1
|
Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, Brenner DA, Kisseleva T. The Origin and Fate of Liver Myofibroblasts. Cell Mol Gastroenterol Hepatol 2023; 17:93-106. [PMID: 37743012 PMCID: PMC10665929 DOI: 10.1016/j.jcmgh.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury. Many studies indicate that liver fibrosis is reversible when the causative agent is removed. Regression of liver fibrosis is associated with the disappearance of activated myofibroblasts and resorption of the fibrous scar. In this review, we discuss the results of genetic tracing and cell fate mapping of hepatic stellate cells and portal fibroblasts, their specific characteristics, and potential phenotypes. We summarize research progress in the understanding of the molecular mechanisms underlying the development and reversibility of liver fibrosis, including activation, apoptosis, and inactivation of myofibroblasts.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Wonseok Lee
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Kevin Lam
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Karin Diggle
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
2
|
Lei L, Bruneau A, El Mourabit H, Guégan J, Folseraas T, Lemoinne S, Karlsen TH, Hoareau B, Morichon R, Gonzalez-Sanchez E, Goumard C, Ratziu V, Charbord P, Gautheron J, Tacke F, Jaffredo T, Cadoret A, Housset C. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 2022; 76:1360-1375. [PMID: 35278227 DOI: 10.1002/hep.32456] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.
Collapse
Affiliation(s)
- Lin Lei
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Haquima El Mourabit
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Justine Guégan
- Institut du Cerveau (ICM), Bioinformatics/Biostatistics iCONICS Facility, Sorbonne Université, INSERM, Paris, France
| | - Trine Folseraas
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Tom Hemming Karlsen
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM, UMS Production et Analyse de Données en Sciences de la Vie et en Santé (PASS), Cytométrie Pitié-Salpêtrière (CyPS), Paris, France
| | - Romain Morichon
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Ester Gonzalez-Sanchez
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Claire Goumard
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Vlad Ratziu
- Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Charbord
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
3
|
Nishio T, Koyama Y, Fuji H, Ishizuka K, Iwaisako K, Taura K, Hatano E, Brenner DA, Kisseleva T. The Role of Mesothelin in Activation of Portal Fibroblasts in Cholestatic Liver Injury. BIOLOGY 2022; 11:1589. [PMID: 36358290 PMCID: PMC9687690 DOI: 10.3390/biology11111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Fibrosis is a common consequence of abnormal wound healing, which is characterized by infiltration of myofibroblasts and formation of fibrous scar. In liver fibrosis, activated Hepatic Stellate Cells (aHSCs) and activated Portal Fibroblasts (aPFs) are the major contributors to the origin of hepatic myofibroblasts. aPFs are significantly involved in the pathogenesis of cholestatic fibrosis, suggesting that aPFs may be a primary target for anti-fibrotic therapy in cholestatic injury. aPFs are distinguishable from aHSCs by specific markers including mesothelin (Msln), Mucin 16 (Muc16), and Thymus cell antigen 1 (Thy1, CD90) as well as fibulin 2, elastin, Gremlin 1, ecto-ATPase nucleoside triphosphate diphosphohydrolase 2. Msln plays a critical role in activation of PFs, via formation of Msln-Muc16-Thy1 complex that regulates TGFβ1/TGFβRI-mediated fibrogenic signaling. The opposing pro- and anti-fibrogenic effects of Msln and Thy1 are key components of the TGFβ1-induced activation pathway in aPFs. In addition, aPFs and activated lung and kidney fibroblasts share similarities across different organs with expression of common markers and activation cascade including Msln-Thy1 interaction. Here, we summarize the potential function of Msln in activation of PFs and development of cholestatic fibrosis, offering a novel perspective for anti-fibrotic therapy targeting Msln.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroaki Fuji
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0394, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka 530-8480, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - David A. Brenner
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Fuji H, Miller G, Nishio T, Koyama Y, Lam K, Zhang V, Loomba R, Brenner D, Kisseleva T. The role of Mesothelin signaling in Portal Fibroblasts in the pathogenesis of cholestatic liver fibrosis. Front Mol Biosci 2021; 8:790032. [PMID: 34966784 PMCID: PMC8710774 DOI: 10.3389/fmolb.2021.790032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis develops in response to chronic toxic or cholestatic injury, and is characterized by apoptosis of damaged hepatocytes, development of inflammatory responses, and activation of Collagen Type I producing myofibroblasts that make liver fibrotic. Two major cell types, Hepatic Stellate Cells (HSCs) and Portal Fibroblasts (PFs) are the major source of hepatic myofibroblasts. Hepatotoxic liver injury activates Hepatic Stellate Cells (aHSCs) to become myofibroblasts, while cholestatic liver injury activates both aHSCs and Portal Fibroblasts (aPFs). aPFs comprise the major population of myofibroblasts at the onset of cholestatic injury, while aHSCs are increasingly activated with fibrosis progression. Here we summarize our current understanding of the role of aPFs in the pathogenesis of cholestatic fibrosis, their unique features, and outline the potential mechanism of targeting aPFs in fibrotic liver.
Collapse
Affiliation(s)
- Hiroaki Fuji
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Grant Miller
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Koyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kevin Lam
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Vivian Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - David Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021; 199:111572. [PMID: 34536446 DOI: 10.1016/j.mad.2021.111572] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Myofibroblasts play an important role in fibrogenesis. Hepatic stellate cells are the main precursors of myofibroblasts. Cellular senescence is the terminal cell fate in which proliferating cells undergo irreversible cell cycle arrest. Senescent hepatic stellate cells were identified in liver fibrosis. Senescent hepatic stellate cells display decreased collagen production and proliferation. Therefore, induction of senescence could be a protective mechanism against progression of liver fibrosis and the concept of therapy-induced senescence has been proposed to treat liver fibrosis. In this review, characteristics of senescent hepatic stellate cells and the essential signaling pathways involved in senescence are reviewed. Furthermore, the potential impact of senescent hepatic stellate cells on other liver cell types are discussed. Senescent cells are cleared by the immune system. The persistence of senescent cells can remodel the microenvironment and interact with inflammatory cells to induce aging-related dysfunction. Therefore, senolytics, a class of compounds that selectively induce death of senescent cells, were introduced as treatment to remove senescent cells and consequently decrease the disadvantageous effects of persisting senescent cells. The effects of senescent hepatic stellate cells in liver fibrosis need further investigation.
Collapse
Affiliation(s)
- Mengfan Zhang
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Serna-Salas
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Turtushikh Damba
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Michaela Borghesan
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases. Biomolecules 2021; 11:biom11050685. [PMID: 34063320 PMCID: PMC8147605 DOI: 10.3390/biom11050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in the evolution of early metazoans, as it provides structural and biochemical support to the surrounding cells through the cell–cell and cell–matrix interactions. In multi-cellular organisms, ECM plays a pivotal role in the differentiation of tissues and in the development of organs. Fibulins are ECM glycoproteins, found in a variety of tissues associated with basement membranes, elastic fibers, proteoglycan aggregates, and fibronectin microfibrils. The expression profile of fibulins reveals their role in various developmental processes such as elastogenesis, development of organs during the embryonic stage, tissue remodeling, maintenance of the structural integrity of basement membrane, and elastic fibers, as well as other cellular processes. Apart from this, fibulins are also involved in the progression of human diseases such as cancer, cardiac diseases, congenital disorders, and chronic fibrotic disorders. Different isoforms of fibulins show a dual role of tumor-suppressive and tumor-promoting activities, depending on the cell type and cellular microenvironment in the body. Knockout animal models have provided deep insight into their role in development and diseases. The present review covers details of the structural and expression patterns, along with the role of fibulins in embryonic development and disease progression, with more emphasis on their involvement in the modulation of cancer diseases.
