1
|
Desprez C, Leroi AM, Gourcerol G. Gastric and sacral electrical stimulation for motility disorders-A clinical perspective. Neurogastroenterol Motil 2024:e14884. [PMID: 39099155 DOI: 10.1111/nmo.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Electrical stimulation of the gut has been investigated in recent decades with a view to treating various gastro-intestinal motility disorders including, among others, gastric electrical stimulation to relieve nausea and vomiting associated with gastroparesis and sacral neuromodulation to treat fecal incontinence and/or constipation. Although their symptomatic efficacy has been ascertained by randomized controlled trials, their mechanisms of action are not fully understood. PURPOSE This review summarizes the past year's literature on the mechanisms of action of gut electrical stimulation therapies, including their impact on the gut-brain axis.
Collapse
Affiliation(s)
- Charlotte Desprez
- Digestive Physiology Department, Rouen University Hospital, Rouen, France
| | - Anne-Marie Leroi
- Digestive Physiology Department, Rouen University Hospital, Rouen, France
| | | |
Collapse
|
2
|
Nagahawatte ND, Avci R, Paskaranandavadivel N, Cheng LK. High-energy pacing inhibits slow-wave dysrhythmias in the small intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G676-G686. [PMID: 38591131 DOI: 10.1152/ajpgi.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The motility of the gastrointestinal tract is coordinated in part by rhythmic slow waves, and disrupted slow-wave patterns are linked to functional motility disorders. At present, there are no treatment strategies that primarily target slow-wave activity. This study assessed the use of pacing to suppress glucagon-induced slow-wave dysrhythmias in the small intestine. Slow waves in the jejunum were mapped in vivo using a high-resolution surface-contact electrode array in pigs (n = 7). Glucagon was intravenously administered to induce hyperglycemia. Slow-wave propagation patterns were categorized into antegrade, retrograde, collision, pacemaker, and uncoupled activity. Slow-wave characteristics such as period, amplitude, and speed were also quantified. Postglucagon infusion, pacing was applied at 4 mA and 8 mA and the resulting slow waves were quantified spatiotemporally. Antegrade propagation was dominant throughout all stages with a prevalence of 55 ± 38% at baseline. However, glucagon infusion resulted in a substantial and significant increase in uncoupled slow waves from 10 ± 8% to 30 ± 12% (P = 0.004) without significantly altering the prevalence of other slow-wave patterns. Slow-wave frequency, amplitude, and speed remained unchanged. Pacing, particularly at 8 mA, significantly suppressed dysrhythmic slow-wave patterns and achieved more effective spatial entrainment (85%) compared with 4 mA (46%, P = 0.039). This study defined the effect of glucagon on jejunal slow waves and identified uncoupling as a key dysrhythmia signature. Pacing effectively entrained rhythmic activity and suppressed dysrhythmias, highlighting the potential of pacing for gastrointestinal disorders associated with slow-wave abnormalities.NEW & NOTEWORTHY Glucagon was infused in pigs to induce hyperglycemia and the resulting slow-wave response in the intact jejunum was defined in high resolution for the first time. Subsequently, with pacing, the glucagon-induced dysrhythmias were suppressed and spatially entrained for the first time with a success rate of 85%. The ability to suppress slow-wave dysrhythmias through pacing is promising in treating motility disorders that are associated with intestinal dysrhythmias.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States
- Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
3
|
Li M, Gao N, Wang S, Guo Y, Liu Z. A global bibliometric and visualized analysis of the status and trends of gastroparesis research. Eur J Med Res 2023; 28:543. [PMID: 38017518 PMCID: PMC10683151 DOI: 10.1186/s40001-023-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Gastroparesis has a substantial impact on the quality of life but has limited treatment options, which makes it a public health concern. No bibliometric studies on gastroparesis have been published thus far. Thus, this article aims to summarize and analyze research hotspots to provide a reference for clinical researchers. MATERIALS AND METHODS Gastroparesis-related research articles were searched in the Web of Science Core Collection (WOSCC), and relevant information was extracted after screening. A total of 1033 documents were analyzed with the bibliometric method using Microsoft Excel, Citespace, and VOSviewer. RESULTS Overall, our search retrieved 1033 papers contributed by 966 research institutions from 53 countries. Since 1980, publications in this field have increased rapidly. United States (n = 645) and Temple University (n = 122) were the most productive country and institution, respectively. Parkman, with 96 publications, was the most prominent author. CONCLUSIONS Research hotspots in gastroparesis can be summarized into four domains: innovation in diagnostic modalities, change of oral therapeutic agents, choice of surgical interventions, and pathological mechanisms. Future research on gastroparesis should focus on the quality of life of patients, diagnostic techniques, pyloromyotomy, and transpyloric stent placement.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, 100053, China
| | - Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, 100053, China
| | - Shaoli Wang
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, 100053, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, 100053, China.
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St., Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Alighaleh S, Cheng LK, Angeli-Gordon TR, O'Grady G, Paskaranandavadivel N. Optimization of Gastric Pacing Parameters Using High-Resolution Mapping. IEEE Trans Biomed Eng 2023; 70:2964-2971. [PMID: 37130253 DOI: 10.1109/tbme.2023.3272521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Abnormal slow-wave activity has been associated with functional motility disorders. Gastric pacing has been investigated to correct slow-wave abnormalities, but clinical therapies are yet to be established. This study aimed to define optimal parameters to advance the application of gastric pacing. METHODS High-resolution gastric mapping was utilized to evaluate four pacing parameters in in-vivo pig studies: (i) orientation of the pacing electrodes (longitudinal vs circumferential), (ii) pacing energy (900 vs 10,000 ms mA2), (iii) the pacing location (corpus vs antrum), and (iv) pacing period (between 12 and 36 s). RESULTS The probability of slow-wave initiation and entrainment with the pacing electrodes oriented longitudinally was significantly higher than with electrodes orientated circumferentially (86 vs 10%). High-energy pacing accelerated entrainment over the entire mapped field compared to low-energy pacing (3.1±1.5 vs 7.3±2.4 impulses, p < 0.001). Regardless of the location of the pacing site, the new site of slow-wave initiation was always located 4-12 mm away from the pacing site, between the greater curvature and negative pacing electrode. A pacing period between 14-30 s resulted in stable slow-wave initiation and entrainment. CONCLUSION These data will now inform effective application of gastric pacing in future studies, including human translation.
Collapse
|
5
|
Aghababaie Z, Wang THH, Nisbet LA, Matthee A, Dowrick J, Sands GB, Paskaranandavadivel N, Cheng LK, O'Grady G, Angeli-Gordon TR. Anaesthesia by intravenous propofol reduces the incidence of intra-operative gastric electrical slow-wave dysrhythmias compared to isoflurane. Sci Rep 2023; 13:11824. [PMID: 37479717 PMCID: PMC10362009 DOI: 10.1038/s41598-023-38612-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Gastric motility is coordinated by bioelectrical slow-wave activity, and abnormal electrical dysrhythmias have been associated with nausea and vomiting. Studies have often been conducted under general anaesthesia, while the impact of general anaesthesia on slow-wave activity has not been studied. Clinical studies have shown that propofol anaesthesia reduces postoperative nausea and vomiting (PONV) compared with isoflurane, while the underlying mechanisms remain unclear. In this study, we investigated the effects of two anaesthetic drugs, intravenous (IV) propofol and volatile isoflurane, on slow-wave activity. In vivo experiments were performed in female weaner pigs (n = 24). Zolazepam and tiletamine were used to induce general anaesthesia, which was maintained using either IV propofol (n = 12) or isoflurane (n = 12). High-resolution electrical mapping of slow-wave activity was performed. Slow-wave dysrhythmias occurred less often in the propofol group, both in the duration of the recorded period that was dysrhythmic (propofol 14 ± 26%, isoflurane 43 ± 39%, P = 0.043 (Mann-Whitney U test)), and in a case-by-case basis (propofol 3/12, isoflurane 8/12, P = 0.015 (Chi-squared test)). Slow-wave amplitude was similar, while velocity and frequency were higher in the propofol group than the isoflurane group (P < 0.001 (Student's t-test)). This study presents a potential physiological biomarker linked to recent observations of reduced PONV with IV propofol. The results suggest that propofol is a more suitable anaesthetic for studying slow-wave patterns in vivo.
Collapse
Affiliation(s)
- Zahra Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Tim Hsu-Han Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Linley A Nisbet
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ashton Matthee
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jarrah Dowrick
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand.
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Nagahawatte ND, Cheng LK, Avci R, Angeli-Gordon TR, Paskaranandavadivel N. Systematic review of small intestine pacing parameters for modulation of gut function. Neurogastroenterol Motil 2023; 35:e14473. [PMID: 36194179 PMCID: PMC10078404 DOI: 10.1111/nmo.14473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The efficacy of conventional treatments for severe and chronic functional motility disorders remains limited. High-energy pacing is a promising alternative therapy for patients that fail conventional treatment. Pacing primarily regulates gut motility by modulating rhythmic bio-electrical events called slow waves. While the efficacy of this technique has been widely investigated on the stomach, its application in the small intestine is less developed. This systematic review was undertaken to summarize the status of small intestinal pacing and evaluate its efficacy in modulating bowel function through preclinical research studies. METHODS The literature was searched using Scopus, PubMed, Ovid, Cochrane, CINAHL, and Google Scholar. Studies investigating electrophysiological, motility, and/or nutrient absorption responses to pacing were included. A critical review of all included studies was conducted comparing study outcomes against experimental protocols. RESULTS The inclusion criteria were met by 34 publications. A range of pacing parameters including amplitude, pulse width, pacing direction, and its application to broad regional small intestinal segments were identified and assessed. Out of the 34 studies surveyed, 20/23 studies successfully achieved slow-wave entrainment, 9/11 studies enhanced nutrient absorption and 21/27 studies modulated motility with pacing. CONCLUSION Small intestine pacing shows therapeutic potential in treating disorders such as short bowel syndrome and obesity. This systematic review proposes standardized protocols to maximize research outcomes and thereby translate to human studies for clinical validation. The use of novel techniques such as high-resolution electrical, manometric, and optical mapping in future studies will enable a mechanistic understanding of pacing.
