoday IM, Kalogjera L, Vranes H, Sola M, Strbe S, Koprivanac A, Premuzic Mestrovic I, Mestrovic T, Pavic P, Skrtic A, Blagaic AB, Lovric Bencic M, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157 as Useful Cytoprotective Peptide Therapy in the Heart Disturbances, Myocardial Infarction, Heart Failure, Pulmonary Hypertension, Arrhythmias, and Thrombosis Presentation. Biomedicines 2022; 10:2696. [PMID: 36359218 PMCID: PMC9687817 DOI: 10.3390/biomedicines10112696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022] Open
Abstract
In heart disturbances, stable gastric pentadecapeptide BPC 157 especial therapy effects combine the therapy of myocardial infarction, heart failure, pulmonary hypertension arrhythmias, and thrombosis prevention and reversal. The shared therapy effect occurred as part of its even larger cytoprotection (cardioprotection) therapy effect (direct epithelial cell protection; direct endothelium cell protection) that BPC 157 exerts as a novel cytoprotection mediator, which is native and stable in human gastric juice, as well as easily applicable. Accordingly, there is interaction with many molecular pathways, combining maintained endothelium function and maintained thrombocytes function, which counteracted thrombocytopenia in rats that underwent major vessel occlusion and deep vein thrombosis and counteracted thrombosis in all vascular studies; the coagulation pathways were not affected. These appeared as having modulatory effects on NO-system (NO-release, NOS-inhibition, NO-over-stimulation all affected), controlling vasomotor tone and the activation of the Src-Caveolin-1-eNOS pathway and modulatory effects on the prostaglandins system (BPC 157 counteracted NSAIDs toxicity, counteracted bleeding, thrombocytopenia, and in particular, leaky gut syndrome). As an essential novelty noted in the vascular studies, there was the activation of the collateral pathways. This might be the upgrading of the minor vessel to take over the function of the disabled major vessel, competing with and counteracting the Virchow triad circumstances devastatingly present, making possible the recruitment of collateral blood vessels, compensating vessel occlusion and reestablishing the blood flow or bypassing the occluded or ruptured vessel. As a part of the counteraction of the severe vessel and multiorgan failure syndrome, counteracted were the brain, lung, liver, kidney, gastrointestinal lesions, and in particular, the counteraction of the heart arrhythmias and infarction.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Udovicic
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Diana Balenovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Dean Strinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sandra Uzun
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Haidi Yago
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Antun Koprivanac
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Tomislav Mestrovic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Pavic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Martina Lovric Bencic
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Smoday IM, Petrovic I, Kalogjera L, Vranes H, Zizek H, Krezic I, Gojkovic S, Skorak I, Hriberski K, Brizic I, Kubat M, Strbe S, Barisic I, Sola M, Lovric E, Lozic M, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Therapy Effect of the Stable Gastric Pentadecapeptide BPC 157 on Acute Pancreatitis as Vascular Failure-Induced Severe Peripheral and Central Syndrome in Rats. Biomedicines 2022; 10:1299. [PMID: 35740321 PMCID: PMC9220115 DOI: 10.3390/biomedicines10061299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
We revealed the therapy effect of the stable gastric pentadecapeptide BPC 157 (10 μg/kg, 10 ng/kg ig or po) with specific activation of the collateral rescuing pathways, the azygos vein, on bile duct ligation in particular, and acute pancreatitis as local disturbances (i.e., improved gross and microscopy presentation, decreased amylase level). Additionally, we revealed the therapy's effect on the acute pancreatitis as vascular failure and multiorgan failure, both peripherally and centrally following "occlusion-like" syndrome, major intoxication (alcohol, lithium), maintained severe intra-abdominal hypertension, and myocardial infarction, or occlusion syndrome, and major vessel occlusion. The application-sacrifice periods were ligation times of 0-30 min, 0-5 h, 0-24 h (cured periods, early regimen) and 4.30 h-5 h, 5 h-24 h (cured periods, delayed regimen). Otherwise, bile duct-ligated rats commonly presented intracranial (superior sagittal sinus), portal and caval hypertension and aortal hypotension, gross brain swelling, hemorrhage and lesions, heart dysfunction, lung lesions, liver and kidney failure, gastrointestinal lesions, and severe arterial and venous thrombosis, peripherally and centrally. Unless antagonized with the key effect of BPC 157 regimens, reversal of the inferior caval and superior mesenteric vein congestion and reversal of the failed azygos vein activated azygos vein-recruited direct delivery to rescue the inferior-superior caval vein pathway; these were all antecedent to acute pancreatitis major lesions (i.e., acinar, fat necrosis, hemorrhage). These lesions appeared in the later period, but were markedly attenuated/eliminated (i.e., hemorrhage) in BPC 157-treated rats. To summarize, while the innate vicious cycle may be peripheral (bile duct ligation), or central (rapidly developed brain disturbances), or peripheral and central, BPC 157 resolved acute pancreatitis and its adjacent syndrome.
Collapse
Affiliation(s)
- Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Igor Petrovic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Skorak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Klaudija Hriberski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Brizic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Milovan Kubat
- Department of Forensic Medicine and Criminology, School of Medicne, 10000 Zagreb, Croatia;
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Marin Lozic
- Department of Pediatric and Preventive Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.S.); (L.K.); (H.V.); (H.Z.); (I.K.); (S.G.); (I.S.); (K.H.); (I.B.); (S.S.); (I.B.); (M.S.); (A.B.B.)
| |
Collapse
|
21
|
Hama Amin RR, Aziz TA. Gastroprotective Effect of Azilsartan Through Ameliorating Oxidative Stress, Inflammation, and Restoring Hydroxyproline, and Gastrin Levels in Ethanol-Induced Gastric Ulcer. J Inflamm Res 2022; 15:2911-2923. [PMID: 35592072 PMCID: PMC9113664 DOI: 10.2147/jir.s365090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Objective The present study was designed to evaluate the possible gastroprotective effects of different doses of azilsartan in ethanol-induced gastric ulcers in rats. Methodology Forty-eight male adult Wistar rats were used and allocated randomly into four groups: negative control treated with distilled water, positive control treated with ethanol, lansoprazole treated group, and azilsartan (1mg, 5mg, and 10mg/kg) treated group. The treatment protocol was for 15 days, and all the groups except for the negative control group received 1mL of ethanol on the last day 1hr before scarification. Gastric content was collected for measuring the volume, free acidity, and pH. The stomach was used for measuring the gastric lesion area and ulcer index. Blood samples were collected for measuring serum hydroxyproline, gastrin, CRP, TNF-α, MDA, and TAOC. Gastric tissues were sent for histopathological examinations. Results Ethanol administration significantly increased gastric lesion, gastric ulcer index, and gastric acidity. Ethanol also decreased serum levels of hydroxyproline and TAOC and increased serum gastrin, CRP, TNF-α, and MDA. Azilsartan 10mg/kg was able to decrease the lesion by 43.6% and increase gastric pH and significantly decreased MDA level. Both 5mg/kg and 10mg/kg azilsartan have successfully restored the level of hydroxyproline, gastrin, and TNF-α. The histopathological finding showed gastroprotection by azilsartan in a dose-dependent manner. Conclusion The study revealed that azilsartan possesses a gastroprotective effect. The proposed mechanisms could be increased blood flow to the stomach, antioxidant capacity, and anti-inflammatory activity along with restoring hydroxyproline and gastrin levels. These findings suggest azilsartan as a promising candidate to be tested in a clinical setting.