Collapse
|
7
|
Park JH, Kim OH, Kim KH, Hong HE, Seo H, Choi HJ, Ahn J, Lee TY, Kim SJ. Isolation of Secretome with Enhanced Antifibrotic Properties from miR-214-Transfected Adipose-Derived Stem Cells. J Korean Med Sci 2019; 34:e273. [PMID: 31760709 PMCID: PMC6875435 DOI: 10.3346/jkms.2019.34.e273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Secretome refers to the total set of molecules secreted or surface-shed by stem cells. The limitations of stem cell research have led numerous investigators to turn their attention to the use of secretome instead of stem cells. In this study, we intended to reinforce antifibrotic properties of the secretome released from adipose-derived stem cells (ASCs) transfected with miR-214. METHODS We generated miR-214-transfected ASCs, and extracted the secretome (miR214-secretome) from conditioned media of the transfected ASCs through a series of ultrafiltrations. Subsequently, we intravenously injected the miR-214-secretome into mice with liver fibrosis, and determined the effects of miR-214-secretome on liver fibrosis. RESULTS Compared with that by naïve secretome, liver fibrosis was ameliorated by intravenous infusion of miR-214-secretome into mice with liver fibrosis, which was demonstrated by significantly lower expression of fibrosis-related markers (alpha-smooth muscle actin, transforming growth factor-β, and metalloproteinases-2) in the livers as well as lower fibrotic scores in the special stained livers compared with naïve secretome. The infusion of miR-214-secretome also led to lesser local and systemic inflammation, higher expression of an antioxidant enzyme (superoxide dismutase), and higher liver proliferative and synthetic function. CONCLUSION MicroRNA-214 transfection stimulates ASCs to release the secretome with higher antifibrotic and anti-inflammatory properties. miR-214-secretome is thus expected to be one of the prominent ways of overcoming liver fibrosis, if further studies consistently validate its safety and efficiency.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ok Hee Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Kee Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ha Eun Hong
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Haeyeon Seo
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Tae Yun Lee
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Say June Kim
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
- Catholic Central Laboratory of Surgery, Institute of Biomedical Industry, College of Medicine, the Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
8
|
Visochek L, Atias D, Spektor I, Castiel A, Golan T, Cohen-Armon M. The phenanthrene derivative PJ34 exclusively eradicates human pancreatic cancer cells in xenografts. Oncotarget 2019; 10:6269-6282. [PMID: 31692907 PMCID: PMC6817443 DOI: 10.18632/oncotarget.27268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 11/25/2022] Open
Abstract
Recent reports demonstrate an exclusive eradication of a variety of human cancer cells by the modified phenanthridine PJ34. Their eradication during mitosis is attributed to PJ34 preventing NuMA clustering in the mitotic spindle poles of human malignant cells, which is crucial for their normal mitosis. Here, the effect of PJ34 is tested in cell cultures and xenografts of human pancreas ductal adenocarcinoma. Evidence is presented for a substantial reduction (80-90%) of PANC1 cancer cells in xenografts, measured 30 days after the treatment with PJ34 has been terminated. Benign cells infiltrated into the PANC1 tumors (stroma) were not affected. Growth, weight gain and behavior of the treated nude mice were not impaired during, and 30 days after the treatment with PJ34. The efficient eradication of malignant cells in human pancreas cancer xenografts presents a new model of pancreas cancer treatment.
Collapse
Affiliation(s)
- Leonid Visochek
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dikla Atias
- Oncology Institute, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Itay Spektor
- Oncology Institute, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Asher Castiel
- Oncology Institute, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Talia Golan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.,Oncology Institute, Sheba Medical Center, Ramat Gan 53621, Israel
| | - Malka Cohen-Armon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
9
|
Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int J Mol Sci 2019; 20:ijms20102516. [PMID: 31121839 PMCID: PMC6566399 DOI: 10.3390/ijms20102516] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022] Open
Abstract
There is growing evidence that glucose metabolism in the liver is in part under the control of the endocannabinoid system (ECS) which is also supported by its presence in this organ. The ECS consists of its cannabinoid receptors (CBRs) and enzymes that are responsible for endocannabinoid production and metabolism. ECS is known to be differentially influenced by the hepatic glucose metabolism and insulin resistance, e.g., cannabinoid receptor type 1(CB1) antagonist can improve the glucose tolerance and insulin resistance. Interestingly, our own study shows that expression patterns of CBRs are influenced by the light/dark cycle, which is of significant physiological and clinical interest. The ECS system is highly upregulated during chronic liver disease and a growing number of studies suggest a mechanistic and therapeutic impact of ECS on the development of liver fibrosis, especially putting its receptors into focus. An opposing effect of the CBRs was exerted via the CB1 or CB2 receptor stimulation. An activation of CB1 promoted fibrogenesis, while CB2 activation improved antifibrogenic responses. However, underlying mechanisms are not yet clear. In the context of liver diseases, the ECS is considered as a possible mediator, which seems to be involved in the synthesis of fibrotic tissue, increase of intrahepatic vascular resistance and subsequently development of portal hypertension. Portal hypertension is the main event that leads to complications of the disease. The main complication is the development of variceal bleeding and ascites, which have prognostic relevance for the patients. The present review summarizes the current understanding and impact of the ECS on glucose metabolism in the liver, in association with the development of liver cirrhosis and hemodynamics in cirrhosis and its complication, to give perspectives for development of new therapeutic strategies.
Collapse
|
10
|
Stefanovic B, Manojlovic Z, Vied C, Badger CD, Stefanovic L. Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound. Sci Rep 2019; 9:326. [PMID: 30674965 PMCID: PMC6344531 DOI: 10.1038/s41598-018-36841-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Fibrosis is characterized by excessive production of type I collagen. Biosynthesis of type I collagen in fibrosis is augmented by binding of protein LARP6 to the 5' stem-loop structure (5'SL), which is found exclusively in type I collagen mRNAs. A high throughput screen was performed to discover inhibitors of LARP6 binding to 5'SL, as potential antifibrotic drugs. The screen yielded one compound (C9) which was able to dissociate LARP6 from 5' SL RNA in vitro and to inactivate the binding of endogenous LARP6 in cells. Treatment of hepatic stellate cells (liver cells responsible for fibrosis) with nM concentrations of C9 reduced secretion of type I collagen. In precision cut liver slices, as an ex vivo model of hepatic fibrosis, C9 attenuated the profibrotic response at 1 μM. In prophylactic and therapeutic animal models of hepatic fibrosis C9 prevented development of fibrosis or hindered the progression of ongoing fibrosis when administered at 1 mg/kg. Toxicogenetics analysis revealed that only 42 liver genes changed expression after administration of C9 for 4 weeks, suggesting minimal off target effects. Based on these results, C9 represents the first LARP6 inhibitor with significant antifibrotic activity.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| | - Zarko Manojlovic
- Keck School of Medicine of University of Southern California, 1450 Biggy Street, NRT 4510, Los Angeles, CA, 90033, USA
| | - Cynthia Vied
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Crystal-Dawn Badger
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
- Proteomics and Metabolomics Facility, Colorado State University, 401 West Pitkin Street, Fort Collins, CO, 80521, USA
| | - Lela Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| |
Collapse
|
11
|
Chen L, Brenner DA, Kisseleva T. Combatting Fibrosis: Exosome-Based Therapies in the Regression of Liver Fibrosis. Hepatol Commun 2018; 3:180-192. [PMID: 30766956 PMCID: PMC6357832 DOI: 10.1002/hep4.1290] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis results from chronic injury and inflammation in the liver and leads to cirrhosis, liver failure, and portal hypertension. Understanding the molecular mechanisms underlying hepatic fibrosis has advanced the prospect of developing therapies for regression of the disease. Resolution of fibrosis requires a reduction of proinflammatory and fibrogenic cytokines, a decrease in extracellular matrix (ECM) protein production, an increase in collagenase activity, and finally, a disappearance of activated myofibroblasts. Exosomes are nanovesicles of endocytic origin secreted by most cell types. They epigenetically reprogram and alter the phenotype of their recipient cells and hold great promise for the reversal of fibrosis. Recent studies have shown that exosomes function as conduits for intercellular transfer and contain all the necessary components to induce resolution of fibrosis, including the ability to (1) inhibit macrophage activation and cytokine secretion, (2) remodel ECM production and decrease fibrous scars, and (3) inactivate hepatic stellate cells, a major myofibroblast population. Here, we discuss the research involving the regression of hepatic fibrosis. We focus on the newly discovered roles of exosomes during fibrogenesis and as a therapy for fibrosis reversal. We also emphasize the novel discoveries of exosome‐based antifibrotic treatments in vitro and in vivo.