Collapse
Affiliation(s)
- Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee, USA.,Riddet Institute Centre of Research Excellence, Palmerston North, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
7
|
Soliman H, Gourcerol G. Gastric Electrical Stimulation: Role and Clinical Impact on Chronic Nausea and Vomiting. Front Neurosci 2022; 16:909149. [PMID: 35620661 PMCID: PMC9127333 DOI: 10.3389/fnins.2022.909149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric electrical stimulation (GES) is currently used as an alternative treatment for medically refractory gastroparesis. GES has been initially developed to accelerate gastric motility, in order to relieve the symptoms of the patients. Subsequent studies, unfortunately, failed to demonstrate the acceleration of gastric emptying using high-frequency stimulation - low energy stimulation although the technique has shown a clinical impact with a reduction of nausea and vomiting for patients with gastroparesis. The present review details the clinical efficacy of GES in gastroparesis as well as its putative mechanisms of action.
Collapse
Affiliation(s)
- Heithem Soliman
- INSERM UMR 1073, CIC-CRB 1404, Centre Hospitalier Universitaire de Rouen, Rouen, France
- Département d’Hépato-Gastro-Entérologie, Hôpital Louis Mourier, Université de Paris, Colombes, France
| | - Guillaume Gourcerol
- INSERM UMR 1073, CIC-CRB 1404, Centre Hospitalier Universitaire de Rouen, Rouen, France
| |
Collapse
|
8
|
Aghababaie Z, Cheng LK, Paskaranandavadivel N, Avci R, Chan CHA, Matthee A, Amirapu S, Asirvatham SJ, Farrugia G, Beyder A, O’Grady G, Angeli-Gordon TR. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model. Am J Physiol Gastrointest Liver Physiol 2022; 322:G431-G445. [PMID: 35137624 PMCID: PMC8917929 DOI: 10.1152/ajpgi.00332.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric motility is coordinated by underlying bioelectrical slow waves. Gastric dysrhythmias occur in gastrointestinal (GI) motility disorders, but there are no validated methods for eliminating dysrhythmias. We hypothesized that targeted ablation could eliminate pacemaker sites in the stomach, including dysrhythmic ectopic pacemaker sites. In vivo high-resolution serosal electrical mapping (16 × 16 electrodes; 6 × 6 cm) was applied to localize normal and ectopic gastric pacemaker sites in 13 anesthetized pigs. Radiofrequency ablation was performed in a square formation surrounding the pacemaker site. Postablation high-resolution mapping revealed that ablation successfully induced localized conduction blocks after 18 min (SD 5). Normal gastric pacemaker sites were eliminated by ablation (n = 6), resulting in the emergence of a new pacemaker site immediately distal to the original site in all cases. Ectopic pacemaker sites were similarly eliminated by ablation in all cases (n = 7), and the surrounding mapped area was then entrained by normal antegrade activity in five of those cases. Histological analysis showed that ablation lesions extended through the entire depth of the muscle layer. Immunohistochemical staining confirmed localized interruption of the interstitial cell of Cajal (ICC) network through the ablation lesions. This study demonstrates that targeted gastric ablation can effectively modulate gastric electrical activation, including eliminating ectopic sites of slow wave activation underlying gastric dysrhythmias, without disrupting surrounding conduction capability or tissue structure. Gastric ablation presents a powerful new research tool for modulating gastric electrical activation and may likely hold therapeutic potential for disorders of gastric function.NEW & NOTEWORTHY This study presents gastric ablation as a novel tool for modulating gastric bioelectrical activation, including eliminating the normal gastric pacemaker site as well as abnormal ectopic pacemaker sites underlying gastric dysrhythmias. Targeted application of radiofrequency ablation was able to eliminate these pacemaker sites without disrupting surrounding conduction capability or tissue structure. Gastric ablation presents a powerful new research tool for modulating gastric electrical activation and may likely hold therapeutic potential for disorders of gastric function.
Collapse
Affiliation(s)
- Zahra Aghababaie
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,2Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | | | - Recep Avci
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Ashton Matthee
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- 3Histology Laboratory, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Gianrico Farrugia
- 5Division of Gastroenterology and Hepatology and Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- 5Division of Gastroenterology and Hepatology and Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota
| | - Gregory O’Grady
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,6Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Timothy R. Angeli-Gordon
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,6Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Meling S, Bertoli D, Sangnes DA, Brock C, Drewes A, Ejskjaer N, Dimcevski G, Søfteland E. Diabetic Gastroenteropathy: Soothe the Symptoms or Unravel a Cure? Curr Diabetes Rev 2022; 18:e220321192412. [PMID: 34225633 DOI: 10.2174/1573399817666210322154618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Autonomic neuropathy in patients with diabetes mellitus, and especially complications related to gastrointestinal neuropathy, are often overlooked in the clinic. Diabetic gastroenteropathy affects every segment of the gastrointestinal tract and generates symptoms that may include nausea, early satiety, vomiting, abdominal pain, constipation, and diarrhea. Severe cases can be complicated by weight loss, dehydration, and electrolyte disturbances. The pathophysiology is complex, the diagnostics and treatment options are multidisciplinary, and there is generally a lack of evidence for the treatment options. The aims for this review are first to summarize the pathophysiology and describe possible and expected symptoms and complications.Further, we will try to supply the clinician with a straightforward tool for diagnostics, and then, we shall summarize established treatment options, including diet recommendations, pharmacological and non-pharmacological options. Finally, we will explore the multiple possibilities of novel treatment, looking at medications related to the pathophysiology of neuropathy, other manifestations of autonomic neuropathies, and symptomatic treatment for other gastrointestinal disorders, also including new knowledge of endosurgical and neuromodulatory treatment. The overall goal is to increase awareness and knowledge on this frequent diabetic complication and to provide better tools for diagnosis and treatment. Ultimately, we hope to encourage further research in this field, as there are clear shortcomings in terms of biomarkers, pathophysiology, as well as treatment possibilities. In conclusion, diagnosis and management of diabetic gastroenteropathy are challenging and often require multidisciplinary teams and multimodal therapies. Treatment options are sparse, but new pharmacological, endoscopic, and neuromodulatory techniques have shown promising results in initial studies.
Collapse
Affiliation(s)
- Sondre Meling
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Davide Bertoli
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Dag A Sangnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christina Brock
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Jutland, Aalborg, Denmark
| | - Asbjørn Drewes
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Jutland, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Jutland, Aalborg, Denmark
- Department of Clinical Medicine and Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Georg Dimcevski
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eirik Søfteland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
10
|
Chen Y, Zhang S, Li Y, Yan H, Ba Y, Wang X, Shi N, Liu C. Gastric Electrical Stimulation Increases the Proliferation of Interstitial Cells of Cajal and Alters the Enteric Nervous System in Diabetic Rats. Neuromodulation 2022; 25:1106-1114. [DOI: 10.1016/j.neurom.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
|
11
|
Ramai D, DeLuca M, Enofe I, Mozell D, Facciorusso A. Device failures associated with gastric pacemakers: A MAUDE database analysis. Dig Liver Dis 2021; 53:1529-1530. [PMID: 34134943 DOI: 10.1016/j.dld.2021.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Daryl Ramai
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, United States.
| | - Matthew DeLuca
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, United States
| | - Ikponmwosa Enofe
- Division of Gastroenterology, Loyola University Medical Center, Chicago, United States
| | - Daniel Mozell
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, New York, United States
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
12
|
Prospero AG, Pinto LA, Matos RVR, Soares GA, Oliveira RB, Mascarenhas S, Miranda JRDA. New device for active gastric mechanical stimulation. Neurogastroenterol Motil 2021; 33:e14169. [PMID: 33969918 DOI: 10.1111/nmo.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastroparesis is a chronic stomach disorder and effective treatment is the aim of different strategies. Alternative therapies consist of an electrical stimulation of the stomach to evoke a response in the gastric activity. We present the development and in vivo application of an electromagnet system to induce a mechanical stimulus in the stomach aiming for gastric contractile responses. METHODS The electromagnet system consisted of an implantable magnet and an external drive coil. We implanted the magnet at the greater curvature of the gastric body in rats. We applied an alternating current to the drive coils, inducing mechanical stimulation of the gastric wall. We measured the gastric contraction activity and gastric electrical activity in response to the stimulus using AC biosusceptometry and electrogastrography. Moreover, we used the phenol red to evaluate the stimulus effects on gastrointestinal transit. KEY RESULTS The stimulus increased the spectral intensity and signal-to-noise ratio significantly of gastric contraction activity and gastric electrical activity. Furthermore, we found a lower phenol red retention in the stomach in rats without stimulus. No significant differences were found in frequency and root mean square amplitude. CONCLUSIONS & INFERENCES We developed a new simple electromagnet system that evoked a contraction and gastric electrical response using a mechanical stimulus and decreased gastric emptying time. The system is an accessible tool and may contribute to gastroparesis studies in animals.