Collapse
Affiliation(s)
- Renas Raouf Hama Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Tavga Ahmed Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
- Correspondence: Tavga Ahmed Aziz, Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq, Tel +9647701523544, Email
| |
Collapse
|
22
|
Tepes M, Gojkovic S, Krezic I, Zizek H, Vranes H, Madzar Z, Santak G, Batelja L, Milavic M, Sikiric S, Kocman I, Simonji K, Samara M, Knezevic M, Barisic I, Lovric E, Strbe S, Kokot A, Sjekavica I, Kolak T, Skrtic A, Seiwerth S, Boban Blagaic A, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy for Primary Abdominal Compartment Syndrome in Rats. Front Pharmacol 2021; 12:718147. [PMID: 34966273 PMCID: PMC8710746 DOI: 10.3389/fphar.2021.718147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the stable gastric pentadecapeptide BPC 157 was shown to counteract major vessel occlusion syndromes, i.e., peripheral and/or central occlusion, while activating particular collateral pathways. We induced abdominal compartment syndrome (intra-abdominal pressure in thiopental-anesthetized rats at 25 mmHg (60 min), 30 mmHg (30 min), 40 mmHg (30 min), and 50 mmHg (15 min) and in esketamine-anesthetized rats (25 mmHg for 120 min)) as a model of multiple occlusion syndrome. By improving the function of the venous system with BPC 157, we reversed the chain of harmful events. Rats with intra-abdominal hypertension (grade III, grade IV) received BPC 157 (10 µg or 10 ng/kg sc) or saline (5 ml) after 10 min. BPC 157 administration recovered the azygos vein via the inferior-superior caval vein rescue pathway. Additionally, intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were reduced, as were the grossly congested stomach and major hemorrhagic lesions, brain swelling, venous and arterial thrombosis, congested inferior caval and superior mesenteric veins, and collapsed azygos vein; thus, the failed collateral pathway was fully recovered. Severe ECG disturbances (i.e., severe bradycardia and ST-elevation until asystole) were also reversed. Microscopically, transmural hyperemia of the gastrointestinal tract, intestinal mucosa villi reduction, crypt reduction with focal denudation of superficial epithelia, and large bowel dilatation were all inhibited. In the liver, BPC 157 reduced congestion and severe sinusoid enlargement. In the lung, a normal presentation was observed, with no alveolar membrane focal thickening and no lung congestion or edema, and severe intra-alveolar hemorrhage was absent. Moreover, severe heart congestion, subendocardial infarction, renal hemorrhage, brain edema, hemorrhage, and neural damage were prevented. In conclusion, BPC 157 cured primary abdominal compartment syndrome.
Collapse
Affiliation(s)
- Marijan Tepes
- Department of Surgery, General Hospital Nasice, Nasice, Croatia
- Department of Clinical Medicine, Faculty of Dental Medicine and Health Osijek, Osijek, Croatia
- PhD Program Translational Research in Biomedicine—TRIBE, School of Medicine, University of Split, Split, Croatia
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zrinko Madzar
- Clinical Department of Surgery, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Goran Santak
- Department of Surgery, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Lovorka Batelja
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivica Kocman
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Karol Simonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine Zagreb, Zagreb, Croatia
| | - Mariam Samara
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivica Sjekavica
- Department of Diagnostic and Interventional Radiology, University Hospital Centre, Zagreb, Croatia
| | - Toni Kolak
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
23
|
Gojkovic S, Krezic I, Vranes H, Zizek H, Drmic D, Batelja Vuletic L, Milavic M, Sikiric S, Stilinovic I, Simeon P, Knezevic M, Kolak T, Tepes M, Simonji K, Strbe S, Nikolac Gabaj N, Barisic I, Oreskovic EG, Lovric E, Kokot A, Skrtic A, Boban Blagaic A, Seiwerth S, Sikiric P. Robert's Intragastric Alcohol-Induced Gastric Lesion Model as an Escalated General Peripheral and Central Syndrome, Counteracted by the Stable Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:1300. [PMID: 34680419 PMCID: PMC8533388 DOI: 10.3390/biomedicines9101300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
We redefined Robert's prototypical cytoprotection model, namely the intragastric administration of 96% alcohol in order to generate a general peripheral and central syndrome similar to that which occurs when major central or peripheral veins are occluded in animal models. With this redefinition, we used Robert's model to examine the cytoprotective effects of the stable gastric pentadecapeptide BPC 157. The intragastric administration of alcohol induced gastric lesions, intracranial (superior sagittal sinus) hypertension, severe brain swelling and lesions, portal and vena caval hypertension, aortal hypotension, severe thrombosis, inferior vena cava and superior mesenteric vein congestion, azygos vein failure (as a failed collateral pathway), electrocardiogram disturbances, and heart, lung, liver and kidney lesions. The use of BPC 157 therapy (10 µg/kg or 10 ng/kg given intraperitoneally 1 min after alcohol) counteracted these deficits rapidly. Specifically, BPC 157 reversed brain swelling and superior mesenteric vein and inferior vena caval congestion, and helped the azygos vein to recover, which improved the collateral blood flow pathway. Microscopically, BPC 157 counteracted brain (i.e., intracerebral hemorrhage with degenerative changes of cerebral and cerebellar neurons), heart (acute subendocardial infarct), lung (parenchymal hemorrhage), liver (congestion), kidney (congestion) and gastrointestinal (epithelium loss, hemorrhagic gastritis) lesions. In addition, this may have taken place along with the activation of specific molecular pathways. In conclusion, these findings clarify and extend the theory of cytoprotection, offer an approach to its practical application, and establish BPC 157 as a prospective cytoprotective treatment.
Collapse
Affiliation(s)
- Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Irma Stilinovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Paris Simeon
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Toni Kolak
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Karol Simonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Nora Nikolac Gabaj
- Department of Chemistry, University Clinical Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Emma Grace Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.V.); (M.M.); (S.S.); (E.L.); (A.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.G.); (I.K.); (H.V.); (H.Z.); (D.D.); (I.S.); (M.K.); (M.T.); (S.S.); (I.B.); (E.G.O.); (A.B.B.)
| |
Collapse
|
24
|
Malvidin Protects against and Repairs Peptic Ulcers in Mice by Alleviating Oxidative Stress and Inflammation. Nutrients 2021; 13:nu13103312. [PMID: 34684313 PMCID: PMC8537945 DOI: 10.3390/nu13103312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Peptic ulcer episodes cause damage to the stomach and intestine, with inflammatory cell infiltration and oxidative stress as the main players. In this study, we investigated the potential of anthocyanidin malvidin for preventive and curative peptic ulcer treatment. The anthocyanidin effects were examined in gastric ulcer mouse models induced by ethanol, non-steroidal anti-inflammatory drugs (NSAIDs), ischemia-reperfusion (IR), acetic acid and duodenal ulcer induced by polypharmacy. Expression levels of oxidative and inflammatory genes were measured to investigate the mechanism of anthocyanin activity. At a dose of 5 mg·kg−1, Malvidin prevented gastric ulcer induction by ethanol, NSAID and repaired the tissue after 6 days of IR. Moreover, the anthocyanidin accelerated the healing of acetic acid-induced ulcer, increased the gene expression of EGF and COX-1, and downregulated MMP-9. Anthocyanin treatment mitigated the effect of polypharmacy on inflammation and oxidative stress observed in the intestine. Additionally, the compound downregulated cytokine expression and TLR4 and upregulated HMOX-1 and IL-10, exhibiting protective activity in the mouse gut. Malvidin thus prevented gastric and duodenal ulcers due to prominent anti-inflammatory and antioxidative effects on the gastrointestinal tract that were related to gene expression modulation and an increase in endogenous defense mechanisms.
Collapse
|
25
|
McMahan RH, Najarro KM, Mullen JE, Paul MT, Orlicky DJ, Hulsebus HJ, Kovacs EJ. A novel murine model of multi-day moderate ethanol exposure reveals increased intestinal dysfunction and liver inflammation with age. IMMUNITY & AGEING 2021; 18:37. [PMID: 34556145 PMCID: PMC8459518 DOI: 10.1186/s12979-021-00247-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022]
Abstract
Background There are currently > 600 million people over the age of 65 globally and this number is expected to double by the year 2050. Alcohol use among this population is on the rise, which is concerning as aging is associated with increased risk for a number of chronic illnesses. As most studies investigating the effects of alcohol have focused on young/middle-aged populations, there is a dearth of information regarding the consequences of alcohol use in older consumers. In addition, most murine ethanol models have concentrated on exposure to very high levels of ethanol, while the vast majority of elderly drinkers do not consume alcohol in excess; instead, they drink on average 2 alcoholic beverages a day, 3–4 days a week. Methods We designed a murine model of aging and moderate ethanol consumption to determine if the deleterious effects of alcohol on the gut-liver axis are exacerbated in aged, relative to younger, animals. Aged and young mice were exposed to a multi-day moderate exposure ethanol regimen for 4 weeks and changes in gut permeability along with intestinal tight junction protein and antimicrobial peptide gene expression were measured. In addition, hepatic inflammation was assessed by histological analysis, inflammatory gene expression and flow cytometric analysis of inflammatory infiltrate. Results Our results reveal that in aged, but not young mice, moderate ethanol exposure yielded significantly worsened intestinal permeability, including increased bacterial translocation from the gut, elevated serum iFABP and leakage of FITC-dextran from the gut. Interestingly, moderate ethanol exposure in young animals led to gut protective transcriptional changes in the ileum while this protective response was blunted in aged mice. Finally, moderate ethanol exposure in aged mice also resulted in marked inflammatory changes in the liver. Conclusions These results demonstrate that aged mice are more susceptible to ethanol-induced gut barrier dysfunction and liver inflammation, even at moderate doses of ethanol. This increased vulnerability to ethanol’s gastrointestinal effects has important implications for alcohol use in the aging population. Future studies will explore whether improving intestinal barrier function can reverse these age-related changes.