Collapse
Affiliation(s)
- Li Chen
- Department of Medicine University of California San Diego La Jolla CA
| | - David A Brenner
- Department of Medicine University of California San Diego La Jolla CA
| | - Tatiana Kisseleva
- Department of Surgery University of California San Diego La Jolla CA
| |
Collapse
|
12
|
Loeuillard E, El Mourabit H, Lei L, Lemoinne S, Housset C, Cadoret A. Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3688-3696. [DOI: 10.1016/j.bbadis.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
13
|
Mölleken C, Ahrens M, Schlosser A, Dietz J, Eisenacher M, Meyer HE, Schmiegel W, Holmskov U, Sarrazin C, Sorensen GL, Sitek B, Bracht T. Direct-acting antivirals-based therapy decreases hepatic fibrosis serum biomarker microfibrillar-associated protein 4 in hepatitis C patients. Clin Mol Hepatol 2018; 25:42-51. [PMID: 30449076 PMCID: PMC6435967 DOI: 10.3350/cmh.2018.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background/Aims An estimated 80 million people worldwide are infected with viremic hepatitis C virus (HCV). Even after eradication of HCV with direct acting antivirals (DAAs), hepatic fibrosis remains a risk factor for hepatocarcinogenesis. Recently, we confirmed the applicability of microfibrillar-associated protein 4 (MFAP4) as a serum biomarker for the assessment of hepatic fibrosis. The aim of the present study was to assess the usefulness of MFAP4 as a biomarker of liver fibrosis after HCV eliminating therapy with DAAs. Methods MFAP4 was measured using an immunoassay in 50 hepatitis C patients at baseline (BL), the end-of-therapy (EoT), and the 12-week follow-up (FU) visit. Changes in MFAP4 from BL to FU and their association with laboratory parameters including alanine aminotransferase (ALT), aspartate aminotransferase (AST), platelets, the AST to platelet ratio index (APRI), fibrosis-4 score (FIB-4), and albumin were analyzed. Results MFAP4 serum levels were representative of the severity of hepatic fibrosis at BL and correlated well with laboratory parameters, especially APRI (Spearman correlation, R²=0.80). Laboratory parameters decreased significantly from BL to EoT. MFAP4 serum levels were found to decrease from BL and EoT to FU with high statistical significance (Wilcoxon p<0.001 for both). Conclusions Our findings indicate that viral eradication resulted in reduced MFAP4 serum levels, presumably representing a decrease in hepatic fibrogenesis or fibrosis. Hence, MFAP4 may be a useful tool for risk assessment in hepatitis C patients with advanced fibrosis after eradication of the virus.
Collapse
Affiliation(s)
- Christian Mölleken
- Department of Gastroenterology and Hepatology, University Hospital Bergmannsheil, Bochum, Germany
| | - Maike Ahrens
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany.,Chrestos Concept GmbH & Co. KG, Essen, Germany
| | - Anders Schlosser
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Julia Dietz
- Medical Clinic 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Helmut E Meyer
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Wolff Schmiegel
- Department of Gastroenterology and Hepatology, University Hospital Bergmannsheil, Bochum, Germany
| | - Uffe Holmskov
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christoph Sarrazin
- Medical Clinic 1, J.W. Goethe University Hospital, Frankfurt, Germany.,Medical Clinic 2, St. Josefs-Hospital, Wiesbaden, Germany
| | - Grith Lykke Sorensen
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Abstract
At the simplest level, obesity is the manifestation of an imbalance between caloric intake and expenditure; however, the pathophysiological mechanisms that govern the development of obesity and associated complications are enormously complex. Fibrosis within the adipose tissue compartment is one such factor that may influence the development of obesity and/or obesity-related comorbidities. Furthermore, the functional consequences of adipose tissue fibrosis are a matter of considerable debate, with evidence that fibrosis serves both adaptive and maladaptive roles. Tissue fibrosis itself is incompletely understood, and multiple cellular and molecular pathways are involved in the development, maintenance, and resolution of the fibrotic state. Within the context of obesity, fibrosis influences molecular and cellular events that relate to adipocytes, inflammatory cells, inflammatory mediators, and supporting adipose stromal tissue. In this Review, we explore what is known about the interplay between the development of adipose tissue fibrosis and obesity, with a view toward future investigative and therapeutic avenues.
Collapse
Affiliation(s)
| | - Michael J Podolsky
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Kamran Atabai
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
15
|
Extracellular Interactions between Fibulins and Transforming Growth Factor (TGF)-β in Physiological and Pathological Conditions. Int J Mol Sci 2018; 19:ijms19092787. [PMID: 30227601 PMCID: PMC6163299 DOI: 10.3390/ijms19092787] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like modules and a common C-terminal domain. Fibulins not only participate in structural integrity of basement membrane and elastic fibers, but also serve as mediators for cellular processes and tissue remodeling as they are highly upregulated during embryonic development and certain disease processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different role in a context-dependent manner. In this review, regulatory interactions between fibulins and TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may introduce new insights into the pathogenesis of some human diseases.