Collapse
Affiliation(s)
- Andre Gonçalves Prospero
- Departamento de Biofísica e Farmacologia, Laboratório de Biomagnetismo, UNESP/São Paulo State University, Botucatu, Brazil
| | - Leonardo Antonio Pinto
- Departamento de Biofísica e Farmacologia, Laboratório de Biomagnetismo, UNESP/São Paulo State University, Botucatu, Brazil
| | - Ronaldo Vitor Reis Matos
- Departamento de Biofísica e Farmacologia, Laboratório de Biomagnetismo, UNESP/São Paulo State University, Botucatu, Brazil
| | - Guilherme Augusto Soares
- Departamento de Biofísica e Farmacologia, Laboratório de Biomagnetismo, UNESP/São Paulo State University, Botucatu, Brazil
| | - Ricardo Brandt Oliveira
- Faculdade de Medicina de Ribeirão Preto, USP/University of São Paulo, Ribeirão Preto, Brazil
| | | | - José Ricardo de Arruda Miranda
- Departamento de Biofísica e Farmacologia, Laboratório de Biomagnetismo, UNESP/São Paulo State University, Botucatu, Brazil
| |
Collapse
|
13
|
Cao J, Wang X, Powley TL, Liu Z. Gastric neurons in the nucleus tractus solitarius are selective to the orientation of gastric electrical stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac2ec6. [PMID: 34634781 PMCID: PMC8625070 DOI: 10.1088/1741-2552/ac2ec6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Objective.Gastric electrical stimulation (GES) is a bioelectric intervention for gastroparesis, obesity, and other functional gastrointestinal disorders. In a potential mechanism of action, GES activates the nerve endings of vagal afferent neurons and induces the vago-vagal reflex through the nucleus tractus solitarius (NTS) in the brainstem. However, it is unclear where and how to stimulate in order to optimize the vagal afferent responses.Approach.To address this question with electrophysiology in rats, we applied mild electrical currents to two serosal targets on the distal forestomach with dense distributions of vagal intramuscular arrays (IMAs) that innervated the circular and longitudinal smooth muscle layers. During stimulation, we recorded single and multi-unit responses from gastric neurons in NTS and evaluated how the recorded responses depended on the stimulus orientation and amplitude.Main results.We found that NTS responses were highly selective to the stimulus orientation for a range of stimulus amplitudes. The strongest responses were observed when the applied current flowed in the same direction as the IMAs in parallel with the underlying smooth muscle fibers. Our results suggest that gastric neurons in NTS may encode the orientation-specific activity of gastric smooth muscles relayed by vagal afferent neurons.Significance.This finding suggests that the orientation of GES is critical to effective engagement of vagal afferents and should be considered in light of the structural phenotypes of vagal terminals in the stomach.
Collapse
Affiliation(s)
- Jiayue Cao
- Department of Biomedical Engineering, University of Michigan Ann Arbor
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan Ann Arbor
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University West Lafayette
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan Ann Arbor
- Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor
| |
Collapse
|
14
|
Managing motility disorders of the gastrointestinal segment and obesity through electrical stimulation. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00590-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Cheng LK, Nagahawatte ND, Avci R, Du P, Liu Z, Paskaranandavadivel N. Strategies to Refine Gastric Stimulation and Pacing Protocols: Experimental and Modeling Approaches. Front Neurosci 2021; 15:645472. [PMID: 33967679 PMCID: PMC8100207 DOI: 10.3389/fnins.2021.645472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric pacing and stimulation strategies were first proposed in the 1960s to treat motility disorders. However, there has been relatively limited clinical translation of these techniques. Experimental investigations have been critical in advancing our understanding of the control mechanisms that innervate gut function. In this review, we will discuss the use of pacing to modulate the rhythmic slow wave conduction patterns generated by interstitial cells of Cajal in the gastric musculature. In addition, the use of gastric high-frequency stimulation methods that target nerves in the stomach to either inhibit or enhance stomach function will be discussed. Pacing and stimulation protocols to modulate gastric activity, effective parameters and limitations in the existing studies are summarized. Mathematical models are useful to understand complex and dynamic systems. A review of existing mathematical models and techniques that aim to help refine pacing and stimulation protocols are provided. Finally, some future directions and challenges that should be investigated are discussed.
Collapse
Affiliation(s)
- Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of General Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.,Riddet Institute, Palmerston North, New Zealand
| | - Nipuni D Nagahawatte
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
16
|
Abstract
GOAL A comprehensive review of treatments for nausea and vomiting (N/V). BACKGROUND N/V are common symptoms encountered in medicine. While most cases of acute N/V related to a specific cause can be straightforward to manage, other cases of acute N/V such as chemotherapy-induced N/V and especially chronic unexplained N/V can be difficult to control, leading to a significant decline in the patient's quality of life and increased cost of medical care from repeated hospitalizations. STUDY Traditional management has relied on pharmacotherapy which may be inadequate in a certain proportion of these patients. Many of the medications used in the management of N/V have significant side effect profiles making the need for new and improved interventions of great importance. RESULTS This review covers a broad review of the pathophysiology of N/V, pharmacotherapy, including safety concerns and controversies with established pharmaceuticals, newer immunotherapies, bioelectrical neuromodulation (including gastric electrical stimulation), behavioral and surgical therapies, and complementary medicine. CONCLUSION On the basis of emerging understandings of the pathophysiology of N/V, improved therapies are becoming available.
Collapse
Affiliation(s)
| | - Robert T Luckett
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville
| | - Chris Moser
- Department of Medicine, University of Louisville
| | - Dipendra Parajuli
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville
- Robley Rex Va Medical Center, Louisville, KY
| | - Thomas L Abell
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville
| |
Collapse
|
17
|
Abdelfatah MM, Noll A, Kapil N, Shah R, Li L, Nustas R, Li B, Luo H, Chen H, Xia L, Mekaroonkamol P, Shahnavaz N, Keilin S, Willingham F, Christie J, Cai Q. Long-term Outcome of Gastric Per-Oral Endoscopic Pyloromyotomy in Treatment of Gastroparesis. Clin Gastroenterol Hepatol 2021; 19:816-824. [PMID: 32450364 DOI: 10.1016/j.cgh.2020.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Gastric per oral endoscopic pyloromyotomy (GPOEM) is a promising treatment for gastroparesis. There are few data on the long-term outcomes of this procedure. We investigated long-term outcomes of GPOEM treatment of patients with refractory gastroparesis. METHODS We conducted a retrospective case-series study of all patients who underwent GPOEM for refractory gastroparesis at a single center (n = 97), from June 2015 through March 2019; 90 patients had more than 3 months follow-up data and were included in our final analysis. We collected data on gastroparesis cardinal symptom index (GCSI) scores (measurements of postprandial fullness or early satiety, nausea and vomiting, and bloating) and SF-36 questionnaire scores (measures quality of life). The primary outcome was clinical response to GPOEM, defined as a decrease of at least 1 point in the average total GCSI score with more than a 25% decrease in at least 2 subscales of cardinal symptoms. Recurrence was defined as a return to baseline GCSI or GCSI scores of 3 or more for at least 2 months after an initial complete response. The secondary outcome was the factors that predict GPOEM failure (no response or gastroparesis recurrence within 6 months). RESULTS At initial follow-up (3 to 6 months after GPOEM), 73 patients (81.1%) had a clinical response and significant increases in SF-36 questionnaire scores (indicating increased quality of life) whereas 17 patients (18.9%) had no response. Six months after GPOEM, 7.1% had recurrence. At 12 months, 8.3% of patients remaining in the study had recurrence. At 24 months, 4.8% of patients remaining in the study had a recurrence. At 36 months, 14.3% of patients remaining in the study had recurrence. For patients who experienced an initial clinical response, the rate of loss of that response per year was 12.9%. In the univariate and multivariate regression analysis, a longer duration of gastroparesis reduced the odds of response to GPOEM (odds ratio [OR], 0.092; 95% CI, 1.04-1.3; P = .001). On multivariate logistic regression, patients with high BMIs had increased odds of GPOEM failure (OR, 1.097; 95% CI, 1.022-1.176; P = .010) and patients receiving psychiatric medications had a higher risk of GPOEM failure (OR, 1.33; 95% CI, 0.110-1.008; P = .052). CONCLUSIONS In retrospective analysis of 90 patients who underwent GPOEM for refractory gastroparesis, 81.1% had a clinical response at initial follow-up of their procedure. 1 year after GPOEM, 69.1% of all patients had a clinical response and 85.2% of initial responders maintained a clinical response. Patients maintained a clinical response and improved quality of life for as long as 3 years after the procedure. High BMI and long duration gastroparesis were associated with failure of GPOEM.