Collapse
Affiliation(s)
- Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, CO, 80045, Aurora, USA. .,GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, CO, 80045, Aurora, USA
| | - Juliet E Mullen
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, CO, 80045, Aurora, USA
| | - Madison T Paul
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, CO, 80045, Aurora, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, CO, 80045, Aurora, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Ave, RC2, Mail Stop #8620, CO, 80045, Aurora, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
26
|
Udovicic M, Sever M, Kavur L, Loncaric K, Barisic I, Balenovic D, Zivanovic Posilovic G, Strinic D, Uzun S, Batelja Vuletic L, Sikiric S, Skrtic A, Drmic D, Boban Blagaic A, Lovric Bencic M, Seiwerth S, Sikiric P. Stable Gastric Pentadecapeptide BPC 157 Therapy for Monocrotaline-Induced Pulmonary Hypertension in Rats Leads to Prevention and Reversal. Biomedicines 2021; 9:822. [PMID: 34356886 PMCID: PMC8301325 DOI: 10.3390/biomedicines9070822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background. Monocrotaline selectively injures the lung's vascular endothelium and induces pulmonary arterial hypertension. The stable gastric pentadecapeptide BPC 157 acts as a prototype cytoprotective agent that maintains endothelium, and its application may be a novel therapy. Besides, BPC 157 prevents and reverses thrombosis formation, maintains platelet function, alleviates peripheral vascular occlusion disturbances, and has anti-arrhythmic and anti-inflammatory effects. Monocrotaline-induced pulmonary arterial hypertension in rats (wall thickness, total vessel area, heart frequency, QRS axis deviation, QT interval prolongation, increase in right ventricle systolic pressure and bodyweight loss) can be counteracted with early or delayed BPC 157 therapy. Methods and Results. After monocrotaline (80 mg/kg subcutaneously), BPC 157 (10 μg/kg or 10 ng/kg, days 1-14 or days 1-30 (early regimens), or days 14-30 (delayed regimen)) was given once daily intraperitoneally (last application 24 h before sacrifice) or continuously in drinking water until sacrifice (day 14 or 30). Without therapy, the outcome was the full monocrotaline syndrome, marked by right-side heart hypertrophy and massive thickening of the precapillary artery's smooth muscle layer, clinical deterioration, and sometimes death due to pulmonary hypertension and right-heart failure during the 4th week after monocrotaline injection. With all BPC 157 regimens, monocrotaline-induced pulmonary arterial hypertension (including all disturbed parameters) was counteracted, and consistent beneficial effects were documented during the whole course of the disease. Pulmonary hypertension was not even developed (early regimens) as quickly as the advanced pulmonary hypertension was rapidly attenuated and then completely eliminated (delayed regimen). Conclusions. Thus, pentadecapeptide BPC 157 prevents and counteracts monocrotaline-induced pulmonary arterial hypertension and cor pulmonale in rats.
Collapse
Affiliation(s)
- Mario Udovicic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Lovro Kavur
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Kristina Loncaric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Diana Balenovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Gordana Zivanovic Posilovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Dean Strinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Sandra Uzun
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Lovorka Batelja Vuletic
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Martina Lovric Bencic
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (L.B.V.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Salata 11, P.O. Box 916, 10000 Zagreb, Croatia; (M.U.); (M.S.); (L.K.); (K.L.); (I.B.); (D.B.); (G.Z.P.); (D.S.); (S.U.); (D.D.); (A.B.B.); (M.L.B.)
| |
Collapse
|
27
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Malekinusic D, Vrdoljak B, Knezevic T, Vranes H, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Lovric E, Milavic M, Sikiric S, Tvrdeic A, Patrlj L, Strbe S, Sola M, Situm A, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Occluded Superior Mesenteric Artery and Vein. Therapy with the Stable Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:792. [PMID: 34356860 PMCID: PMC8301404 DOI: 10.3390/biomedicines9070792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We investigated the occluded essential vessel tributaries, both arterial and venous, occluded superior mesenteric vein and artery in rats, consequent noxious syndrome, peripherally and centrally. As therapy, we hypothesized the rapidly activated alternative bypassing pathways, arterial and venous, and the stable gastric pentadecapeptide BPC 157 since it rapidly alleviated venous occlusion syndromes. METHODS Assessments were performed for 30 min (gross recording, venography, ECG, pressure, microscopy, biochemistry, and oxidative stress), including portal hypertension, caval hypertension, aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis, ECG disturbances, MDA-tissue increase, the multiple organs lesions, heart, lung, liver, kidney and gastrointestinal tract, including brain (swelling, and cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus lesions). Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally at 1 min ligation-time. RESULTS BPC 157 rapidly activated collateral pathways. These collateral loops were the superior mesenteric vein-inferior anterior pancreaticoduodenal vein-superior anterior pancreaticoduodenal vein-pyloric vein-portal vein pathway, an alternative pathway toward inferior caval vein via the united middle colic vein and inferior mesenteric vein through the left colic vein, and the inferior anterior pancreaticoduodenal artery and inferior mesenteric artery. Consequently, BPC 157 counteracted the superior sagittal sinus, portal and caval hypertension, aortal hypotension, progressing venous and arterial thrombosis peripherally and centrally, ECG disturbances attenuated. Markedly, the multiple organs lesions, heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain lesions, and oxidative stress in tissues were attenuated. CONCLUSIONS BPC 157 therapy rapidly recovered rats, which have complete occlusion of the superior mesenteric vein and artery.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Marija Sola
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Andrej Situm
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (E.L.); (M.M.); (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (T.K.); (H.V.); (D.D.); (M.S.); (A.D.); (T.K.); (A.T.); (L.P.); (S.S.); (M.S.); (A.S.); (A.B.B.)
| |
Collapse
|
28
|
Impact of food-derived bioactive peptides on gut function and health. Food Res Int 2021; 147:110485. [PMID: 34399481 DOI: 10.1016/j.foodres.2021.110485] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is the largest interface between our body and the environment. It is an organ system extending from the mouth to the anus and functions for food intake, digestion, transport and absorption of nutrients, meanwhile providing protection from environmental factors, like toxins, antigens, and pathogens. Diet is one of the leading factors modulating the function of the GIT. Bioactive peptides presenting naturally in food or derived from food proteins during digestion or processing have been revealed multifunctional in diverse biological processes, including maintaining gut health and function. This review summarizes the available evidence regarding the effects of food-derived bioactive peptides on gut function and health. Findings and insights from studies based on in vitro and animal models are discussed. The gastrointestinal mucosa maintains a delicate balance between immune tolerance to nutrients and harmful components, which is crucial for the digestive system's normal functions. Dietary bioactive peptides positively impact gastrointestinal homeostasis by modulating the barrier function, immune responses, and gut microbiota. However, there is limited clinical evidence on the safety and efficacy of bioactive peptides, much less on the applications of dietary peptides for the treatment or prevention of diseases related to the GIT. Further study is warranted to establish the applications of bioactive peptides in regulating gut health and function.