Collapse
|
16
|
|
17
|
Wahid B, Ali A, Rafique S, Saleem K, Waqar M, Wasim M, Idrees M. Role of altered immune cells in liver diseases: a review. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 41:377-388. [PMID: 29605453 DOI: 10.1016/j.gastrohep.2018.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
Immune cells play an important role in controlling liver tumorigenesis, viral hepatitis, liver fibrosis and contribute to pathogenesis of liver inflammation and injury. Accumulating evidence suggests the effectiveness of natural killer (NK) cells and Kupffer cells (KCs) against viral hepatitis, hepatocellular damage, liver fibrosis, and carcinogenesis. Activation of natural killer cells provides a novel therapeutic strategy to cure liver related diseases. This review discusses the emerging roles of immune cells in liver disorders and it will provide baseline data to scientists to design better therapies for treatment.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Genome Centre for Molecular Based Diagnostics and Research, Al-Sudais Plaza Abdalian Cooperative Society, Lahore, Pakistan
| | - Amjad Ali
- Genome Centre for Molecular Based Diagnostics and Research, Al-Sudais Plaza Abdalian Cooperative Society, Lahore, Pakistan
| | - Shazia Rafique
- Genome Centre for Molecular Based Diagnostics and Research, Al-Sudais Plaza Abdalian Cooperative Society, Lahore, Pakistan
| | - Komal Saleem
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Genome Centre for Molecular Based Diagnostics and Research, Al-Sudais Plaza Abdalian Cooperative Society, Lahore, Pakistan
| | - Muhammad Waqar
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Genome Centre for Molecular Based Diagnostics and Research, Al-Sudais Plaza Abdalian Cooperative Society, Lahore, Pakistan
| | - Muhammad Wasim
- Department of Medicine, Khyber Teaching Hospital Peshawar KPK, Pakistan
| | - Muhammad Idrees
- Centre for Applied Molecular Biology (CAMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Genome Centre for Molecular Based Diagnostics and Research, Al-Sudais Plaza Abdalian Cooperative Society, Lahore, Pakistan; Department of Medicine, Khyber Teaching Hospital Peshawar KPK, Pakistan; Division of Molecular Virology and Diagnostics Center of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| |
Collapse
|
18
|
Carson JP, Ramm GA, Robinson MW, McManus DP, Gobert GN. Schistosome-Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. Trends Parasitol 2018. [PMID: 29526403 DOI: 10.1016/j.pt.2018.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a common pathology in various liver diseases. Hepatic stellate cells (HSCs) are the main cell type responsible for collagen deposition and fibrosis formation in the liver. Schistosomiasis is characterised by granulomatous fibrosis around parasite eggs trapped within the liver and other host tissues. This response is facilitated by the recruitment of immune cells and the activation of HSCs. The interactions between HSCs and schistosome eggs are complex and diverse, and a better understanding of these interactions could lead to improved resolution of fibrotic liver disease, including that associated with schistosomiasis. Here, we discuss recent advances in HSC biology and the role of HSCs in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, Herston, QLD, 4006, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget 2018; 9:5480-5491. [PMID: 29435195 PMCID: PMC5797066 DOI: 10.18632/oncotarget.23869] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 12/02/2022] Open
Abstract
Decorin (DCN), an extracellular matrix (ECM) protein, belongs to the small leucine-rich proteoglycan family. As a pluripotent molecule, DCN regulates the bioactivities of cell growth factors and participates in ECM assembly. Accumulating evidence has shown that DCN acts as a ligand of various cytokines and growth factors by directly or indirectly interacting with the corresponding signalling molecules involved in cell growth, differentiation, proliferation, adhesion and metastasis and that DCN especially plays vital roles in cancer cell proliferation, spread, pro-inflammatory processes and anti-fibrillogenesis. The multifunctional nature of DCN thus enables it to be a potential therapeutic agent for a variety of diseases and shows good prospects for clinical and research applications. DCN, an extracellular matrix (ECM) protein that belongs to the small leucine-rich proteoglycan family, is widely distributed and plays multifunctional roles in the stroma and epithelial cells. Originally, DCN was known as an effective collagen-binding partner for fibrillogenesis [1] and to modulate key biomechanical parameters of tissue integrity in the tendon, skin and cornea [2]; thus, it was named decorin (DCN). Since being initially cloned in 1986, DCN was discovered to be a structural constituent of the ECM [3]. However, the paradigm has been shifted; it has become increasingly evident that in addition to being a matrix structural protein, DCN affects a wide range of biological processes, including cell growth, differentiation, proliferation, adhesion, spread and migration, and regulates inflammation and fibrillogenesis [4–7]. Two main themes for DCN functions have emerged: maintenance of cellular structure and regulation of signal transduction pathways, culminating in anti-tumourigenic effects. Here, we review the interaction network of DCN and emphasize the biological correlations between these interactions, some of which are expected to be therapeutic intervention targets.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Ge
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017. [PMID: 25306501 DOI: 10.1016/j.crohns.2014.09.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia.,University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
21
|
Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohns Colitis 2017; 11:1491-1503. [PMID: 25306501 PMCID: PMC5885809 DOI: 10.1016/j.crohns.2014.09.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis is a major complication of the inflammatory bowel diseases (IBD) and although inflammation is necessary for its development, it would appear that it plays a minor role in its progression as anti-inflammatory treatments in IBD do not prevent fibrosis once it has started. The processes that regulate fibrosis would thus appear to be distinct from those regulating inflammation and, therefore, a detailed understanding of these pathways is vital to the development of anti-fibrogenic strategies. There have been several recent reviews exploring what is known, and what remains unknown, about the development of intestinal fibrosis. This review is designed to add to this literature but with a focus on the cellular components that are involved in the development of fibrogenesis and the major molecular mediators that impact on these cells. The aim is to heighten the understanding of the factors involved in intestinal fibrogenesis so that detailed research can be encouraged in order to advance the processes that could lead to effective treatments.
Collapse
Affiliation(s)
- Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, WA, Australia
- University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Freemantle, WA, Australia
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
22
|
Gómez Villalobos MDJ, Vidrio S, Giles López R, Flores Gómez G, Chagoya de Sánchez V. A novel Golgi-Cox staining method for detecting and characterizing roles of the hepatic stellate cells in liver injury. PATHOPHYSIOLOGY 2017; 24:267-274. [DOI: 10.1016/j.pathophys.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
|
23
|
Cargnoni A, Farigu S, Cotti Piccinelli E, Bonassi Signoroni P, Romele P, Vanosi G, Toschi I, Cesari V, Barros Sant'Anna L, Magatti M, Silini AR, Parolini O. Effect of human amniotic epithelial cells on pro-fibrogenic resident hepatic cells in a rat model of liver fibrosis. J Cell Mol Med 2017; 22:1202-1213. [PMID: 29105277 PMCID: PMC5783829 DOI: 10.1111/jcmm.13396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022] Open
Abstract
Myofibroblasts are key fibrogenic cells responsible for excessive extracellular matrix synthesis characterizing the fibrotic lesion. In liver fibrosis, myofibroblasts derive either from activation of hepatic stellate cells (HSC) and portal fibroblasts (PF), or from the activation of fibroblasts that originate from ductular epithelial cells undergoing epithelial-mesenchymal transition. Ductular cells can also indirectly promote myofibroblast generation by activating TGF-β, the main fibrogenic growth factor, through αvβ6 integrin. In addition, after liver injury, liver sinusoidal cells can lose their ability to maintain HSC quiescence, thus favouring HSC differentiation towards myofibroblasts. The amniotic membrane and epithelial cells (hAEC) derived thereof have been shown to decrease hepatic myofibroblast levels in rodents with liver fibrosis. In this study, in a rat model of liver fibrosis, we investigated the effects of hAEC on resident hepatic cells contributing to myofibroblast generation. Our data show that hAEC reduce myofibroblast numbers with a consequent reduction in fibronectin and collagen deposition. Interestingly, we show that hAEC strongly act on specific myofibroblast precursors. Specifically, hAEC reduce the activation of PF rather than HSC. In addition, hAEC target reactive ductular cells by inhibiting their proliferation and αvβ6 integrin expression, with a consequent decrease in TGF-β activation. Moreover, hAEC counteract the transition of ductular cells towards fibroblasts, while it does not affect injury-induced and fibrosis-promoting sinusoidal alterations. In conclusion, among the emerging therapeutic applications of hAEC in liver diseases, their specific action on PF and ductular cells strongly suggests their application in liver injuries involving the expansion and activation of the portal compartment.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Serafina Farigu
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ester Cotti Piccinelli
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Graziella Vanosi
- Dip. Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università di Milano, Milano, Italy
| | - Ivan Toschi
- Dip. Scienze Agrarie e Ambientali, Università di Milano, Milano, Italy
| | - Valentina Cesari
- Dip. Scienze Agrarie e Ambientali, Università di Milano, Milano, Italy
| | - Luciana Barros Sant'Anna
- Institute of Research and Development, University of Vale do Paraíba (UNIVAP), São José dos Campos, São Paulo, Brazil
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
24
|
Mohammed M, Abdel-Gawad E, Awwad S, Kandil E, El-Agamy B. Therapeutic role of a synthesized calcium phosphate nanocomposite material on hepatocarcinogenesis in rats. Biochem Cell Biol 2017; 94:279-88. [PMID: 27276232 DOI: 10.1139/bcb-2015-0135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology research is booming worldwide, and the general belief is that medical and biological applications will form the greatest sector of expansion over the next decade. With this in mind, this study was designed to evaluate the therapeutic effects of a synthesized tricalcium phosphate nanocomposite material (nano-TCP) on hepatocarcinoma in a rat model, as initiated with diethylnitrosamine (DEN) and promoted with phenobarbital (PB). Hepatocarcinoma was induced with intraperitoneal injections of DEN (50 mg·(kg body mass)(-1)) 3 times a week for 2 weeks. Three weeks after the last dose of DEN, the rats received PB (0.05 %, w/v) in their drinking water for a further 6 weeks. Nano-TCP (100 mg·(kg body mass)(-1)) was administered intraperitoneally 3 times per week to rats with HCC. At the end of the experimental period, liver samples were collected from all animals for biochemical and histopathological analysis. The degree of DNA fragmentation was analyzed, in addition to immune status, by measuring the levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-2 (IL-2). The activities of the most important free-radical scavengers of the antioxidant defense system as well as malondialdehyde (MDA) content and liver enzymes were measured. The levels of hepatic heat shock protein-70 (HSP-70), caspase-3, and metalloproteinase-9 were also measured as markers for inflammation and apoptosis. Histopathological examination of liver tissue was performed. The results revealed the potent efficacy of nano-TCP in repairing the fragmented DNA and ameliorating most of the investigated parameters by significant elevation in the levels of hepatic alanine aminotransferase (ALT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. On the other hand, there was a significant decrease in hepatic gamma-glutamyl transpeptidase (γ-GT), MDA, IL-2, IFN-γ, TNF-α, matrix metalloproteinase-9 (MMP-9), HSP-70, and caspase-3 levels upon treatment. The findings form histopathological examination of the liver tissues agreed with the biochemical results and confirmed the difference between the control and treatment groups. In conclusion, nano-TCP succeeded in treating hepatocarcinoma efficiently, and presents a new hope for patients to get safe, fast, and effective treatment.