Collapse
Affiliation(s)
- Mohamed M Abdelfatah
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Alan Noll
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Neil Kapil
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Rushikesh Shah
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Lianyong Li
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Rosemary Nustas
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Baiwen Li
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Hui Luo
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Huimin Chen
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Liang Xia
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Parit Mekaroonkamol
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Nikrad Shahnavaz
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Steven Keilin
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Field Willingham
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer Christie
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Qiang Cai
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
18
|
Aghababaie Z, Paskaranandavadivel N, Amirapu S, Chan CHA, Du P, Asirvatham SJ, Farrugia G, Beyder A, O’Grady G, Cheng LK, Angeli-Gordon TR. Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach. Am J Physiol Gastrointest Liver Physiol 2021; 320:G573-G585. [PMID: 33470186 PMCID: PMC8238161 DOI: 10.1152/ajpgi.00448.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric motility is coordinated by underlying bioelectrical "slow wave" activity. Slow wave dysrhythmias are associated with motility disorders, including gastroparesis, offering an underexplored potential therapeutic target. Although ablation is widely used to treat cardiac arrhythmias, this approach has not yet been trialed for gastric electrical abnormalities. We hypothesized that ablation can create localized conduction blocks and modulate slow wave activation. Radiofrequency ablation was performed on the porcine serosa in vivo, encompassing a range of parameters (55-85°C, adjacent points forming a line, 5-10 s/point). High-resolution electrical mapping (16 × 16 electrodes; 6 × 6 cm) was applied to define baseline and acute postablation activation patterns. Tissue damage was evaluated by hematoxylin and eosin and c-Kit stains. Results demonstrated that RF ablation successfully induced complete conduction block and a full thickness lesion in the muscle layer at energy doses of 65-75°C for 5-10 s/point. Gastric ablation may hold therapeutic potential for gastric electrical abnormalities in the future.NEW & NOTEWORTHY This study presents gastric ablation as a new method for modulating slow wave activation and propagation in vivo, by creating localized electrical conduction blocks in the stomach, validated by high-resolution electrical mapping and histological tissue analysis. The results define the effective energy dose range for creating conduction blocks, while maintaining the mucosal and submucosal integrity, and demonstrate the electrophysiological effects of ablation. In future, gastric ablation can now be translated toward disrupting dysrhythmic slow wave activation.
Collapse
Affiliation(s)
- Zahra Aghababaie
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Niranchan Paskaranandavadivel
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,2Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- 3Histology Laboratory, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Peng Du
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Gianrico Farrugia
- 5Division of Gastroenterology and Hepatology, and Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- 5Division of Gastroenterology and Hepatology, and Enteric Neurosciences Program, Mayo Clinic, Rochester, Minnesota
| | - Gregory O’Grady
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,2Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,6Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
19
|
Alighaleh S, Cheng L, Angeli-Gordon TR, Aghababaie Z, O'Grady G, Paskaranandavadivel N. Design and Validation of a Surface-Contact Electrode for Gastric Pacing and Concurrent Slow-Wave Mapping. IEEE Trans Biomed Eng 2021; 68:2574-2581. [PMID: 33656985 DOI: 10.1109/tbme.2021.3063685] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Gastric contractions are, in part, coordinated by slow-waves. Functional motility disorders are correlated with abnormal slow-wave patterns. Gastric pacing has been attempted in a limited number of studies to correct gastric dysmotility. Integrated electrode arrays capable of pacing and recording slow-wave responses are required. METHODS New flexible surface-contact pacing electrodes (SPE) that can be placed atraumatically to pace and simultaneously map the slow-wave activity in the surrounding area were developed. SPE were applied in pigs in-vivo for gastric pacing along with concurrent high-resolution slow wave mapping as validation. Histology was conducted to assess for tissue damage around the pacing site. SPE were compared against temporary cardiac pacing electrodes (CPE), and hook-shaped pacing electrodes (HPE), for entrainment rate, entrainment threshold, contact quality, and slow-wave propagation patterns. RESULTS Pacing with SPE (amplitude: 2 mA, pulse width: 100 ms) consistently achieved pacemaker initiation. Histological analysis illustrated no significant tissue damage. SPE resulted in a higher rate of entrainment (64%) than CPE (37%) and HPE (24%), with lower entrainment threshold (25% of CPE and 16% of HPE). High resolution mapping showed that there was no significant difference between the initiated slow-wave propagation speed for SPE and CPE (6.8 ± 0.1 vs 6.8 ± 0.2 mm/s, P>0.05). However, SPE had higher loss of tissue lead contact quality than CPE (42 ± 16 vs 13 ± 10% over 20 min). CONCLUSION Pacing with SPE induced a slow-wave pacemaker site without tissue damage. SIGNIFICANCE SPE offered an atraumatic pacing electrode with a significant reduction of power consumption and placement time compared to impaled electrodes.
Collapse
|
20
|
Carson DA, O'Grady G, Du P, Gharibans AA, Andrews CN. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol Motil 2021; 33:e14048. [PMID: 33274564 DOI: 10.1111/nmo.14048] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric motility disorders, which include both functional and organic etiologies, are highly prevalent. However, there remains a critical lack of objective biomarkers to guide efficient diagnostics and personalized therapies. Bioelectrical activity plays a fundamental role in coordinating gastric function and has been investigated as a contributing mechanism to gastric dysmotility and sensory dysfunction for a century. However, conventional electrogastrography (EGG) has not achieved common clinical adoption due to its perceived limited diagnostic capability and inability to impact clinical care. The last decade has seen the emergence of novel high-resolution methods for invasively mapping human gastric electrical activity in health and disease, providing important new insights into gastric physiology. The limitations of EGG have also now become clearer, including the finding that slow-wave frequency alone is not a reliable discriminator of gastric dysrhythmia, shifting focus instead toward altered spatial patterns. Recently, advances in bioinstrumentation, signal processing, and computational modeling have aligned to allow non-invasive body surface mapping of the stomach to detect spatiotemporal gastric dysrhythmias. The clinical relevance of this emerging strategy to improve diagnostics now awaits determination. PURPOSE This review evaluates these recent advances in clinical gastric electrophysiology, together with promising emerging data suggesting that novel gastric electrical signatures recorded at the body surface (termed "body surface mapping") may correlate with symptoms. Further technological progress and validation data are now awaited to determine whether these advances will deliver on the promise of clinical gastric electrophysiology diagnostics.
Collapse
Affiliation(s)
- Daniel A Carson
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
21
|
Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coordinated contractions and motility patterns unique to each gastrointestinal organ facilitate the digestive process. These motor activities are coordinated by bioelectrical events, sensory and motor nerves, and hormones. The motility problems in the gastrointestinal tract known as functional gastrointestinal disorders (FGIDs) are generally caused by impaired neuromuscular activity and are highly prevalent. Their diagnosis is challenging as symptoms are often vague and difficult to localize. Therefore, the underlying pathophysiological factors remain unknown. However, there is an increasing level of research and clinical evidence suggesting a link between FGIDs and altered bioelectrical activity. In addition, electroceuticals (bioelectrical therapies to treat diseases) have recently gained significant interest. This paper gives an overview of bioelectrical signatures of gastrointestinal organs with normal and/or impaired motility patterns and bioelectrical therapies that have been developed for treating FGIDs. The existing research evidence suggests that bioelectrical activities could potentially help to identify the diverse etiologies of FGIDs and overcome the drawbacks of the current clinically adapted methods. Moreover, electroceuticals could potentially be effective in the treatment of FGIDs and replace the limited existing conventional therapies which often attempt to treat the symptoms rather than the underlying condition.
Collapse
|
22
|
Endoscopic and Surgical Treatments for Gastroparesis: What to Do and Whom to Treat? Gastroenterol Clin North Am 2020; 49:539-556. [PMID: 32718569 PMCID: PMC7391056 DOI: 10.1016/j.gtc.2020.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastroparesis is a complex chronic debilitating condition of gastric motility resulting in the delayed gastric emptying and multiple severe symptoms, which may lead to malnutrition and dehydration. Initial management of patients with gastroparesis focuses on the diet, lifestyle modification and medical therapy. Various endoscopic and surgical interventions are reserved for refractory cases of gastroparesis, not responding to conservative therapy. Pyloric interventions, enteral access tubes, gastric electrical stimulator and gastrectomy have been described in the care of patients with gastroparesis. In this article, the authors review current management, indications, and contraindications to these procedures.
Collapse
|
23
|
Transcutaneous Neuromodulation at ST36 (Zusanli) is More Effective than Transcutaneous Tibial Nerve Stimulation in Treating Constipation. J Clin Gastroenterol 2020; 54:536-544. [PMID: 30720579 DOI: 10.1097/mcg.0000000000001184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND GOALS Combined transcutaneous neuromodulation (TN) at acupoint ST36 (Zusanli) and TN at the posterior tibial nerve (PTN) has been reported effective in treating functional constipation. This study was designed to compare the effectiveness of TN between these 2 points. MATERIALS AND METHODS Eighteen functional constipation patients (M/F: 9/9) were recruited to participate in a cross-over study with a 2-week TN at ST36 and a 2-week TN at PTN. A bowel movement diary, and the questionnaires of Patient Assessment of Constipation Symptom (PAC-SYM) and Constipation Quality of Life (PAC-QoL) were completed; anorectal manometry and spectral analysis of heart rate variability for assessing the autonomic function were performed. RESULTS (1) Both TN at ST36 and TN at PTN improved constipation-related symptoms (PAC-SYM scores on pre-TN vs. post-TN: 1.4±0.1 vs. 0.6±0.1 for ST36, 1.4±0.1 vs. 0.9±0.1 for PTN, both P≤0.001). (2) TN at ST36, but not TN at PTN, increased the number of weekly spontaneous bowel movements (0.9±0.2 pre-TN vs. 3.5±0.7 post-TN, P<0.001) and decreased the total PAC-QoL score. TN at ST36 was more potent than TN at PTN in improving the PAC-SYM score (decrement 0.8±0.1 vs. 0.5±0.1, P<0.05). (3) TN at ST36 rather than TN at PTN resulted in a reduction in sensation thresholds, including rectal distention for urge (134.1±14.3 mL pre-TN vs. 85.6±6.5 mL post-TN, P<0.01) and maximum tolerance (P<0.05). (4) Both TN at ST36 and TN at PTN significantly increased vagal activity and decreased sympathetic activity (P<0.05). CONCLUSIONS TN at ST36 is more potent than TN at PTN in treating constipation and improving constipation-related symptoms and rectal sensation.