Collapse
|
29
|
Knezevic M, Gojkovic S, Krezic I, Zizek H, Malekinusic D, Vrdoljak B, Vranes H, Knezevic T, Barisic I, Horvat Pavlov K, Drmic D, Staroveski M, Djuzel A, Rajkovic Z, Kolak T, Kocman I, Lovric E, Milavic M, Sikiric S, Tvrdeic A, Patrlj L, Strbe S, Kokot A, Boban Blagaic A, Skrtic A, Seiwerth S, Sikiric P. Occlusion of the Superior Mesenteric Artery in Rats Reversed by Collateral Pathways Activation: Gastric Pentadecapeptide BPC 157 Therapy Counteracts Multiple Organ Dysfunction Syndrome; Intracranial, Portal, and Caval Hypertension; and Aortal Hypotension. Biomedicines 2021; 9:609. [PMID: 34073625 PMCID: PMC8229949 DOI: 10.3390/biomedicines9060609] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pentadecapeptide BPC 157 therapy counteracts multiple organ dysfunction syndrome in rats, which have permanent occlusion of the superior mesenteric artery close to the abdominal aorta. Previously, when confronted with major vessel occlusion, its effect would rapidly activate collateral vessel pathways and resolve major venous occlusion syndromes (Pringle maneuver ischemia, reperfusion, Budd-Chiari syndrome) in rats. This would overwhelm superior mesenteric artery permanent occlusion, and result in local, peripheral, and central disturbances. Methods: Assessments, for 30 min (gross recording, angiography, ECG, pressure, microscopy, biochemistry, and oxidative stress), included the portal hypertension, caval hypertension, and aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis; ECG disturbances; MDA-tissue increase; and multiple organ lesions and disturbances, including the heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus). BPC 157 therapy (/kg, abdominal bath) (10 µg, 10 ng) was given for a 1-min ligation time. Results: BPC 157 rapidly recruits collateral vessels (inferior anterior pancreaticoduodenal artery and inferior mesenteric artery) that circumvent occlusion and ascertains blood flow distant from the occlusion in the superior mesenteric artery. Portal and caval hypertension, aortal hypotension, and, centrally, superior sagittal sinus hypertension were attenuated or eliminated, and ECG disturbances markedly mitigated. BPC 157 therapy almost annihilated venous and arterial thrombosis. Multiple organ lesions and disturbances (i.e., heart, lung, liver, and gastrointestinal tract, in particular, as well as brain) were largely attenuated. Conclusions: Rats with superior mesenteric artery occlusion may additionally undergo BPC 157 therapy as full counteraction of vascular occlusion-induced multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Dominik Malekinusic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Borna Vrdoljak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Tamara Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Katarina Horvat Pavlov
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Domagoj Drmic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Miro Staroveski
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Antonija Djuzel
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Zoran Rajkovic
- Department of Surgery, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia;
| | - Toni Kolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Ivica Kocman
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Eva Lovric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Marija Milavic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Ante Tvrdeic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Leonardo Patrlj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Antonio Kokot
- Department of Anatomy and Neuroscience, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.H.P.); (E.L.); (M.M.); (S.S.); (A.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.K.); (S.G.); (I.K.); (H.Z.); (D.M.); (B.V.); (H.V.); (T.K.); (I.B.); (D.D.); (M.S.); (A.D.); (T.K.); (I.K.); (A.T.); (L.P.); (S.S.); (A.B.B.)
| |
Collapse
|
30
|
Humulene Inhibits Acute Gastric Mucosal Injury by Enhancing Mucosal Integrity. Antioxidants (Basel) 2021; 10:antiox10050761. [PMID: 34064830 PMCID: PMC8150829 DOI: 10.3390/antiox10050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to determine whether α-humulene, a major constituent in many plants used in fragrances, has a protective role against gastric injury in vivo and in vitro. A rat model of hydrochloric acid (HCl)/ethanol-induced gastritis and human mast cells (HMC-1) were used to investigate the mucosal protective effect of α-humulene. α-Humulene significantly inhibited gastric lesions in HCl/ethanol-induced acute gastritis and decreased gastric acid secretion pyloric ligation-induced gastric ulcers in vivo. In addition, α-humulene reduced the amount of reactive oxygen species and malondialdehyde through upregulation of prostaglandin E2 (PGE2) and superoxide dismutase (SOD). In HMC-1 cells, α-humulene decreased intracellular calcium and increased intracellular cyclic adenosine monophosphate (cAMP) levels, resulting in low histamine levels. α-Humulene also reduced the expression levels of cytokine genes such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF) by downregulating nuclear factor-κB (NF-κB) nuclear translocation. Finally, α-humulene upregulated the expression levels of mucin 5AC (Muc5ac), Muc6, trefoil factor 1 (Tff1), trefoil factor 2 (Tff2), and polymeric immunoglobulin receptor (pigr). α-Humulene may attenuate HCl/ethanol-induced gastritis by inhibiting histamine release and NF-κB activation and stimulating antioxidants and mucosal protective factors, particularly Muc5ac and Muc6. Therefore, these data suggest that α-humulene is a potential drug candidate for the treatment of stress-induced or alcoholic gastritis.
Collapse
|
31
|
Ivashkin KV, Izatullaev EA, Korneeva VR. Gastric Cytoprotection as Basis of Gastrointestinal Mucosa Protection and Repair in Erosive Ulcerative Lesions of Various Aetiologies. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2020; 30:7-17. [DOI: 10.22416/1382-4376-2020-30-7-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Aim.Assessment of efficacy and the mechanism of action of gastrointestinal mucosa (GM) protection in current treatment settings with methylmethionine-sulfonium chloride (vitamin U) to illustrate its applicability in erosive ulcerative lesions of various aetiologies.Key points.Aside to damage prevention in exposure to aggressive agents, gastroprotection implies healing promotion under the preserved level of hydrochloric acid secretion. Prostaglandins (PG) and SH-antioxidants are key mediators of gastroprotection in acute and chronic damage. SH-containing endogenous substances (L-cysteine, D,L-methionine, GSH) and exogenous molecules (methylmethionine-sulfonium chloride (MMSC), N-acetylcysteine) prevent damage due to the ability to absorb/neutralise free radicals released in xenobiotic-triggered cell damage, inhibit TNF-α expression, reduce the aspirin-induced leukocyte-endothelium adhesion and stimulate mucin release. In experiment, MMSC prevented the ethanol-induced GM damage, stimulated mucin release and its redistribution on the GM surface; in clinical trials, MMSC effectively facilitated remission in duodenal ulcer.Conclusion.Preparations exerting a protective effect on gastroduodenal mucosa, such as methylmethionine-sulfonium chloride (vitamin U), may improve basic treatment settings and facilitate remission in erosive ulcerative lesions of upper gastrointestinal tract.
Collapse
Affiliation(s)
- K. V. Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. R. Korneeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
32
|
American University of Health Sciences, Signal Hill/Long Beach, CA, Departments of Pathology & Pharmacology, School of Medicine, University of California, Irvine, CA, USA, Szabo S. COVID-19: NEW DISEASE AND CHAOS WITH PANIC, ASSOCIATED WITH STRESS. PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY. MEDICAL SCIENCES 2020; 59. [DOI: 10.25040/ntsh2020.01.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Sikiric P, Hahm KB, Blagaic AB, Tvrdeic A, Pavlov KH, Petrovic A, Kokot A, Gojkovic S, Krezic I, Drmic D, Rucman, R, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157, Robert's Stomach Cytoprotection/Adaptive Cytoprotection/Organoprotection, and Selye's Stress Coping Response: Progress, Achievements, and the Future. Gut Liver 2020; 14:153-167. [PMID: 31158953 PMCID: PMC7096228 DOI: 10.5009/gnl18490] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
We reviewed again the significance of the stable gastric pentadecapeptide BPC 157 as a likely mediator of Robert's stomach cytoprotection/adaptive cytoprotection and organoprotection and as novel mediator of Selye's stress coping response to reestablish homeostasis. Specific points of BPC 157 therapy and the original concept of Robert's cytoprotection/adaptive cytoprotection/organoprotection are discussed, including the beneficial effects of BPC 157. First, BPC 157 protects stomach cells and maintains gastric integrity against various noxious agents (Robert's killing cell by contact) and is continuously present in the gastric mucosa and gastric juice. Additionally, BPC 157 protects against the adverse effects of alcohol and nonsteroidal anti-inflammatory drugs on the gastric epithelium and other epithelia, that is, skin, liver, pancreas, heart (organoprotection), and brain, thereby suggesting its use in wound healing. Additionally, BPC 157 counteracts gastric endothelial injury that precedes and induces damage to the gastric epithelium and generalizes "gastric endothelial protection" to protection of the endothelium of other vessels (thrombosis, prolonged bleeding, and thrombocytopenia). BPC 157 also has an effect on blood vessels, resulting in vessel recruitment that circumvents vessel occlusion and the development of additional shunting and rapid bypass loops to rapidly reestablish the integrity of blood flow (ischemic/reperfusion colitis, duodenal lesions, cecal perforation, and inferior vena caval occlusion). Lastly, BPC 157 counteracts tumor cachexia, muscle wasting, and increases in pro-inflammatory/procachectic cytokines, such as interleukin-6 and tumor necrosis factor-α, and significantly corrects deranged muscle proliferation and myogenesis through changes in the expression of FoxO3a, p-AKT, p-mTOR, and p-GSK-3β (mitigating cancer cachexia).