Collapse
Affiliation(s)
- Magdy Mohammed
- a Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman Abdel-Gawad
- b Radioisotopes Department, Atomic Energy Authority, Cairo, Egypt
| | | | - Eman Kandil
- a Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Basma El-Agamy
- a Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
25
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
26
|
Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, Zhang M, Sun M, Cong M, Karin D, Taura K, Benner C, Heinz S, Bera T, Brenner DA, Kisseleva T. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest 2017; 127:1254-1270. [PMID: 28287406 DOI: 10.1172/jci88845] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
Abstract
Cholestatic liver fibrosis is caused by obstruction of the biliary tract and is associated with early activation of portal fibroblasts (PFs) that express Thy-1, fibulin 2, and the recently identified marker mesothelin (MSLN). Here, we have demonstrated that activated PFs (aPFs) and myofibroblasts play a critical role in the pathogenesis of liver fibrosis induced by bile duct ligation (BDL). Conditional ablation of MSLN+ aPFs in BDL-injured mice attenuated liver fibrosis by approximately 50%. Similar results were observed in MSLN-deficient mice (Msln-/- mice) or mice deficient in the MSLN ligand mucin 16 (Muc16-/- mice). In vitro analysis revealed that MSLN regulates TGF-β1-inducible activation of WT PFs by disrupting the formation of an inhibitory Thy-1-TGFβRI complex. MSLN also facilitated the FGF-mediated proliferation of WT aPFs. Therapeutic administration of anti-MSLN-blocking Abs attenuated BDL-induced fibrosis in WT mice. Liver specimens from patients with cholestatic liver fibrosis had increased numbers of MSLN+ aPFs/myofibroblasts, suggesting that MSLN may be a potential target for antifibrotic therapy.
Collapse
|
27
|
Abstract
Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis.
Collapse
Affiliation(s)
- Ingrid Lua
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation 2016; 92:84-92. [PMID: 27591095 PMCID: PMC5079826 DOI: 10.1016/j.diff.2016.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/08/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Liver fibrosis results from chronic injury of hepatocytes and activation of Collagen Type I producing myofibroblasts that produce fibrous scar in liver fibrosis. Myofibroblasts are not present in the normal liver but rapidly appear early in experimental and clinical liver injury. The origin of the myofibroblast in liver fibrosis is still unresolved. The possibilities include activation of liver resident cells including portal fibroblasts, hepatic stellate cells, mesenchymal progenitor cells, and fibrocytes recruited from the bone marrow. It is considered that hepatic stellate cells and portal fibroblasts are the major source of hepatic myofibroblasts. In fact, the origin of myofibroblasts differs significantly for chronic liver diseases of different etiologies, such as cholestatic liver disease or hepatotoxic liver disease. Depending on etiology of hepatic injury, the fibrogenic foci might initiate within the hepatic lobule as seen in chronic hepatitis, or primarily affect the portal areas as in most biliary diseases. It has been suggested that activated portal fibroblasts/myofibroblasts work as "myofibroblasts for cholangiocytes" while hepatic stellate cells work as "myofibroblast for hepatocytes". This review will focus on our current understanding of the activated portal fibroblasts/myofibroblasts in cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Daniel Karin
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Yukinori Koyama
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla CA 92093, USA.
| |
Collapse
|
29
|
Fullár A, Firneisz G, Regős E, Dudás J, Szarvas T, Baghy K, Ramadori G, Kovalszky I. Response of Hepatic Stellate Cells to TGFB1 Differs from the Response of Myofibroblasts. Decorin Protects against the Action of Growth Factor. Pathol Oncol Res 2016; 23:287-294. [PMID: 27495255 DOI: 10.1007/s12253-016-0095-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022]
Abstract
Regardless to the exact nature of damage, hepatic stellate cells (HSCs) and other non-parenchymal liver cells transform to activated myofibroblasts, synthesizing the accumulating extracellular matrix (ECM) proteins, and transforming growth factor-β1 (TGF-β1) plays a crucial role in this process. Later it was discovered that decorin, member of the small leucin rich proteoglycan family is able to inhibit this action of TGF-β1. The aim of our present study was to clarify whether HSCs and activated myofibroblasts of portal region exert identical or different response to TGF-β1 exposure, and the inhibitory action of decorin against the growth factor is a generalized phenomenon on myofibroblast of different origin? To this end we measured mRNA expression and production of major collagen components (collagen type I, III and IV) of the liver after stimulation and co-stimulation with TGF-β1 and decorin in primary cell cultures of HSCs and myofibroblasts (MFs). Production of matrix proteins, decorin and members of the TGF-β1 signaling pathways were assessed on Western blots. Messenger RNA expression of collagens and TIEG was quantified by real-time RT-PCR. HSCs and MFs responded differently to TGF-β1 exposure. In contrast to HSCs in which TGF-β1 stimulated the synthesis of collagen type I, type III, and type IV, only the increase of collagen type IV was detected in portal MFs. However, in a combined treatment, decorin seemed to interfere with TGF-β1 and its stimulatory effect was abolished. The different mode of TGF-β1 action is mirrored by the different activation of signaling pathways in activated HSCs and portal fibroblasts. In HSCs the activation of pSMAD2 whereas in myofibroblasts the activation of MAPK pathway was detected. The inhibitory effect of decorin was neither related to the Smad-dependent nor to the Smad-independent signaling pathways.
Collapse
Affiliation(s)
- Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Gábor Firneisz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Regős
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - József Dudás
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
- Department of Gastroenterology and Endocrinology, George August University, Göttingen, Germany
| | - Tibor Szarvas
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Giuliano Ramadori
- Department of Gastroenterology and Endocrinology, George August University, Göttingen, Germany
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
30
|
Abstract
Liver fibrosis, a major characteristic of chronic liver disease, is inappropriate tissue remodeling caused by prolonged parenchymal cell injury and inflammation. During liver injury, hepatic stellate cells (HSCs) undergo transdifferentiation from quiescent HSCs into activated HSCs, which promote the deposition of extracellular matrix proteins, leading to liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is the most abundant member of the highly conserved β-thymosin family and controls cell morphogenesis and motility by regulating the dynamics of the actin cytoskeleton. Tβ4 is known to be involved in various cellular responses, including antiinflammation, wound healing, angiogenesis, and cancer progression. Emerging evidence suggests that Tβ4 is expressed in the liver; however, its biological roles are poorly understood. Herein, we introduce liver fibrogenesis and recent findings regarding the function of Tβ4 in various tissues and discuss the potential role of Tβ4 in liver fibrosis with a special focus on the effects of exogenous and endogenous Tβ4. Recent studies have revealed that activated HSCs express Tβ4 in vivo and in vitro. Treatment with the exogenous Tβ4 peptide inhibits the proliferation and migration of activated HSCs and reduces liver fibrosis, indicating it has an antifibrotic action. Meanwhile, the endogenously expressed Tβ4 in activated HSCs is shown to promote HSCs activation. Although the role of Tβ4 has not been elucidated, it is apparent that Tβ4 is associated with HSC activation. Therefore, understanding the potential roles and regulatory mechanisms of Tβ4 in liver fibrosis may provide a novel treatment for patients.