Collapse
|
24
|
Ward MP, Gupta A, Wo JM, Rajwa B, Furness JB, Powley TL, Nowak TV. An emerging method to noninvasively measure and identify vagal response markers to enable bioelectronic control of gastroparesis symptoms with gastric electrical stimulation. J Neurosci Methods 2020; 336:108631. [PMID: 32087238 DOI: 10.1016/j.jneumeth.2020.108631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Gastric electrical stimulation (GES) can be a life-changing, device-based treatment option for drug-resistant nausea and vomiting associated with diabetic or idiopathic gastroparesis (GP). Despite over two decades of clinical use, the mechanism of action remains unclear. We hypothesize a vagal mechanism. NEW METHOD Here, we describe a noninvasive method to investigate vagal nerve involvement in GES therapy in 66 human subjects through the compound nerve action potential (CNAP). RESULTS Of the 66 subjects, 28 had diabetic GP, 35 had idiopathic GP, and 3 had postsurgical GP. Stimulus charge per pulse did not predict treatment efficacy, but did predict a significant increase in total symptom score in type 1 diabetics as GES stimulus charge per pulse increased (p < 0.01), representing a notable side effect and providing a method to identify it. In contrast, the number of significant left and right vagal fiber responses that were recorded directly related to patient symptom improvement. Increased vagal responses correlated with significant decreases in total symptom score (p < 0.05). COMPARISON WITH EXISTING METHOD(S) We have developed transcutaneous recording of cervical vagal activity that is synchronized with GES in conscious human subjects, along with methods of discriminating the activity of different nerve fiber groups with respect to conduction speed and treatment response. CONCLUSIONS Cutaneous vagal CNAP analysis is a useful technique to unmask relationships among GES parameters, vagal recruitment, efficacy and side-effect management. Our results suggest that CNAP-guided GES optimization will provide the most benefit to patients with idiopathic and type 1 diabetic gastroparesis.
Collapse
Affiliation(s)
- Matthew P Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Anita Gupta
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - John M Wo
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Terry L Powley
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Dept. of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Thomas V Nowak
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Wang L, Malik A, Roop PS, Cheng LK, Paskaranandavadivel N, Ai W. A novel approach for model-based design of gastric pacemakers. Comput Biol Med 2019; 116:103576. [PMID: 31999552 DOI: 10.1016/j.compbiomed.2019.103576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
Abstract
Understanding the slow wave propagation patterns of Interstitial Cells of Cajal (ICC) is essential when designing Gastric Electrical Stimulators (GESs) to treat motility disorders. A GES with the ability to both sense and pace, working in closed-loop with the ICC, will enable efficient modulation of Gastrointestinal (GI) dysrhythmias. However, existing GESs targeted at modulating GI dysrhythmias operate in an open-loop and hence their clinical efficacy is uncertain. This paper proposes a novel model-based approach for designing GESs that operate in closed-loop with the GI tract. GES is modelled using Hybrid Input Output Automata (HIOA), a well-known formal model, which is suitable for designing safety-critical systems. A two-dimensional ICC network working in real-time with the GES is developed using the same compositional HIOA framework. The ICC network model is used to simulate normal and diseased action potential propagation patterns akin to those observed during GI dysrhythmias. The efficacy of the proposed GES is then validated by integrating it in closed-loop with the ICC network. Results show that the proposed GES is able to sense the propagation patterns and modulate the dysrhythmic patterns of bradygastria back to its normal state automatically. The proposed design of the GES is flexible enough to treat a variety of diseased dysrhythmic patterns using closed-loop operation.
Collapse
Affiliation(s)
- Luman Wang
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand.
| | - Avinash Malik
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand.
| | - Partha S Roop
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand.
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | | | - Weiwei Ai
- Department of Electrical, Computer and Software Engineering, University of Auckland, New Zealand
| |
Collapse
|
26
|
Gharibans AA, Coleman TP, Mousa H, Kunkel DC. Spatial Patterns From High-Resolution Electrogastrography Correlate With Severity of Symptoms in Patients With Functional Dyspepsia and Gastroparesis. Clin Gastroenterol Hepatol 2019; 17:2668-2677. [PMID: 31009794 DOI: 10.1016/j.cgh.2019.04.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Invasive gastric electrical mapping has revealed spatial abnormalities of the slow wave in subjects with gastroparesis and functional gastrointestinal disorders. Cutaneous high-resolution electrogastrography (HR-EGG) is a non-invasive method that can detect spatial features of the gastric slow wave. We performed HR-EGG in subjects with active foregut symptoms to evaluate associations between gastric myoelectric abnormalities, symptoms (based on a validated questionnaire), and gastric emptying. METHODS We performed a case-control study of 32 subjects, including 7 healthy individuals (controls), 7 subjects with functional dyspepsia and normal gastric emptying, and 18 subjects with gastroparesis, from a tertiary care program. All subjects were assessed by computed tomography imaging of the abdomen and HR-EGG and completed the PAGI-SYM questionnaire on foregut symptoms, which includes the gastroparesis cardinal symptom index. We performed volume reconstruction of the torso and stomach from computed tomography images to guide accurate placement of the HR-EGG array. RESULTS Spatial slow-wave abnormalities were detected in 44% of subjects with foregut symptoms. Moreover, subjects with a higher percentage of slow waves with aberrant propagation direction had a higher total gastroparesis cardinal symptom index score (r = 0.56; P < .001) and more severe abdominal pain (r = 0.46; P = .009). We found no correlation between symptoms and traditional EGG parameters. CONCLUSIONS In case-control study, we found that the genesis of symptoms of functional dyspepsia and gastroparesis is likely multifactorial, including possible contribution from gastric myoelectric dysfunction. Abnormal spatial parameters, detected by cutaneous HR-EGG, correlated with severity of upper gastrointestinal symptoms, regardless of gastric emptying. This noninvasive, repeatable approach might be used to identify patients for whom gastric myoelectric dysfunction contributes to functional dyspepsia and gastroparesis.
Collapse
Affiliation(s)
- Armen A Gharibans
- GI Innovation Group, University of California-San Diego, La Jolla, California; Department of Bioengineering, University of California-San Diego, La Jolla, California; Department of Pediatrics, University of California-San Diego, La Jolla, California
| | - Todd P Coleman
- GI Innovation Group, University of California-San Diego, La Jolla, California; Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Hayat Mousa
- GI Innovation Group, University of California-San Diego, La Jolla, California; Department of Pediatrics, University of California-San Diego, La Jolla, California; Neurogastroenterology and Motility Center, Rady Children's Hospital, San Diego, California
| | - David C Kunkel
- GI Innovation Group, University of California-San Diego, La Jolla, California; GI Motility & Physiology Program, University of California-San Diego, La Jolla, California.
| |
Collapse
|
27
|
Allegra AB, Gharibans AA, Schamberg GE, Kunkel DC, Coleman TP. Bayesian inverse methods for spatiotemporal characterization of gastric electrical activity from cutaneous multi-electrode recordings. PLoS One 2019; 14:e0220315. [PMID: 31609972 PMCID: PMC6791545 DOI: 10.1371/journal.pone.0220315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) problems give rise to 10 percent of initial patient visits to their physician. Although blockages and infections are easy to diagnose, more than half of GI disorders involve abnormal functioning of the GI tract, where diagnosis entails subjective symptom-based questionnaires or objective but invasive, intermittent procedures in specialized centers. Although common procedures capture motor aspects of gastric function, which do not correlate with symptoms or treatment response, recent findings with invasive electrical recordings show that spatiotemporal patterns of the gastric slow wave are associated with diagnosis, symptoms, and treatment response. We here consider developing non-invasive approaches to extract this information. Using CT scans from human subjects, we simulate normative and disordered gastric surface electrical activity along with associated abdominal activity. We employ Bayesian inference to solve the ill-posed inverse problem of estimating gastric surface activity from cutaneous recordings. We utilize a prior distribution on the spatiotemporal activity pertaining to sparsity in the number of wavefronts on the stomach surface, and smooth evolution of these wavefronts across time. We implement an efficient procedure to construct the Bayes optimal estimate and demonstrate its superiority compared to other commonly used inverse methods, for both normal and disordered gastric activity. Region-specific wave direction information is calculated and consistent with the simulated normative and disordered cases. We apply these methods to cutaneous multi-electrode recordings of two human subjects with the same clinical description of motor function, but different diagnosis of underlying cause. Our method finds statistically significant wave propagation in all stomach regions for both subjects, anterograde activity throughout for the subject with diabetic gastroparesis, and retrograde activity in some regions for the subject with idiopathic gastroparesis. These findings provide a further step towards towards non-invasive phenotyping of gastric function and indicate the long-term potential for enabling population health opportunities with objective GI assessment.