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ki-Baik Hahm
- Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Alenka Boban Blagaic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ante Tvrdeic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | | | - Andrea Petrovic
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Domagoj Drmic
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Rudolf Rucman,
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
34
|
Munteanu C, ULUSOY Y, KİLİC B. Investigation of Healing Effects of Afyon Region Thermal Spring Water on Experimentally-Induced Gastritis in Mice. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, 40 Albino mice were induced with ethyl alcohol to form of gastritis. In the treatment stage, control group mice were given tap water, while study group mice were given fresh water of Süreyya I hot spring. Clinical, hematological, biochemical, blood gases measurements and histopathological examinations of the gastric tissue were performed on the 1st, 7th, 14th and 21th days after the initiation of the treatment. At the end of the study, no significant difference was found between the groups in terms of body temperature (p> 0.05), whereas heart and respiratory frequencies were significantly higher in the study group animals (p <0.05). Although mean WBC, NOTR, MON, EOS and MCV decreased significantly in both groups (p <0.05), it was found that the mean of these parameters were more significant in SG at all measurement times (p <0.05). It was determined that TP, ALB and GLU levels increased in SG contrast to CG, and statistically significant decreases in AST, ALT, CK, ALP, LDH, UREA, CREA and IgG levels after the treatment. Additionally, pH, partial CO2 pressure, base deficit, bicarbonate, Ca and K levels decreased after gastritis procedure, whereas lactate, Na and Cl levels increased. Consequently, the clinical, hematological, blood biochemical parameters, blood gases and histopathological findings were evaluated as a whole, it was concluded that Süreyya I hot spring water was very successful in the treatment of gastritis.
Collapse
Affiliation(s)
| | - Yavuz ULUSOY
- 2. Ministry of Agriculture and Forestry, Veterinary Control Central Research Institute, Pathology Laboratory, Ankara/ Turkey
| | - Bahadir KİLİC
- Ministry of Agriculture and Forestry, Veterinary Control Central Research Institute, Pathology Laboratory, Ankara/ Turkey
| |
Collapse
|
35
|
Protective effect of the solvent extracts of Portulacca oleracea against acidified ethanol induced gastric ulcer in rabbits. Drug Chem Toxicol 2019; 45:301-310. [PMID: 31742437 DOI: 10.1080/01480545.2019.1691584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Portulacca oleracea L. has been used for treatment of different ailments. The aim of this study was to investigate the effectiveness and possible mechanism of action involved in the anti gastric ulcerogenic effect of Portulacca oleracea. Methanolic extract & subsequent fractions (100, 200 and 400 mg/kg) of Portulacca oleracea (P. oleracea) were administered orally to experimental rabbits one hour before oral administration of HCl/ethanol (40:60). Anti gastric ulcerogenic potential of P. oleracea was evaluated by assessment of gastric pH, pepsin, free acidity, ulcer index, mucus content and total acidity. For the investigation of possible mechanism of action malondialdehyde (MDA), histamine, and H + K + ATPase content were determined in the stomach homogenate. Histopathological study of stomach tissue was carried out by H&E dye. Ethyl acetate fraction (EAF) of P. oleracea was the most potent fraction among all fractions that exhibited efficient protection against acidified ethanol mediated gastric-ulcer. The ethyl acetate fraction (EAF) significantly increased the pH of gastric juice, while pepsin and histamine was observed to decrease significantly in comparison to acidified ethanol group (***p ≤ 0.001). The EAF showed moderately H + K + ATPase inhibitory activity. Moreover, it was also observed that EAF decreased the malondialdehyde (MDA) level in the stomach tissue homogenate showing antioxidant effect. Histopathological studies showed that among the tested fractions, EAF significantly prevented acidified ethanol induced gastric mucosal damage. These results showed that mechanism of anti gastric ulcerogenic potential of P. oleracea could be associated with the reduction in histamine level, H + K + ATPase inhibition and reduced MDA level.
Collapse
|
36
|
de Araújo Rodrigues P, de Morais SM, Aguiar LA, Vila-Nova NS, Benjamin SR. Effect of Byrsonima sericea DC. leaf extracts on mice gastrointestinal tract. Toxicol Rep 2019; 6:1182-1187. [PMID: 31763182 PMCID: PMC6861650 DOI: 10.1016/j.toxrep.2019.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Byrsonima sericea DC. (Malpighiaceae) was studied for phenolic contents. Byrsonima sericea (BSEE) ethanolic extracts explored Indomethacin induced gastric lesion. BSEE lowers rates of AST, ALT, animal weight and relative organ weight. Anti-diarrheal and antioxidant activity from leaf extracts were observed in the current investigation.
Byrsonima sericea DC. (Malpighiaceae) leaves are popularly folk medicine in Brazil used to treat gastro-intestinal disorders including diarrhea and gastric diseases. Ethanol extract (BSEE), ethyl acetate extract (BSEAE) and hexane extract (BSHE) of the leaf part of Byrsonima sericea DC were characterized for their total phenolics, proanthocyanidins and flavonoids content. The total antioxidant capacity of extracts was determined. The ethnopharmacological use of B. sericea leaves was evaluated by assaying BSEE for gastroprotective activity in stomach ulcer induced by indomethacin, intestinal motility and toxicity. Abundance of phenols mainly tannins was found in BSEE. Total phenolics, flavonoids and proanthocyanidins content in BSEE were found to be 0.371, 0.172 and 1.3 × 10-4 (mg/g) respectively. BSEE showed concentration dependent significant scavenging of DPPH values 90.0 (%) respectively. Moreover, oral doses of 500 and 1000 mg/kg did not cause mortality, and there was no difference in animals weight, organs relative weight and alanine transaminase (ALT) and aspartate transaminase (AST), as compared to the control group. Doses of 250, 500 and 1000 mg/kg inhibited the gastric lesions induced by indomethacin in 52, 60 and 62 % respectively. The dose of 1000 mg/kg decreased intestinal motility in animals. The presence of phenolic compounds, including tannins could be associated with the anti-diarrheal action and the antioxidant properties could collaborate to the gastroprotective and anti- diarrheal activities, confirming its popular use of the plant.