Collapse
|
31
|
Hintermann E, Bayer M, Ehser J, Aurrand-Lions M, Pfeilschifter JM, Imhof BA, Christen U. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr 2016; 10:419-33. [PMID: 27111582 DOI: 10.1080/19336918.2016.1178448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.
Collapse
Affiliation(s)
- Edith Hintermann
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Monika Bayer
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Janine Ehser
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | | | - Josef M Pfeilschifter
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Beat A Imhof
- c Department of Pathology and Immunology , Centre Médical Universitaire, University of Geneva , Geneva , Switzerland
| | - Urs Christen
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
32
|
El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol 2016; 7:120. [PMID: 27065888 PMCID: PMC4814710 DOI: 10.3389/fphys.2016.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/17/2016] [Indexed: 01/20/2023] Open
Abstract
Myofibroblasts are matrix-producing cells with contractile properties, usually characterized by de novo expression of alpha-smooth muscle actin, that arise in fibrotic diseases. Hepatic stellate cells (HSCs), known as perisinusoidal cells containing auto-fluorescent vitamin A, are the major although not exclusive source of myofibroblasts in the injured liver. Portal myofibroblasts (PMFs) have been defined as liver myofibroblasts derived from cells that are distinct from HSCs and located in the portal tract. Here, we describe the protocol we have established to obtain rat PMFs in culture. In this method, the biliary tree is (i) separated from the liver parenchyma by in situ enzymatic perfusion of the liver, (ii) minced and further digested in vitro, until bile duct segments are isolated by sequential filtration. Bile duct isolates free of HSC contaminants, form small cell clusters, which initially comprise a large majority of epithelial cells. In culture conditions (fetal bovine serum) that provide a growth advantage to mesenchymal cells over epithelial cells, the epithelial cells die and detach from the substrate, while spindle-shaped cells outgrow from the periphery of the cell clusters, as shown by video-microscopy. These cells are highly proliferative and after 4–5 days, the culture is composed exclusively of fully differentiated myofibroblasts, which express alpha-smooth muscle actin and collagen 1, and secrete abundant collagen. We found no evidence for epithelial-mesenchymal transition, i.e., no co-expression of alpha-smooth muscle actin and cytokeratin at any stage, while cytokeratin becomes undetectable in the confluent cells. PMFs obtained by this method express the genes that were previously reported to be overexpressed in non-HSC or portal fibroblast-derived liver myofibroblasts as compared to HSC-derived myofibroblasts, including the most discriminant, collagen 15, fibulin 2, and Thy-1. After one passage, PMFs retain the same phenotypic features as in primary culture. In conclusion, this straightforward and reproducible method of PMF culture, can be used to identify new markers of PMFs at different stages of differentiation, to compare their phenotype with those of HSC-MFs and ultimately determine their progenitors and specific functions in liver wound-healing.
Collapse
Affiliation(s)
- Haquima El Mourabit
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Emilien Loeuillard
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires, Service d'HépatologieParis, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938 Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 938Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires, Service d'HépatologieParis, France
| |
Collapse
|
33
|
Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis. J Clin Med 2016; 5:jcm5030038. [PMID: 26999230 PMCID: PMC4810109 DOI: 10.3390/jcm5030038] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis.
Collapse
|
34
|
Kawada N. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts. Front Physiol 2015; 6:329. [PMID: 26617531 PMCID: PMC4643130 DOI: 10.3389/fphys.2015.00329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are the source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts.
Collapse
Affiliation(s)
- Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University Osaka, Japan
| |
Collapse
|
35
|
Baligar P, Mukherjee S, Kochat V, Rastogi A, Mukhopadhyay A. Molecular and Cellular Functions Distinguish Superior Therapeutic Efficiency of Bone Marrow CD45 Cells Over Mesenchymal Stem Cells in Liver Cirrhosis. Stem Cells 2015; 34:135-47. [PMID: 26389810 DOI: 10.1002/stem.2210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is strongly associated with chronic inflammation. As an alternative to conventional treatments for fibrosis, mesenchymal stem cells (MSCs) therapy is found to be attractive due to its immunomodulatory functions. However, low survival rate and profibrogenic properties of MSCs remain the major concerns, leading to skepticism in many investigators. Here, we have asked the question whether bone marrow (BM)-derived CD45 cells is the better candidate than MSCs to treat fibrosis, if so, what are the molecular mechanisms that make such distinction. Using CCl4 -induced liver fibrosis mouse model of a Metavir fibrosis score 3, we showed that BM-CD45 cells have better antifibrotic effect than adipose-derived (AD)-MSCs. In fact, our study revealed that antifibrotic potential of CD45 cells are compromised by the presence of MSCs. This difference was apparently due to significantly high level expressions of matrix metalloproteinases-9 and 13, and the suppression of hepatic stellate cells' (HpSCs) activation in the CD45 cells transplantation group. Mechanism dissection studied in vitro supported the above opposing results and revealed that CD45 cell-secreted FasL induced apoptotic death of activated HpSCs. Further analyses suggest that MSC-secreted transforming growth factor β and insulin-like growth factor-1 promoted myofibroblastic differentiation of HpSCs and their proliferation. Additionally, the transplantation of CD45 cells led to functional improvement of the liver through repair and regeneration. Thus, BM-derived CD45 cells appear as a superior candidate for the treatment of liver fibrosis due to structural and functional improvement of CCl4 -induced fibrotic liver, which were much lower in case of AD-MSC therapy.
Collapse
Affiliation(s)
- Prakash Baligar
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Snehasish Mukherjee
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena Kochat
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver & Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Asok Mukhopadhyay
- Stem Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
36
|
Florimond A, Chouteau P, Bruscella P, Le Seyec J, Mérour E, Ahnou N, Mallat A, Lotersztajn S, Pawlotsky JM. Human hepatic stellate cells are not permissive for hepatitis C virus entry and replication. Gut 2015; 64:957-65. [PMID: 25063678 DOI: 10.1136/gutjnl-2013-305634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 07/01/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic HCV infection is associated with the development of hepatic fibrosis. The direct role of HCV in the fibrogenic process is unknown. Specifically, whether HCV is able to infect hepatic stellate cells (HSCs) is debated. OBJECTIVE To assess whether human HSCs are susceptible to HCV infection. DESIGN We combined a set of original HCV models, including the infectious genotype 2a JFH1 model (HCVcc), retroviral pseudoparticles expressing the folded HCV genotype 1b envelope glycoproteins (HCVpp) and a subgenomic genotype 1b HCV replicon, and two relevant cellular models, primary human HSCs from different patients and the LX-2 cell line, to assess whether HCV can infect/replicate in HSCs. RESULTS In contrast with the hepatocyte cell line Huh-7, neither infectious HCVcc nor HCVpp infected primary human HSCs or LX-2 cells. The cellular expression of host cellular factors required for HCV entry was high in Huh-7 cells but low in HSCs and LX-2 cells, with the exception of CD81. Finally, replication of a genotype 2a full-length RNA genome and a genotype 1b subgenomic replicon was impaired in primary human HSCs and LX-2 cells, which expressed low levels of cellular factors known to play a key role in the HCV life-cycle, suggesting that human HSCs are not permissive for HCV replication. CONCLUSIONS Human HSCs are refractory to HCV infection. Both HCV entry and replication are deficient in these cells, regardless of the HCV genotype and origin of the cells. Thus, HCV infection of HSCs does not play a role in liver fibrosis. These results do not rule out a direct role of HCV infection of hepatocytes in the fibrogenic process.