Collapse
Affiliation(s)
- Alexis B. Allegra
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Armen A. Gharibans
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| | - Gabriel E. Schamberg
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - David C. Kunkel
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Todd P. Coleman
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
28
|
Abstract
This review covers the epidemiology, pathophysiology, clinical features, diagnosis, and management of diabetic gastroparesis, and more broadly diabetic gastroenteropathy, which encompasses all the gastrointestinal manifestations of diabetes mellitus. Up to 50% of patients with type 1 and type 2 DM and suboptimal glycemic control have delayed gastric emptying (GE), which can be documented with scintigraphy, 13C breath tests, or a wireless motility capsule; the remainder have normal or rapid GE. Many patients with delayed GE are asymptomatic; others have dyspepsia (i.e., mild to moderate indigestion, with or without a mild delay in GE) or gastroparesis, which is a syndrome characterized by moderate to severe upper gastrointestinal symptoms and delayed GE that suggest, but are not accompanied by, gastric outlet obstruction. Gastroparesis can markedly impair quality of life, and up to 50% of patients have significant anxiety and/or depression. Often the distinction between dyspepsia and gastroparesis is based on clinical judgement rather than established criteria. Hyperglycemia, autonomic neuropathy, and enteric neuromuscular inflammation and injury are implicated in the pathogenesis of delayed GE. Alternatively, there are limited data to suggest that delayed GE may affect glycemic control. The management of diabetic gastroparesis is guided by the severity of symptoms, the magnitude of delayed GE, and the nutritional status. Initial options include dietary modifications, supplemental oral nutrition, and antiemetic and prokinetic medications. Patients with more severe symptoms may require a venting gastrostomy or jejunostomy and/or gastric electrical stimulation. Promising newer therapeutic approaches include ghrelin receptor agonists and selective 5-hydroxytryptamine receptor agonists.
Collapse
Affiliation(s)
- Adil E Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yogish C Kudva
- Division of Endocrinology. Mayo Clinic, Rochester, Minnesota
| | - David O Prichard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
29
|
Alighaleh S, Cheng LK, Angeli TR, Amiri M, Sathar S, O'Grady G, Paskaranandavadivel N. A Novel Gastric Pacing Device to Modulate Slow Waves and Assessment by High-Resolution Mapping. IEEE Trans Biomed Eng 2019; 66:2823-2830. [DOI: 10.1109/tbme.2019.2896624] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Miller L, Farajidavar A, Vegesna A. Use of Bioelectronics in the Gastrointestinal Tract. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034165. [PMID: 30249600 DOI: 10.1101/cshperspect.a034165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) motility disorders are major contributing factors to functional GI diseases that account for >40% of patients seen in gastroenterology clinics and affect >20% of the general population. The autonomic and enteric nervous systems and the muscles within the luminal GI tract have key roles in motility. In health, this complex integrated system works seamlessly to transport liquid, solid, and gas through the GI tract. However, major and minor motility disorders occur when these systems fail. Common functional GI motility disorders include dysphagia, gastroesophageal reflux disease, functional dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, postoperative ileus, irritable bowel syndrome, functional diarrhea, functional constipation, and fecal incontinence. Although still in its infancy, bioelectronic therapy in the GI tract holds great promise through the targeted stimulation of nerves and muscles.
Collapse
Affiliation(s)
- Larry Miller
- Division of Gastroenterology, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Long Island Jewish Medical Center, New York, New York 11040
| | - Aydin Farajidavar
- School of Engineering & Computing Sciences, New York Institute of Technology (NYIT), Old Westbury, New York 11568
| | - Anil Vegesna
- Division of Gastroenterology, Department of Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
31
|
A Wireless Implantable System for Facilitating Gastrointestinal Motility. MICROMACHINES 2019; 10:mi10080525. [PMID: 31395845 PMCID: PMC6722874 DOI: 10.3390/mi10080525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Gastrointestinal (GI) electrical stimulation has been shown in several studies to be a potential treatment option for GI motility disorders. Despite the promising preliminary research progress, however, its clinical applicability and usability are still unknown and limited due to the lack of a miniaturized versatile implantable stimulator supporting the investigation of effective stimulation patterns for facilitating GI dysmotility. In this paper, we present a wireless implantable GI modulation system to fill this technology gap. The system consists of a wireless extraluminal gastrointestinal modulation device (EGMD) performing GI electrical stimulation, and a rendezvous device (RD) and a custom-made graphical user interface (GUI) outside the body to wirelessly power and configure the EGMD to provide the desired stimuli for modulating GI smooth muscle activities. The system prototype was validated in bench-top and in vivo tests. The GI modulation system demonstrated its potential for facilitating intestinal transit in the preliminary in vivo chronic study using porcine models.
Collapse
|
32
|
Wang Y, Wang Q, Kuerban K, Dong M, Qi F, Li G, Ling J, Qiu W, Zhang W, Ye L. Colonic electrical stimulation promotes colonic motility through regeneration of myenteric plexus neurons in slow transit constipation beagles. Biosci Rep 2019; 39:BSR20182405. [PMID: 31064818 PMCID: PMC6522827 DOI: 10.1042/bsr20182405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Slow transit constipation (STC) is a common disease characterized by markedly delayed colonic transit time as a result of colonic motility dysfunction. It is well established that STC is mostly caused by disorders of relevant nerves, especially the enteric nervous system (ENS). Colonic electrical stimulation (CES) has been regarded as a valuable alternative for the treatment of STC. However, little report focuses on the underlying nervous mechanism to normalize the delayed colonic emptying and relieve symptoms. In the present study, the therapeutic effect and the influence on ENS triggered by CES were investigated in STC beagles. The STC beagle model was established by oral administration of diphenoxylate/atropine and alosetron. Histopathology, electron microscopy, immunohistochemistry, Western blot analysis and immunofluorescence were used to evaluate the influence of pulse train CES on myenteric plexus neurons. After 5 weeks of treatment, CES could enhance the colonic electromyogram (EMG) signal to promote colonic motility, thereby improving the colonic content emptying of STC beagles. HE staining and transmission electron microscopy confirmed that CES could regenerate ganglia and synaptic vesicles in the myenteric plexus. Immunohistochemical staining showed that synaptophysin (SYP), protein gene product 9.5 (PGP9.5), cathepsin D (CAD) and S-100B in the colonic intramuscular layer were up-regulated by CES. Western blot analysis and immunofluorescence further proved that CES induced the protein expression of SYP and PGP9.5. Taken together, pulse train CES could induce the regeneration of myenteric plexus neurons, thereby promoting the colonic motility in STC beagles.
Collapse
Affiliation(s)
- Yongbin Wang
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Qian Wang
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Kudelaidi Kuerban
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengxue Dong
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Feilong Qi
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Li
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Jie Ling
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Wei Qiu
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Wenzhong Zhang
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Li Ye
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
33
|
Loganathan P, Gajendran M, McCallum R. Current and future treatment management strategies for gastroparesis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1617694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Priyadarshini Loganathan
- Department of Internal Medicine, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Mahesh Gajendran
- Department of Internal Medicine, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Richard McCallum
- Division of Gastroenterology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine, El Paso, TX, USA
| |
Collapse
|
34
|
Dong Y, Li S, Yin J, Chen JDZ. Ameliorating effects of optimized gastric electrical stimulation and mechanisms involving nerve growth factor and opioids in a rodent model of gastric hypersensitivity. Neurogastroenterol Motil 2019; 31:e13551. [PMID: 30790401 DOI: 10.1111/nmo.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric electrical stimulation (GES) has been applied to treat gastric motility disorders for decades. This study was designed to investigate the effects and mechanisms of GES for visceral hypersensitivity in a rodent model of functional dyspepsia (FD). METHODS Male Sprague-Dawley rat pups at 10-days old received 0.1% iodoacetamide (IA) daily for 6 days. The experiments were performed when the rats reached 8-11 weeks of age, and visceral hypersensitivity was established. Then, GES parameters were optimized and the chronic effects of GES on gastric hypersensitivity were assessed by electromyogram (EMG). Naloxone (3 mg/kg), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP, 1 mg/kg), and anti-NGF (16 μg/kg) were individually intraperitoneally injected to investigate opioid and nerve growth factor (NGF) mechanisms. Tissues were analyzed for NGF expression. KEY RESULTS In the IA-treated rats, the visceromotor response to gastric distension was significantly increased, and both acute GES with optimized stimulation parameters (0.25 seconds on, 0.25 seconds off, 100 Hz, 0.25 ms, 6 mA) and chronic GES (7 days, 2 hours/day) normalized gastric hypersensitivity. The inhibitory effect of GES on gastric hypersensitivity was blocked by naloxone and CTOP. Anti-NGF normalized EMG responses in IA-treated rats. The expressions of NGF in the tissues of IA-treated rats were dramatically increased, and these increases were suppressed with GES. CONCLUSIONS AND INFERENCES GES with optimized parameters improves gastric hypersensitivity induced by neonatal treatment of IA mediated peripherally by suppressing NGF and via the opioid mechanism involving the µ receptor. GES as a potential therapy for treating visceral pain may be explored in clinical studies.
Collapse
Affiliation(s)
- Yan Dong
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma.,Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying Li
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, Oklahoma.,Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jieyun Yin
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol 2019; 16:89-105. [PMID: 30390018 DOI: 10.1038/s41575-018-0078-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The gastrointestinal tract has extensive, surgically accessible nerve connections with the central nervous system. This provides the opportunity to exploit rapidly advancing methods of nerve stimulation to treat gastrointestinal disorders. Bioelectric neuromodulation technology has considerably advanced in the past decade, but sacral nerve stimulation for faecal incontinence currently remains the only neuromodulation protocol in general use for a gastrointestinal disorder. Treatment of other conditions, such as IBD, obesity, nausea and gastroparesis, has had variable success. That nerves modulate inflammation in the intestine is well established, but the anti-inflammatory effects of vagal nerve stimulation have only recently been discovered, and positive effects of this approach were seen in only some patients with Crohn's disease in a single trial. Pulses of high-frequency current applied to the vagus nerve have been used to block signalling from the stomach to the brain to reduce appetite with variable outcomes. Bioelectric neuromodulation has also been investigated for postoperative ileus, gastroparesis symptoms and constipation in animal models and some clinical trials. The clinical success of this bioelectric neuromodulation therapy might be enhanced through better knowledge of the targeted nerve pathways and their physiological and pathophysiological roles, optimizing stimulation protocols and determining which patients benefit most from this therapy.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia. .,Medical Bionics Department, University of Melbourne, Parkville, Victoria, Australia.