Collapse
Key Words
- ALT, alanine transaminase
- ANOVA, one-way analysis of variance
- AST, aspartate transaminase
- Antioxidants
- BSEAE, Byrsonima sericea ethyl acetate extract
- BSEE, Byrsonima sericea ethanol extract
- BSHE, Byrsonima sericea hexane extract
- Byrsonima sericea DC
- DMSO, dimethyl sulfoxide
- DPPH, 2,2-diphenyl-1- picrylhydrazyl
- Gastroprotective
- HPLC-DAD, high performance liquid chromatography-diode array detector
- Indomethacin
- MS, mass spectrometry
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PGE2, prostaglandin
- PI, inhibition potential
- SD, standard deviation
- Toxicity
- im, intra-muscular
Collapse
Affiliation(s)
- Patrícia de Araújo Rodrigues
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Av. Doutor Silas Munguba, 1700, CEP 60740-000, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Selene Maia de Morais
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Av. Doutor Silas Munguba, 1700, CEP 60740-000, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Liza Araújo Aguiar
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Av. Doutor Silas Munguba, 1700, CEP 60740-000, Campus do Itaperi, Fortaleza, Ceará, Brazil
| | - Nadja Soares Vila-Nova
- Faculdade de Enfermagem Nova Esperança, Departamento de Medicina Veterinária, Av. Frei Galvão 12 Gramame, João Pessoa, Paraíba, Brazil
| | - Stephen Rathinaraj Benjamin
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Av. Doutor Silas Munguba, 1700, CEP 60740-000, Campus do Itaperi, Fortaleza, Ceará, Brazil
| |
Collapse
|
37
|
Zhang X, Wang Y, Li X, Dai Y, Wang Q, Wang G, Liu D, Gu X, Yu D, Ma Y, Zhang C. Treatment Mechanism of Gardeniae Fructus and Its Carbonized Product Against Ethanol-Induced Gastric Lesions in Rats. Front Pharmacol 2019; 10:750. [PMID: 31333466 PMCID: PMC6616308 DOI: 10.3389/fphar.2019.00750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023] Open
Abstract
Gardeniae Fructus (GF) and carbonized GF (GFC) have been shown to exert a gastrointestinal protective effect and are frequently used in clinical practice for the treatment of hemorrhage and brown stool. In this study, we employed a combination of pharmacological methods and metabolomics in a rat model of ethanol-induced acute stomach ulcer to investigate the gastroprotective effect of GF and GFC water extracts and the potential mechanism involved in this process. The levels of nitric oxide (NO) and interleukin 6 (IL-6) in the plasma of rats were determined. The results showed that both GF and GFC reduced the ethanol-induced gastric lesions and expression of NO and IL-6 in these rats. Of note, 16 and 11 feature metabolites were filtered and identified in the GF and GFC groups, respectively. Both GF and GFC act by restoring the biosynthesis of valine, leucine, and isoleucine, and the metabolism of glycerophospholipids. Moreover, histological evaluation revealed that heat processing of GF to create GFC enhanced the gastric mucosa protective effect. Furthermore, heat processing converted the main pathway from alanine, aspartate, and glutamate metabolism, associated with GF, to histidine metabolism, associated with GFC. GF and GFC ameliorated gastric mucosa lesions in rats via reductions in NO production and inflammatory cytokine secretion, and the induction of prostaglandin E2.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yejia Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qinghao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guoyou Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Depeng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xuezhu Gu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dingrong Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinlian Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
38
|
Périco LL, Rodrigues VP, Ohara R, Nunes VVA, da Rocha LRM, Vilegas W, Dos Santos C, Hiruma-Lima CA. Can the gastric healing effect of Eugenia punicifolia be the same in male and female rats? JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:268-278. [PMID: 30763697 DOI: 10.1016/j.jep.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eugenia punicifolia (Kunth) DC. (Myrtaceae), an Amazonian medicinal plant known as "pedra-ume-caá," is popularly used as a natural remedy for inflammation, wounds, infections, diabetes, fever, and flu. Its anti-inflammatory, antinociceptive, and gastroprotective effects have already been characterized. We evaluated the gastric healing effect of the hydroalcoholic extract of the leaves of E. punicifolia (HEEP) in male and female Wistar rats against nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol. MATERIALS AND METHODS The healing effect of HEEP on the gastric mucosa of adult male and female Wistar rats was measured after the chronic application of aggressive factors such as NSAIDs or 80% ethanol. Male, and intact and ovariectomized (OVZ) female rats were treated with HEEP for two days (NSAIDs) or one, two, four, and six days (80% ethanol). The stomachs were analyzed macroscopically for ulcerative lesions (mm2), and the healing process was measured using biochemical analysis with anti-inflammatory and antioxidant parameters. RESULTS Macroscopic evaluation of the gastric mucosa showed that gastric lesions induced by NSAIDs were significantly healed (66%) and pro-inflammatory interleukin 5 cytokine level was decreased after two-day oral treatment with HEEP compared with those in the negative control group (p < 0.05). However, the gastric lesions induced by NSAIDs did not heal in HEEP-treated female rats (p > 0.05). In addition, four-day treatment with HEEP significantly healed the gastric lesions induced by ethanol in male and female rats (63% and 78%, respectively) compared to those of the negative control group (p < 0.05). However, the OVZ group required six days of HEEP treatment to heal gastric ulcers (67% compared to the control group). HEEP exerts the healing effect against ethanol by significantly reducing neutrophil infiltration into the gastric mucosa by decreasing myeloperoxidase activity in male and OVZ rats after four and six days of treatment, respectively (p < 0.05). Four-day treatment with HEEP also increased the level of a non-enzymatic antioxidant, reduced glutathione in intact females compared to that of the negative control group (p < 0.05). CONCLUSION These findings indicated that HEEP was effective in promoting the healing of gastric ulcers induced by NSAIDs or ethanol. The gastric healing effects of this extract could be affected by female sex hormone interference; in future, comprehensive studies should be performed by considering sex differences.
Collapse
Affiliation(s)
- Larissa Lucena Périco
- Department of Physiology, Biosciences Institute, UNESP-São Paulo State University, CEP 18618-689 Botucatu, São Paulo, Brazil
| | - Vinícius Peixoto Rodrigues
- Department of Physiology, Biosciences Institute, UNESP-São Paulo State University, CEP 18618-689 Botucatu, São Paulo, Brazil
| | - Rie Ohara
- Department of Physiology, Biosciences Institute, UNESP-São Paulo State University, CEP 18618-689 Botucatu, São Paulo, Brazil
| | - Vânia Vasti Alfieri Nunes
- Department of Physiology, Biosciences Institute, UNESP-São Paulo State University, CEP 18618-689 Botucatu, São Paulo, Brazil
| | - Lúcia Regina Machado da Rocha
- Department of Physiology, Biosciences Institute, UNESP-São Paulo State University, CEP 18618-689 Botucatu, São Paulo, Brazil
| | - Wagner Vilegas
- Biosciences Institute, UNESP-São Paulo State University, CEP 11330-900 São Vicente, São Paulo, Brazil
| | - Catarina Dos Santos
- Department of Biological Science, Faculty of Sciences and Languages, UNESP-São Paulo State University, CEP 19806-900 Assis, São Paulo, Brazil
| | - Clélia Akiko Hiruma-Lima
- Department of Physiology, Biosciences Institute, UNESP-São Paulo State University, CEP 18618-689 Botucatu, São Paulo, Brazil.
| |
Collapse
|
39
|
Byrsonima intermedia A. Juss partitions promote gastroprotection against peptic ulcers and improve healing through antioxidant and anti-inflammatory activities. Biomed Pharmacother 2019; 111:1112-1123. [DOI: 10.1016/j.biopha.2018.12.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022] Open
|
40
|
Vukojević J, Siroglavić M, Kašnik K, Kralj T, Stanćić D, Kokot A, Kolarić D, Drmić D, Sever AZ, Barišić I, Šuran J, Bojić D, Patrlj MH, Sjekavica I, Pavlov KH, Vidović T, Vlainić J, Stupnišek M, Seiwerth S, Sikirić P. Rat inferior caval vein (ICV) ligature and particular new insights with the stable gastric pentadecapeptide BPC 157. Vascul Pharmacol 2018; 106:54-66. [PMID: 29510201 DOI: 10.1016/j.vph.2018.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/10/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED Rat inferior caval vein (ICV) ligation (up to the right ovarian vein (ROV)) commonly represents a recapitulation of Virchow: with ligation leading to vessel injury, stasis, thrombosis and hemodynamic changes. We revealed that BPC 157's therapy collectively attenuated or counteracted all these events and the full syndrome. METHODS We applied BPC 157 (10 μg, 10 ng/kg) as an early regimen or as a delayed therapy. Assessment includes gross assessment by microcamera; microscopy, venography, bleeding, blood pressure, ECG, thermography, MDA and NO-level in plasma and ICV, and gene expression. RESULTS Direct vein injury, thrombosis, thrombocytopenia, prolonged bleeding were all counteracted. Also, rapid presentation of collaterals and redistribution of otherwise trapped blood volume (bypassing through the left ovarian vein (LOV) and other veins), with venous hypertension, arterial hypotension and tachycardia counteraction were shown. BPC 157-rats presented raised plasma NO-values, but normal MDA-values; in ICV tissue reverted low NO-values and counteracted increased MDA-levels. Altered expression of EGR, NOS, SRF, VEGFR and KRAS in ICV, ROV and LOV revealed increased or decreased levels, while some genes continuously remained unchanged. CONCLUSION As a new insight, BPC 157 application largely attenuated or even completely eliminated all consequences of ICV ligation in rats.