Collapse
Affiliation(s)
- Alexandre Florimond
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Philippe Chouteau
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Patrice Bruscella
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Jacques Le Seyec
- Inserm U1085, Institut de Recherche Santé Environnement & Travail (IRSET), Rennes, France Université de Rennes 1, Rennes, France Fédération de Recherche BIOSIT de Rennes, UMS 3480-US18, Rennes, France
| | - Emilie Mérour
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Nazim Ahnou
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France
| | - Ariane Mallat
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France Department of Hepatology and Gastroenterology, Hôpital Henri Mondor, Créteil, France
| | - Sophie Lotersztajn
- Centre de Recherche sur l'Inflammation, Inserm UMR 1149-Université Paris Diderot, Paris, France
| | - Jean-Michel Pawlotsky
- Team 'Pathophysiology and Therapy of Chronic Viral Hepatitis', Inserm U955, Créteil, France Université Paris-Est, Créteil, France National Reference Center for Viral Hepatitis B, C, and Delta, Department of Virology, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
37
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Xu J, Kisseleva T. Bone marrow-derived fibrocytes contribute to liver fibrosis. Exp Biol Med (Maywood) 2015; 240:691-700. [PMID: 25966982 DOI: 10.1177/1535370215584933] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide, activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen Type I. Hepatic stellate cells are considered to be the major(1) but not the only source of myofibroblasts in the injured liver.(2) Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells, and fibrocytes.(3) Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, this bone marrow (BM)-derived collagen Type I-producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury and their biological function. Furthermore, fibrocytes were implicated in the pathogenesis of sepsis and were shown to possess antimicrobial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with the high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here, we summarize our current understanding of the role of CD45(+)Collagen Type I(+) BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
39
|
Abstract
Nanoscale systems are currently under investigation for multiple different diagnostic and therapeutic applications. These systems can be used to identify pathologically changed tissues or to selectively deliver drugs to these sites; both applications have an extremely high potential to ameliorate therapeutic outcomes for patients. Tissues as well as single cells can be targeted because of the small size of these systems, which enables enhanced diagnosis and increased specificity of therapy. Drug loads can be delivered directly to the site of action, which can result in a reduction in incidence and severity of adverse systemic effects. Several nano-based platform technologies are currently under investigation for use in therapeutic approaches, mainly for anti-inflammatory and anti-cancer therapies. Although many nanoscale systems show promising therapeutic outcomes in preclinical studies, only a limited number are ready for clinical use. This Review will discuss the diverse nanomaterials currently available and the first specific uses for select gastroenterological and hepatological pathologies. The discussion of diagnostic and therapeutic applications will consider realities of market introduction of these sometimes very complex systems in light of remaining regulatory challenges and hurdles for industrial production.
Collapse
|
40
|
Fausther M, Dranoff JA. Beyond scar formation: portal myofibroblast-mediated angiogenesis in the fibrotic liver. Hepatology 2015; 61:766-8. [PMID: 25502320 PMCID: PMC5115210 DOI: 10.1002/hep.27653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Michel Fausther
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR
| | | |
Collapse
|
41
|
Lemoinne S, Cadoret A, Rautou PE, El Mourabit H, Ratziu V, Corpechot C, Rey C, Bosselut N, Barbu V, Wendum D, Feldmann G, Boulanger C, Henegar C, Housset C, Thabut D. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology 2015; 61:1041-55. [PMID: 25043701 DOI: 10.1002/hep.27318] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Liver fibrosis expanding from portal tracts and vascular remodeling are determinant factors in the progression of liver diseases to cirrhosis. In the present study, we examined the potential contribution of portal myofibroblasts (PMFs) to the vascular changes leading to cirrhosis. The analyses of liver cells based on the transcriptome of rat PMFs, compared to hepatic stellate cell HSC-derived myofibroblasts in culture, identified collagen, type XV, alpha 1 (COL15A1) as a marker of PMFs. Normal liver contained rare COL15A1-immunoreactive cells adjacent to the bile ducts and canals of Hering in the portal area. A marked increase in COL15A1 expression occurred together with that of the endothelial marker, von Willebrand factor, in human and rat liver tissue, at advanced stages of fibrosis caused by either biliary or hepatocellular injury. In cirrhotic liver, COL15A1-expressing PMFs adopted a perivascular distribution outlining vascular capillaries proximal to reactive ductules, within large fibrotic septa. The effect of PMFs on endothelial cells (ECs) was evaluated by in vitro and in vivo angiogenesis assays. PMF-conditioned medium increased the migration and tubulogenesis of liver ECs as well as human umbilical vein ECs and triggered angiogenesis within Matrigel plugs in mice. In coculture, PMFs developed intercellular junctions with ECs and enhanced the formation of vascular structures. PMFs released vascular endothelial growth factor (VEGF)A-containing microparticles, which activated VEGF receptor 2 in ECs and largely mediated their proangiogenic effect. Cholangiocytes potentiated the angiogenic properties of PMFs by increasing VEGFA expression and microparticle shedding in these cells. CONCLUSION PMFs are key cells in hepatic vascular remodeling. They signal to ECs through VEGFA-laden microparticles and act as mural cells for newly formed vessels, driving scar progression from portal tracts into the parenchyma.
Collapse
Affiliation(s)
- Sara Lemoinne
- Sorbonne Universités, UPMC Université Paris 06, CDR Saint-Antoine and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; INSERM, UMR_S 938, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu J, Cong M, Park TJ, Scholten D, Brenner DA, Kisseleva T. Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:34-47. [PMID: 25713803 DOI: 10.3978/j.issn.2304-3881.2015.01.01] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Abstract
Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I producing CD45(+) cells remain the most fascinating cells of the hematopoietic system. Despite recent reports on the emerging contribution of fibrocytes to fibrosis of parenchymal and non-parenchymal organs and tissues, fibrocytes remain the most understudied pro-fibrogenic cellular population. In the past years fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis by giving rise to collagen type I producing cells/myofibroblasts. Hence, the role of fibrocytes in fibrosis is not well defined since different studies often contain controversial results on the number of fibrocytes recruited to the site of injury versus the number of fibrocyte-derived myofibroblasts in the same fibrotic organ. Furthermore, many studies were based on the in vitro characterization of fibrocytes formed after outgrowth of BM and/or peripheral blood cultures. Therefore, the fibrocyte function(s) still remain(s) lack of understanding, mostly due to (I) the lack of mouse models that can provide complimentary in vivo real-time and cell fate mapping studies of the dynamic differentiation of fibrocytes and their progeny into collagen type I producing cells (and/or possibly, other cell types of the hematopoietic system); (II) the complexity of hematopoietic cell differentiation pathways in response to various stimuli; (III) the high plasticity of hematopoietic cells. Here we summarize the current understanding of the role of CD45(+) collagen type I(+) BM-derived cells in the pathogenesis of liver injury. Based on data obtained from various organs undergoing fibrogenesis or other type of chronic injury, here we also discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses.