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Martin J Stebbing
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
O'Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, Cheng LK, Du P. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev Biomed Eng 2018; 12:287-302. [PMID: 30176605 DOI: 10.1109/rbme.2018.2867555] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last two decades, high-resolution (HR) mapping has emerged as a powerful technique to study normal and abnormal bioelectrical events in the gastrointestinal (GI) tract. This technique, adapted from cardiology, involves the use of dense arrays of electrodes to track bioelectrical sequences in fine spatiotemporal detail. HR mapping has now been applied in many significant GI experimental studies informing and clarifying both normal physiology and arrhythmic behaviors in disease states. This review provides a comprehensive and critical analysis of current methodologies for HR electrical mapping in the GI tract, including extracellular measurement principles, electrode design and mapping devices, signal processing and visualization techniques, and translational research strategies. The scope of the review encompasses the broad application of GI HR methods from in vitro tissue studies to in vivo experimental studies, including in humans. Controversies and future directions for GI mapping methodologies are addressed, including emerging opportunities to better inform diagnostics and care in patients with functional gut disorders of diverse etiologies.
Collapse
|
37
|
Alighaleh S, Angeli TR, Sathar S, O'Grady G, Cheng LK, Paskaranandavadivel N. Design and application of a novel gastric pacemaker. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:2181-2184. [PMID: 29060329 DOI: 10.1109/embc.2017.8037287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Omnipresent bioelectrical events known as slow waves are responsible for coordinating motility in the gastrointestinal tract. Functional motility diseases, such as gastroparesis, are associated with slow wave dysrhythmias. Electrical stimulation is a potential therapy to correct abnormal slow wave patterns. We present the design and application of a new gastric pacemaker. Real-time changes to the stimulation parameters such as period, amplitude and pulse width were applied using a graphical user interface, which communicated with the microcontroller to deliver the stimulus. The new pacemaker allows the voltage, delivered current and resistance between pacing electrodes to be continuously monitored. The pacing device was applied experimentally and was able to modulate and entrain gastric slow wave activity. After the onset of pacing, the direction of slow wave propagation was altered. Furthermore, the mean velocity and amplitude of slow wave activity increased from 4.7±1.5 to 5.4±1.3 mm/s, and from 1.1±1.1 to 1.7±0.9 mV, respectively. A simplified bidomain electrical model was used to simulate the recorded stimulus artifact. The model illustrated a new approach to evaluate if the stimulus has been delivered to the gastric tissue. The new pacing device and model will be used to investigate the mechanisms that allow pacing to entrain slow wave activity.
Collapse
|
38
|
Park JM, Lee SH, Kim KI, Kim WH, Cho JY, Hahm KB, Hong SP. Feasibility of intraperitoneal placental-derived mesenchymal stem cell injection in stomachs of diabetic mice. J Gastroenterol Hepatol 2018; 33:1242-1247. [PMID: 29141105 DOI: 10.1111/jgh.14045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/28/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Diabetic gastropathy is associated with loss of interstitial cells of Cajal and autonomic neuropathy. Effective management for diabetic gastropathy is still unavailable. This study was aimed to confirm the pathogenetic changes in diabetic gastropathy and to examine the effect of treatment with placental-derived mesenchymal stem cells (PDMSCs) in stomachs of animal models. METHODS Fourteen non-obese diabetic/ShiLtJ mice of 8 weeks were bled until week 30. Diabetes mellitus developed in 10 out of 14 mice, which all survived with insulin. The mice were grouped into three groups: nondiabetic group (n = 4), diabetic sham group (n = 5), and diabetic PDMSC group (n = 5) all of which were treated with intraperitoneal PDMSCs injection at week 30. All mice were killed at week 34, and the stomachs were examined by immunohistochemical stain with c-kit and neuronal nitric oxide synthase antibodies. RESULTS The number of c-kit positive cells in stomach decreased significantly in the diabetic sham group compared with that in the nondiabetic group (21.2 ± 6.7 vs 88.0 ± 29.3, P = 0.006) but increased with PDMSC treatment (21.2 ± 6.7 vs 64.0 ± 15.1, P = 0.02). The positive rate of neuronal nitric oxide synthase in neural plexus was also significantly lower in the diabetic sham group than in the nondiabetic group (22.3% ± 18.5% vs 48.0% ± 22.7%, P = 0.003) but increased with PDMSC treatment (22.3% ± 18.5% vs 43.3% ± 20.5%, P = 0.03). CONCLUSIONS Interstitial cells of Cajal and neural plexus decreased in stomachs of mice with diabetes mellitus but were significantly repaired with intraperitoneal injection of PDMSC.
Collapse
Affiliation(s)
- Jong Min Park
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Sang Hwan Lee
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kwang Il Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Won Hee Kim
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Joo Young Cho
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Ki Baik Hahm
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Sung Pyo Hong
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
39
|
Zhang L, Zhao W, Zhao C, Jin H, Wang B, Wang B. Study on effects of electrical stimulation on rabbit esophageal body motility in vivo. Physiol Res 2018; 67:275-282. [PMID: 29303604 DOI: 10.33549/physiolres.933652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electric stimulation (ES) could induce contraction of intestinal smooth muscle. The aim of this study was to analyze the effects of ES on esophageal motility and the underlying mechanism in vivo. Twenty-eight rabbits were equipped with a pair of subserosa electrodes (connected to an electrical stimulator) in the lower segment of the esophagus. The ES signal consisted of bipolar rectangular pulse trains, lasting for 3 s, with different amplitudes (1 mA, 3 mA, 5 mA and 10 mA), and frequencies (10 Hz, 20 Hz and 50 Hz). The amplitude of the contraction was recognized by high-resolution manometry. The effect of ES was tested under anesthesia and following administration of atropine, phentolamine or L-NAME. ES induced esophageal contraction at the stimulated site. A statistically significant increase in esophageal pressure was observed when the stimulation amplitude was above 3 mA. The increase in esophageal pressure was associated with the amplitude of stimulus as well as the frequency. During stimulation, atropine, phentolamine and L-NAME had no effect on the increase of esophageal pressure induced by ES. These findings implied that ES induced esophageal contraction were not mediated via the NANC, adrenergic or cholinergic pathway. The amplitude of esophageal contraction was current and frequency dependent.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Digestive Diseases, General Hospital, Tianjin Medical University, Tianjin, China.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Emerging Gastric Stimulation for Dysmotility Disorder and Obesity. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Intestinal Electrical Stimulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Wakamatsu K, Perez Quirante F, Montorfano L, Lo Menzo E, Seto Y, Rosenthal RJ. Laparoscopic treatment of gastroparesis: a single center experience. Surg Obes Relat Dis 2017; 14:200-205. [PMID: 28888796 DOI: 10.1016/j.soard.2017.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gastroparesis (GP) is a chronic disorder of gastric motility with delayed gastric emptying. Gastric electrical stimulator (GES) implantation and Roux-en-Y gastric bypass (RYGB) are surgical options for medically refractory GP. OBJECTIVE Evaluate operational outcomes and symptom improvement of patients with diabetic (DM) and idiopathic (IP) GP. SETTING University Hospital, United States. METHODS A retrospective chart review was performed of all patients who underwent surgical treatment of GP from February 2003 to December 2014. Subgroup analysis was performed based on etiology of GP (DM versus IP) and procedure received (GES versus RYGB). Postoperative outcomes and postoperative symptom improvements were compared between groups. RESULTS Of 93 patients, 47 (50.5%) had IP and 46 (49.5%) had DM. The majority underwent GES implantation (83.8%, n = 78), and 15 patients (16%) underwent RYGB. There were significant differences in hospital stay (2 versus 3 days) and reoperation rate (30% versus 7%) between IP and DM. Operation time, complication rate, and 30-day readmission rate were similar in both groups. DM patients significantly improved GP-related complaints compared with preoperatively. IP patients also improved nausea and vomiting and had no change in abdominal pain between pre- and postoperative period. GES showed significant improvement of nausea, vomiting, and abdominal pain. RYGB showed improvement of nausea, but not vomiting or abdominal pain. CONCLUSIONS Surgery is a feasible intervention for GP for both DM and IP patients; however, based on the data presented in this manuscript and the current literature, the use of gastric bypass as an effective treatment modality for patients with intractable GP remains highly controversial. Care must be taken for IP patients in the postoperative period due to high incidence of reoperation. Although both procedures offer some degree of symptomatic improvement, GES seems to provide improvement of more GP symptoms. However, there is no significant difference in the need for postoperative medications regardless of the procedure used.