Collapse
Affiliation(s)
- Jakša Vukojević
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia.
| | - Marko Siroglavić
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Katarina Kašnik
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Tamara Kralj
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Duje Stanćić
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Antonio Kokot
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Darko Kolarić
- Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb, Croatia
| | - Domagoj Drmić
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Anita Zenko Sever
- Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Barišić
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Jelena Šuran
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Davor Bojić
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | | | - Ivica Sjekavica
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | | | - Tinka Vidović
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| | - Josipa Vlainić
- Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb, Croatia
| | | | - Sven Seiwerth
- Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Predrag Sikirić
- Departments of Pharmacology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
41
|
Yoo JH, Lee JS, Lee YS, Ku S, Lee HJ. Protective effect of bovine milk against HCl and ethanol–induced gastric ulcer in mice. J Dairy Sci 2018; 101:3758-3770. [DOI: 10.3168/jds.2017-13872] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/06/2018] [Indexed: 12/23/2022]
|
42
|
Yao L, Xue X, Yu P, Ni Y, Chen F. Evans Blue Dye: A Revisit of Its Applications in Biomedicine. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7628037. [PMID: 29849513 PMCID: PMC5937594 DOI: 10.1155/2018/7628037] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Evans blue (EB) dye has owned a long history as a biological dye and diagnostic agent since its first staining application by Herbert McLean Evans in 1914. Due to its high water solubility and slow excretion, as well as its tight binding to serum albumin, EB has been widely used in biomedicine, including its use in estimating blood volume and vascular permeability, detecting lymph nodes, and localizing the tumor lesions. Recently, a series of EB derivatives have been labeled with PET isotopes and can be used as theranostics with a broad potential due to their improved half-life in the blood and reduced release. Some of EB derivatives have even been used in translational applications in clinics. In addition, a novel necrosis-avid feature of EB has recently been reported in some preclinical animal studies. Given all these interesting and important advances in EB study, a comprehensive revisiting of EB has been made in its biomedical applications in the review.
Collapse
Affiliation(s)
- Linpeng Yao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Xing Xue
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Peipei Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
- Department of Radiology, Sanmen County People's Hospital, Sanmen, Zhejiang 317100, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, 3000 Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
43
|
Magierowska K, Brzozowski T, Magierowski M. Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacol Res 2018; 129:56-64. [PMID: 29360501 DOI: 10.1016/j.phrs.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Heme oxygenase (HO) catalyzes the degradation of toxic free heme to the equimolar amounts of biliverdin, Fe2+ and concurrently releases of carbon monoxide (CO). CO is nowadays increasingly recognized as an important signaling molecule throughout the body that is involved in many physiological processes and shows multidirectional biological activity. Recent evidence indicates that CO exhibits the anti-inflammatory, anti-proliferative, anti-apoptotic, anti-aggregatory and vasodilatory properties. The cellular mechanisms underlying the activity of CO involve stimulation of cGMP-dependent signaling pathway and large conductance calcium activated K+ channels, the activation of mitogen-activated protein kinases and the nuclear factor k-light chain-enhancer of activated B cells transcription factor pathway. Stimulation of endogenous CO production by HO inducers or the inhalation of CO or the delivery of this gaseous molecule by novel pharmaceutical agents have been found in experimental animal models to be promising in the future therapy of various diseases. CO appears to act as a significant component of the complex mechanism of gastrointestinal (GI) mucosal defense. This gaseous molecule plays an important role in diabetic gastroparesis, prevention of the upper GI mucosal damage, post-operative ileus and the healing of ulcerative colitis. This review focuses on the better understanding mechanisms through which CO contributes to the mechanism of protection, resistance to injury and ulcer healing. It is becoming apparent that the pleiotropic effect of this molecule may increase clinical applicability of CO donors and their implementation in many pharmacological research areas, pharmaceutical industry and health-care system.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
44
|
Xu J, Wang M, Zhao J, Wang YH, Tang Q, Khan IA. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Res Int 2018; 107:567-577. [PMID: 29580521 DOI: 10.1016/j.foodres.2018.01.063] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 12/11/2022]
Abstract
Yellow tea, also known as huángchá in Chinese, is a lightly fermented tea unique to China. As a rare and precious variety of tea, it has gained increasing popularity in recent years because of its pleasant mellow taste and known health benefits such as anti-oxidation, anti-inflammation and anti-cancer properties. Yellow tea is similar to green tea in many ways. The initial production process of both teas is the same, but the production of yellow tea requires additional steps. A unique procedure called "sealed yellowing" is always involved in yellow tea processing to increase the oxidation level and remove the characteristic grassy smell associated with green tea while still preserving its health benefits. Compared to other types of teas, yellow tea is much less well-known and studied. In this review, the history and classification of yellow tea are introduced. The processing procedures, including detailed information about "sealed yellowing", are presented. The bioactive chemical compounds common in various types of teas or unique to yellow tea are discussed. Finally, future needs in research and development of yellow tea are proposed.
Collapse
Affiliation(s)
- Jingyi Xu
- Tea Department, College of Horticulture Science, Sichuan Agricultural University, Chengdu, 611380, Sichuan, China; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Qian Tang
- Tea Department, College of Horticulture Science, Sichuan Agricultural University, Chengdu, 611380, Sichuan, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
45
|
Zapata-Morales JR, Alonso-Castro ÁJ, Granados-Soto V, Sánchez-Enriquez S, Isiordia-Espinoza MA. Assessment of the antinociceptive and ulcerogenic activity of the tapentadol-diclofenac combination in rodents. Drug Dev Res 2018; 79:38-44. [PMID: 29314177 DOI: 10.1002/ddr.21420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
Preclinical Research & Development The objective of the present study was to evaluate the tapentadol-diclofenac combination in three dose-ratios in the mouse acetic acid-induced visceral pain and their ulcerogenic activity on the stomachal mucous. Dose-response curves were generated for tapentadol, diclofenac, and their combination in the acetic acid-induced writhing test in mice. Moreover, the stomachs of animals were surgically removal and gastrointestinal ulcerogenic action of the combination was assessed. The isobolographic analysis, interaction index, and ANOVA were used to analyze the data. The isobolographic analysis and interaction index showed a similar antinociceptive activity for the three combinations of the analgesic mixture. Moreover, tapentadol and the proportions 1:1 or 3:1 of the analgesic combination caused a mild gastrointestinal damage. These data indicate that the systemic co-administration of tapentadol and diclofenac produced a synergistic interaction in the acetic acid-induced visceral pain test with an acceptable gastric damage profile in mice.
Collapse
Affiliation(s)
- Juan R Zapata-Morales
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
| | - Ángel J Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México
| | - Vinicio Granados-Soto
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados (Cinvestav), sede Sur, Ciudad de, México, México
| | - Sergio Sánchez-Enriquez
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Mario A Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| |
Collapse
|
46
|
Duzel A, Vlainic J, Antunovic M, Malekinusic D, Vrdoljak B, Samara M, Gojkovic S, Krezic I, Vidovic T, Bilic Z, Knezevic M, Sever M, Lojo N, Kokot A, Kolovrat M, Drmic D, Vukojevic J, Kralj T, Kasnik K, Siroglavic M, Seiwerth S, Sikiric P. Stable gastric pentadecapeptide BPC 157 in the treatment of colitis and ischemia and reperfusion in rats: New insights. World J Gastroenterol 2017; 23:8465-8488. [PMID: 29358856 PMCID: PMC5752708 DOI: 10.3748/wjg.v23.i48.8465] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/31/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To provide new insights in treatment of colitis and ischemia and reperfusion in rats using stable gastric pentadecapeptide BPC 157. METHODS Medication [BPC 157, L-NAME, L-arginine (alone/combined), saline] was bath at the blood deprived colon segment. During reperfusion, medication was BPC 157 or saline. We recorded (USB microscope camera) vessel presentation through next 15 min of ischemic colitis (IC-rats) or reperfusion (removed ligations) (IC + RL-rats); oxidative stress as MDA (increased (IC- and IC + RL-rats)) and NO levels (decreased (IC-rats); increased (IC + RL-rats)) in colon tissue. IC + OB-rats [IC-rats had additional colon obstruction (OB)] for 3 d (IC + OB-rats), then received BPC 157 bath. RESULTS Commonly, in colon segment (25 mm, 2 ligations on left colic artery and vein, 3 arcade vessels within ligated segment), in IC-, IC + RL-, IC + OB-rats, BPC 157 (10 μg/kg) bath (1 mL/rat) increased vessel presentation, inside/outside arcade interconnections quickly reappeared, mucosal folds were preserved and the pale areas were small and markedly reduced. BPC 157 counteracted worsening effects induced by L-NAME (5 mg) and L-arginine (100 mg). MDA- and NO-levels were normal in BPC 157 treated IC-rats and IC + RL-rats. In addition, on day 10, BPC 157-treated IC + OB-rats presented almost completely spared mucosa with very small pale areas and no gross mucosal defects; the treated colon segment was of normal diameter, and only small adhesions were present. CONCLUSION BPC 157 is a fundamental treatment that quickly restores blood supply to the ischemically injured area and rapidly activates collaterals. This effect involves the NO system.