Collapse
Affiliation(s)
- Jun Xu
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Cong
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tae Jun Park
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Scholten
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- 1 Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA ; 2 Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China ; 3 Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120752, Korea ; 4 Department of Medicine III, University Hospital Aachen, Aachen 52074, Germany ; 5 Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
43
|
Anti-fibrotic effects of Kyungheechunggan-tang on activated hepatic stellate cells and rat liver. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0046-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Kawada N, Parola M. Interactions of Stellate Cells with Other Non-Parenchymal Cells. STELLATE CELLS IN HEALTH AND DISEASE 2015:185-207. [DOI: 10.1016/b978-0-12-800134-9.00012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Koyama Y, Wang P, Brenner DA, Kisseleva T. Stellate Cells, Portal Myofibroblasts, and Epithelial-to-Mesenchymal Transition. STELLATE CELLS IN HEALTH AND DISEASE 2015:87-106. [DOI: 10.1016/b978-0-12-800134-9.00006-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
Tennakoon AH, Izawa T, Wijesundera KK, Murakami H, Katou-Ichikawa C, Tanaka M, Golbar HM, Kuwamura M, Yamate J. Immunohistochemical characterization of glial fibrillary acidic protein (GFAP)-expressing cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). ACTA ACUST UNITED AC 2014; 67:53-63. [PMID: 25446803 DOI: 10.1016/j.etp.2014.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022]
Abstract
Hepatic stellate cells, the principal fibrogenic cell type in the liver, are known to express the astrocyte marker glial fibrillary acidic protein (GFAP). However, the exact role of GFAP-expressing cells in liver fibrosis remains to be elucidated. In this study, cellular properties of GFAP-expressing cells were investigated in a rat model of liver cirrhosis. Six-week-old male F344 rats were injected intraperitoneally with thioacetamide (100 mg/kg BW, twice a week) and examined at post first injection weeks 5, 10, 15, 20 and 25. Appearance of GFAP-expressing myofibroblasts peaked at week 15, associated with fibrosis progression. The majority of GFAP-expressing myofibroblasts co-expressed vimentin, desmin and alpha-smooth muscle actin. Some GFAP-positive myofibroblasts co-expressed nestin (neural stem cell marker), while a few co-expressed A3 (mesenchymal stem cell marker) and Thy-1 (immature mesenchymal cell marker). A few GFAP expressing cells underwent both mitosis and apoptosis. These results indicate that there is a dynamic participation of GFAP-expressing myofibroblasts in rat liver cirrhosis, and that they are mainly derived from hepatic stellate cells, and partly from cells in the stem cell lineage. These findings, which were shown for the first time in detail, would be useful to understand the role of GFAP-expressing myofibroblasts in the pathogenesis of chemically induced liver cirrhosis.
Collapse
Affiliation(s)
- Anusha Hemamali Tennakoon
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Kavindra Kumara Wijesundera
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Hiroshi Murakami
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Chisa Katou-Ichikawa
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Hossain M Golbar
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58, Rinku-ourai-kita, Izumisano 598-0012, Osaka, Japan.
| |
Collapse
|
47
|
Kim KS, Yang HJ, Lee JY, Na YC, Kwon SY, Kim YC, Lee JH, Jang HJ. Effects of β-sitosterol derived from Artemisia capillaris on the activated human hepatic stellate cells and dimethylnitrosamine-induced mouse liver fibrosis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:363. [PMID: 25262005 PMCID: PMC4193130 DOI: 10.1186/1472-6882-14-363] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023]
Abstract
Background β-sitosterol is a cholesterol-like phytosterol, which widely distributed in the plant kingdom. Here, anti-fibrotic effect of the β-sitosterol was studied using the activated human hepatic stellate cell (HSC) model and dimethylnitrosamine (DMN)-induced mouse hepatic fibrosis model. Method HSCs were activated by transforming growth factor-β (TGF-β) and the collagen-1 and α-smooth muscle actin (α-SMA) expressions were measured at the mRNA and protein level. We also studied the effect β-sitosterol using DMN-induced mouse hepatic fibrosis model. We then measured the collagen-1 and α-SMA expression levels in vivo to investigate anti-hepatofibrotic effect of β-sitosterol, at both of the mRNA and protein level. Results β-sitosterol down regulated the mRNA and protein expression levels of collagen-1 and α-SMA in activated HSC. Oral administration of the β-sitosterol successfully alleviated the DMN-induced mouse liver damage and prevented collagen accumulation. The mRNA and protein expression levels of collagen-1 and α-SMA were also down regulated in β-sitosterol treated mouse group. Conclusions This study shows the effect of β-sitosterol on the TGF-β -or DMN-induced hepatofibrosis. Hence, we demonstrate the β-sitosterol as a potential therapeutic agent for the hepatofibrosis.
Collapse
|
48
|
Abstract
Hepatic myofibroblasts are activated in response to chronic liver injury of any etiology to produce a fibrous scar. Despite extensive studies, the origin of myofibroblasts in different types of fibrotic liver diseases is unresolved. To identify distinct populations of myofibroblasts and quantify their contribution to hepatic fibrosis of two different etiologies, collagen-α1(I)-GFP mice were subjected to hepatotoxic (carbon tetrachloride; CCl4) or cholestatic (bile duct ligation; BDL) liver injury. All myofibroblasts were purified by flow cytometry of GFP(+) cells and then different subsets identified by phenotyping. Liver resident activated hepatic stellate cells (aHSCs) and activated portal fibroblasts (aPFs) are the major source (>95%) of fibrogenic myofibroblasts in these models of liver fibrosis in mice. As previously reported using other methodologies, hepatic stellate cells (HSCs) are the major source of myofibroblasts (>87%) in CCl4 liver injury. However, aPFs are a major source of myofibroblasts in cholestatic liver injury, contributing >70% of myofibroblasts at the onset of injury (5 d BDL). The relative contribution of aPFs decreases with progressive injury, as HSCs become activated and contribute to the myofibroblast population (14 and 20 d BDL). Unlike aHSCs, aPFs respond to stimulation with taurocholic acid and IL-25 by induction of collagen-α1(I) and IL-13, respectively. Furthermore, BDL-activated PFs express high levels of collagen type I and provide stimulatory signals to HSCs. Gene expression analysis identified several novel markers of aPFs, including a mesothelial-specific marker mesothelin. PFs may play a critical role in the pathogenesis of cholestatic liver fibrosis and, therefore, serve as an attractive target for antifibrotic therapy.
Collapse
|
49
|
Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014; 5:167. [PMID: 25100997 PMCID: PMC4105921 DOI: 10.3389/fphar.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts, and deposition of extracellular matrix (ECM). Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes) to the injured liver. Hepatic macrophages (Kupffer cells) produce TGFβ1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGFβ1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident hepatic stellate cells and portal fibroblasts are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g., stop collagen production and partially restore expression of lipogenic genes). Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases) and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.
Collapse
Affiliation(s)
- Jun Xu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Xiao Liu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Yukinori Koyama
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Ping Wang
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tian Lan
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In-Gyu Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In H Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Hsiao-Yen Ma
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tatiana Kisseleva
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
50
|
Wells RG. The portal fibroblast: not just a poor man's stellate cell. Gastroenterology 2014; 147:41-7. [PMID: 24814904 PMCID: PMC4090086 DOI: 10.1053/j.gastro.2014.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022]
Abstract
Portal fibroblasts, the resident fibroblasts of the portal tract, are found in the mesenchyme surrounding the bile ducts. Their roles in liver homeostasis and response to injury are undefined and controversial. Although portal fibroblasts almost certainly give rise to myofibroblasts during the development of biliary fibrosis, recent lineage tracing studies suggest that their contribution to fibrogenesis is limited compared with that of hepatic stellate cells. Other functions of portal fibroblasts include participation in the peribiliary stem cell niche, regulation of cholangiocyte proliferation, and deposition of specific matrix proteins. Portal fibroblasts synthesize elastin and other components of microfibrils; these may serve structural roles, providing stability to ducts and the vasculature under conditions of increased ductal pressure, or could regulate the bioavailability of the fibrogenic transforming growth factor β in response to injury. Viewing portal fibroblasts in the context of fibroblast populations throughout the body and studying their niche-specific roles in matrix deposition and epithelial regulation could yield new insights into their contributions in the normal and injured liver. Understanding the functions of portal fibroblasts will require us to view them as more than just an alternative to hepatic stellate cells in fibrosis.
Collapse
Affiliation(s)
- Rebecca G Wells
- Departments of Medicine (GI) and Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|