Collapse
Affiliation(s)
- Kotaro Wakamatsu
- Department of Gastrointestinal Surgery, The University of Tokyo, Tokyo, Japan
| | - Federico Perez Quirante
- The Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic Florida, Weston, Florida
| | - Lisandro Montorfano
- The Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic Florida, Weston, Florida
| | - Emanuele Lo Menzo
- The Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic Florida, Weston, Florida
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, The University of Tokyo, Tokyo, Japan
| | - Raul J Rosenthal
- The Bariatric and Metabolic Institute, Department of General Surgery, Cleveland Clinic Florida, Weston, Florida.
| |
Collapse
|
44
|
Jiang G, Bai D, Qian J, Chen P, Jin S. Modified Laparoscopic Pyloroplasty During Laparoscopic Splenectomy and Azygoportal Disconnection for the Prevention of Postoperative Gastroparesis. Surg Innov 2017; 24:328-335. [PMID: 28689488 DOI: 10.1177/1553350617697186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastroparesis is a common complication after splenectomy and azygoportal disconnection, remaining a chronic debilitating disorder with considerable treatment challenges. To minimize postoperative gastroparesis, we have developed a new modified laparoscopic pyloroplasty (LP) technique for use during laparoscopic splenectomy and azygoportal disconnection (LSD). METHODS We retrospectively evaluated the outcomes of 31 cirrhotic patients with portal hypertensive bleeding and secondary hypersplenism who underwent synchronous LSD with modified LP (n = 14) or LSD without modified LP (n = 17) between January 2015 and August 2015. Perioperative variables were compared. RESULTS LSD with and without modified LP were successful in all patients. Operation time was significantly longer for LSD with modified LP than LSD without modified LP ( P = .001). However, the LSD with modified LP group had significantly reduced incidences of bloating 1 month postoperatively ( P < .05), nausea ( P < .05), and bloating ( P < .05) 3 months postoperatively, gastric retention 3 months postoperatively ( P < .0001), and prokinetic use at 1 month ( P = .009) and 3 months postoperatively ( P < .05) compared with the LSD without modified LP group. Gastric emptying scintigraphy showed that the mean time required to empty 50% of the ingested meal was significantly shorter in the LSD with modified LP group than in the LSD without modified LP group at 3 months postoperatively (74.3 ± 19.1 vs 261.7 ± 61.0 minutes, P < .0001). CONCLUSIONS Modified LP during LSD was feasible, effective, and safe, and significantly reduced short-term symptoms of postoperative gastroparesis.
Collapse
Affiliation(s)
- Guoqing Jiang
- 1 Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dousheng Bai
- 1 Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Jianjun Qian
- 1 Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Ping Chen
- 1 Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shengjie Jin
- 1 Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
45
|
Abstract
Gastrointestinal (GI) motility disorders are common in clinical settings, including esophageal motility disorders, gastroesophageal reflux disease, functional dyspepsia, gastroparesis, chronic intestinal pseudo-obstruction, post-operative ileus, irritable bowel syndrome, diarrhea and constipation. While a number of drugs have been developed for treating GI motility disorders, few are currently available. Emerging electrical stimulation methods may provide new treatment options for these GI motility disorders. Areas covered: This review gives an overview of electrical therapies that have been, and are being developed for GI motility disorders, including gastroesophageal reflux, functional dyspepsia, gastroparesis, intestinal motility disorders and constipation. Various methods of gastrointestinal electrical stimulation are introduced. A few methods of nerve stimulation have also been described, including spinal cord stimulation and sacral nerve stimulation. Potentials of electrical therapies for obesity are also discussed. PubMed was searched using keywords and their combinations: electrical stimulation, spinal cord stimulation, sacral nerve stimulation, gastrointestinal motility and functional gastrointestinal diseases. Expert commentary: Electrical stimulation is an area of great interest and has potential for treating GI motility disorders. However, further development in technologies (devices suitable for GI stimulation) and extensive clinical research are needed to advance the field and bring electrical therapies to bedside.
Collapse
Affiliation(s)
- Jiande D Z Chen
- a Division of Gastroenterology and Hepatology, Department of Medicine , Johns Hopkins University , Baltimore , MD , USA.,b Department of Medicine , VA Medical Center , Oklahoma City , OK , USA
| | - Jieyun Yin
- a Division of Gastroenterology and Hepatology, Department of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - Wei Wei
- c Division of Gastroenterology , Wangjing Hospital of Chinese Medical Academy , Beijing , China
| |
Collapse
|
46
|
Wei R, Parsons SP, Huizinga JD. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Exp Physiol 2017; 102:329-346. [DOI: 10.1113/ep086077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Ruihan Wei
- McMaster University, Department of Medicine; Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
| | - Sean P. Parsons
- McMaster University, Department of Medicine; Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
| | - Jan D. Huizinga
- McMaster University, Department of Medicine; Farncombe Family Digestive Health Research Institute; Hamilton ON Canada
| |
Collapse
|
47
|
Abstract
Gastric mixing is a complex process that is governed by meal properties, such as food buffering capacity, physical properties, and the rate of breakdown as well as physiological factors, such as the rate of gastric secretions, gastric emptying, and gastric motility. Gastric mixing processes have been studied through the use of experimental and computational methods. Gastric mixing impacts the intragastric pH distribution and residence time in the stomach for ingested materials. Development of a fundamental understanding of the advective and diffusion processes and their roles in gastric mixing will be important in furthering our understanding of food breakdown, microbial survival, and drug dissolution during gastric digestion.
Collapse
Affiliation(s)
- Gail M Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616;
| |
Collapse
|
48
|
Thompson JS, Langenfeld SJ, Hewlett A, Chiruvella A, Crawford C, Armijo P, Oleynikov D. Surgical treatment of gastrointestinal motility disorders. Curr Probl Surg 2016; 53:503-549. [PMID: 27765162 DOI: 10.1067/j.cpsurg.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Jon S Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE.
| | - Sean J Langenfeld
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Alexander Hewlett
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | | | | | | | - Dmitry Oleynikov
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
49
|
Abstract
Ingestion and digestion of food as well as expulsion of residual material from our gastrointestinal tract requires normal propulsive, i.e. motor, function. Hypomotility refers to inherited or acquired changes that come with decreased contractile forces or slower transit. It not only often causes symptoms but also may compromise nutritional status or lead to other complications. While severe forms, such as pseudo-obstruction or ileus, may have a tremendous functional impact, the less severe forms of hypomotility may well be more relevant, as they contribute to common disorders, such as functional dyspepsia, gastroparesis, chronic constipation, and irritable bowel syndrome (IBS). Clinical testing can identify changes in contractile activity, defined by lower amplitudes or abnormal patterns, and the related effects on transit. However, such biomarkers show a limited correlation with overall symptom severity as experienced by patients. Similarly, targeting hypomotility with pharmacological interventions often alters gut motor function but does not consistently improve symptoms. Novel diagnostic approaches may change this apparent paradox and enable us to obtain more comprehensive information by integrating data on electrical activity, mechanical forces, patterns, wall stiffness, and motions with information of the flow of luminal contents. New drugs with more selective effects or more specific delivery may improve benefits and limit adverse effects. Lastly, the complex regulation of gastrointestinal motility involves the brain-gut axis as a reciprocal pathway for afferent and efferent signaling. Considering the role of visceral input in emotion and the effects of emotion on visceral activity, understanding and managing hypomotility disorders requires an integrative approach based on the mind-body continuum or biopsychosocial model of diseases.
Collapse
Affiliation(s)
- Klaus Bielefeldt
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ashok Tuteja
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Salman Nusrat
- Department of Medicine, Oklahoma University Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
50
|
Angeli TR, Du P, Midgley D, Paskaranandavadivel N, Sathar S, Lahr C, Abell TL, Cheng LK, O'Grady G. Acute Slow Wave Responses to High-Frequency Gastric Electrical Stimulation in Patients With Gastroparesis Defined by High-Resolution Mapping. Neuromodulation 2016; 19:864-871. [PMID: 27284964 DOI: 10.1111/ner.12454] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS High-frequency gastric electrical stimulation (GES) has emerged as a therapy for gastroparesis, but the mechanism(s) of action remain unclear. There is a need to refine stimulation protocols for clinical benefit, but a lack of accurate techniques for assessing mechanisms in clinical trials, such as slow wave modulation, has hindered progress. We thereby aimed to assess acute slow wave responses to GES in gastroparesis patients using high-resolution (HR) (multi-electrode) mapping, across a range of stimulation doses achievable by the Enterra stimulation device (Medtronic Inc., MN, USA). MATERIALS AND METHODS Patients with medically refractory gastroparesis (n = 8) undergoing device implantation underwent intraoperative HR mapping (256 electrodes). Baseline recordings were followed by four protocols of increasing stimulation intensity, with washout periods. Slow wave patterns, frequency, velocity, amplitude, and dysrhythmia rates were quantified by investigators blinded to stimulation settings. RESULTS There was no difference in slow wave pattern, frequency, velocity, or amplitude between baseline, washout, and stimulation periods (all p > 0.5). Dysrhythmias included ectopic pacemakers, conduction blocks, retrograde propagation, and colliding wavefronts, and dysrhythmia rates were unchanged with stimulation off vs. on (31% vs. 36% duration dysrhythmic; p > 0.5). Symptom scores and gastric emptying were improved at 5.8 month follow-up (p < 0.05). CONCLUSIONS High-frequency GES protocols achievable from a current commercial device did not acutely modulate slow wave activity or dysrhythmias. This study advances clinical methods for identifying and assessing therapeutic GES parameters, and can be applied in future studies on higher-energy protocols and devices.
Collapse
Affiliation(s)
- Timothy R Angeli
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David Midgley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Shameer Sathar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christopher Lahr
- Department of Surgery, Mississippi Medical Center, Jackson, MS, USA
| | - Thomas L Abell
- Department of Gastroenterology, University of Louisville, Louisville, KY, USA
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Gregory O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|