Collapse
Affiliation(s)
- Antonija Duzel
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Josipa Vlainic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marko Antunovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Dominik Malekinusic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Borna Vrdoljak
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Mariam Samara
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Slaven Gojkovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Ivan Krezic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Tinka Vidovic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Zdenko Bilic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Mario Knezevic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marko Sever
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Nermin Lojo
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Antonio Kokot
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marijan Kolovrat
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Domagoj Drmic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Jaksa Vukojevic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Tamara Kralj
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Katarina Kasnik
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Marko Siroglavic
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Sven Seiwerth
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| | - Predrag Sikiric
- Departments of Pharmacology and Pathology, Medical Faculty University of Zagreb, Zagreb 10000, Croatia
- Medical Faculty J.J. Strossmayer University of Osijek, Osijek, Croatia; Rudjer Boskovic Institute, Department of Molecular Medicine, Zagreb 10000, Croatia
| |
Collapse
|
47
|
Ahluwalia A, Jones MK, Hoa N, Tarnawski AS. NGF protects endothelial cells from indomethacin-induced injury through activation of mitochondria and upregulation of IGF-1. Cell Signal 2017; 40:22-29. [PMID: 28843696 DOI: 10.1016/j.cellsig.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/02/2017] [Accepted: 08/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Endothelial cells (ECs) lining blood vessels are critical for delivery of oxygen and nutrients to all tissues and organs and play a crucial role in the regeneration of blood vessel following tissue injury. ECs are also major targets of injury by a variety of noxious factors [e.g., ethanol and nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, indomethacin, diclofenac], especially in gastric mucosa that has direct exposure to these agents. In this study, we investigated whether nerve growth factor (NGF) can protect gastric microvascular ECs (GECs) from injury by indomethacin (INDO) and the mechanisms involved. METHODS GECs were isolated from rat gastric mucosa and pre-treated with either vehicle or NGF (100ng/ml) for 30min to 4h followed by treatment with vehicle or 0.25mM INDO for 4h. STUDIES 1) cell viability using Calcein AM live cell tracking dye, 2) mitochondrial structure and function using MitoTracker, molecular probe that stains mitochondria in live cells in a manner dependent on mitochondrial membrane potential (MMP), 3) in vitro angiogenesis - endothelial tube formation on Matrigel, 4) expression and subcellular localization of NGF receptor, TrkA, and 5) expression of IGF-1 protein. RESULTS Treatment with INDO reduced GEC viability and in vitro angiogenesis and induced mitochondrial injury and MMP depolarization. NGF pre-treatment protected GECs from INDO-induced injury preventing both INDO-induced MMP depolarization and reduced in vitro angiogenesis. The NGF high affinity receptor, TrkA, was localized in GECs to both cell membrane and mitochondria. NGF treatment of GECs also resulted in increased IGF-1 protein expression. CONCLUSIONS 1) NGF protects GECs against IND-induced injury. 2) Mitochondria are major targets of both INDO-induced injury and NGF afforded protection of GECs. 3) TrkA expression in the mitochondria of GECs indicates that the protection afforded by NGF is partly mediated by its direct action on mitochondria. 4) NGF prevents MMP depolarization and increases expression of IGF-1 protein in GECs. These studies indicate that NGF may play a protective role against injury to GECs; and, that maintenance of mitochondrial structure and function is one of the mechanisms.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA
| | - Michael K Jones
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA; Department of Medicine, University of California, Irvine, CA, USA
| | - Neil Hoa
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA
| | - Andrzej S Tarnawski
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA; Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
48
|
Kan J, Hood M, Burns C, Scholten J, Chuang J, Tian F, Pan X, Du J, Gui M. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms. Nutrients 2017; 9:E978. [PMID: 28878183 PMCID: PMC5622738 DOI: 10.3390/nu9090978] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Gastritis or peptic ulcer is believed to affect about half of people worldwide. Traditional medications can lead to adverse effects, therefore, alternative nutritional strategies are needed to prevent the development of gastric mucosal damage. A novel combination of two food-grade ingredients, wheat peptides and fucoidan (WPF), was prepared to treat male Sprague Dawley rats for 30 days before gastric mucosal damage was induced by oral administration of ethanol. The serum levels of biomarkers were determined by enzyme-linked immunosorbent assay. Biomarkers in stomach tissue were analyzed using immunohistochemistry. In addition, human gastric epithelial cell line (GES-1) was used to investigate protein expression by Western blot. WPF could attenuate ethanol-induced gastric mucosal damage in an inverse dose-dependent manner, with both ulcer index and pathological index improved. WPF increased superoxide dismutase level and decreased malondialdehyde level. WPF also decreased the levels of interleukin-8, platelet-activating factor, and Caspase 3, while increasing the levels of prostaglandin E-2, epidermal growth factor (EGF), and EGF receptor (EGFR). Furthermore, phosphorylation of EGFR and extracellular signal-regulated kinases was induced by WPF in GES-1 cells. In conclusion, the novel combination of wheat peptides and fucoidan attenuated ethanol-induced gastric mucosal damage in rats through anti-oxidant, anti-inflammatory, and pro-survival mechanisms.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| | - Molly Hood
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA.
| | - Charlie Burns
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA.
| | - Jeff Scholten
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA.
| | - Jennifer Chuang
- Nutrilite Health Institute, 5600 Beach Boulevard, Buena Park, CA 90621, USA.
| | - Feng Tian
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| | - Xingchang Pan
- China National Research Institute of Food and Fermentation Industries, 24 Jiuxianqiao Middle Road, Beijing 100015, China.
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| | - Min Gui
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
49
|
Hamad SR, Hamad Mohamed HR. Amelioration of ethanol induced apoptotic DNA damage and ulcerative injuries in the mice gastric tissues by starch oral administration. Toxicol Mech Methods 2017; 28:130-139. [PMID: 28849987 DOI: 10.1080/15376516.2017.1373879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nowadays, gastric ulcers have become very common gastrointestinal disorders and numerous natural plant extracts exert promising anti-ulcerative effects. Therefore, this study was designed to evaluate the possible protective effect of dietary starch against ethanol induced gastric ulcers in mice. Post-administration of dietary starch for three consecutive days caused remarkable ameliorations in hemorrhagic lesions in gastric mucus and significant suppression in % incidence of ulceration, ulcer index and ulcer score induced by ethanol single administration. Indeed, deep ulceration, necrosis, disruption and degeneration in large areas of mucosa layer together with dense inflammatory cells infiltration and edema in sub-mucosal layer induced by ethanol administration were attenuated by starch post-administration and normalized the tissue architecture of the stomach. This potential protective effect could be attributed to the potent anti-oxidative capacity of starch that causes scavenger of the reactive oxygen species and thereby decreasing single and double DNA stranded break inductions and apoptotic DNA damage revealed by returning the p53 and caspase-3 expression levels to the normal level compared to the ethanol treated group. In conclusion, dietary starch has a potent therapeutic effect against ethanol induced gastric ulcer in mice via its free radical scavengers ability. Thus, we recommended further studies on its possible use as antiulcer drugs.
Collapse
Affiliation(s)
- Sherin Ramadan Hamad
- a Department of Histopathology , National Organization for Drug Control and Research (NODCAR) , Cairo , Egypt
| | | |
Collapse
|
50
|
Nascimento AM, Maria-Ferreira D, de Souza EFJ, de Souza LM, Sassaki GL, Iacomini M, de P. Werner MF, Cipriani TR. Gastroprotective effect and chemical characterization of a polysaccharide fraction from leaves of Croton cajucara. Int J Biol Macromol 2017; 95:153-159. [PMID: 27864055 DOI: 10.1016/j.ijbiomac.2016.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022]
|