1
|
Liu J, Michalski JR, Wang Z, Gao WS. Atmospheric oxidation drove climate change on Noachian Mars. Nat Commun 2024; 15:5648. [PMID: 38969635 PMCID: PMC11226428 DOI: 10.1038/s41467-024-47326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/23/2024] [Indexed: 07/07/2024] Open
Abstract
Modern Mars is bipolar, cold, and oxidizing, while early Mars was characterized by icy highlands, episodic warmth and reducing atmosphere. The timing and association of the climate and redox transitions remain inadequately understood. Here we examine the spatiotemporal distribution of the low surface iron abundance in the ancient Martian terrains, revealing that iron abundance decreases with elevation in the older Noachian terrains but with latitude in the younger Noachian terrains. These observations suggest: (a) low-temperature conditions contribute to surface iron depletion, likely facilitated by anoxic leaching through freeze-thaw cycles under a reducing atmosphere, and (b) temperature distribution mode shifted from elevation-dominant to latitude-dominant during the Noachian period. Additionally, we find iron leaching intensity decreases from the Early to Late Noachian epoch, suggesting a gradual atmospheric oxidation coupled with temperature mode transition during the Noachian period. We think atmospheric oxidation led to Mars becoming cold and bipolar in its early history.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Hong Kong, China.
- NWU-HKU Joint Center of Earth and Planetary Sciences, Department of Earth Sciences, The University of Hong Kong, Hong Kong, China.
| | - Joseph R Michalski
- Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Hong Kong, China.
| | - Zhicheng Wang
- Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Hong Kong, China
| | - Wen-Sheng Gao
- School of Earth Resources, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
2
|
Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh–Nagumo Model of Nerve Cell Dynamics. Bull Math Biol 2022; 84:145. [DOI: 10.1007/s11538-022-01100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
|
3
|
Treiman AH. Uninhabitable and Potentially Habitable Environments on Mars: Evidence from Meteorite ALH 84001. ASTROBIOLOGY 2021; 21:940-953. [PMID: 33857382 DOI: 10.1089/ast.2020.2306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian meteorite ALH 84001 formed before ∼4.0 Ga, so it could have preserved information about habitability on early Mars and habitability since then. ALH 84001 is particularly important as it contains carbonate (and other) minerals that were deposited by liquid water, raising the chance that they may have formed in a habitable environment. Despite vigorous efforts from the scientific community, there is no accepted evidence that ALH 84001 contains traces or markers of ancient martian life-all the purported signs have been shown to be incorrect or ambiguous. However, the meteorite provides evidence for three distinct episodes of potentially habitable environments on early Mars. First is evidence that the meteorite's precursors interacted with clay-rich material, formed approximately at 4.2 Ga. Second is that igneous olivine crystals in ALH 84001 were partially dissolved and removed, presumably by liquid water. Third is, of course, the deposition of the carbonate globules, which occurred at ∼15-25°C and involved near-neutral to alkaline waters. The environments of olivine dissolution and carbonate deposition are not known precisely; hydrothermal and soil environments are current possibilities. By analogies with similar alteration minerals and sequences in the nakhlite martian meteorites and volcanic rocks from Spitzbergen (Norway), a hydrothermal environment is favored. As with the nakhlite alterations, those in ALH 84001 likely formed in a hydrothermal system related to a meteoroid impact event. Following deposition of the carbonates (at 3.95 Ga), ALH 84001 preserves no evidence of habitable environments, that is, interaction with water. The meteorite contains several materials (formed by impact shock at ∼3.9 Ga) that should have reacted readily with water to form hydrous silicates, but there is no evidence any formed.
Collapse
Affiliation(s)
- Allan H Treiman
- Lunar and Planetary Institute / Universities Space Research Association, Houston, Texas, USA
| |
Collapse
|
4
|
Hallis LJ. D/H ratios of the inner Solar System. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2015.0390. [PMID: 28416726 PMCID: PMC5394254 DOI: 10.1098/rsta.2015.0390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 05/23/2023]
Abstract
The original hydrogen isotope (D/H) ratios of different planetary bodies may indicate where each body formed in the Solar System. However, geological and atmospheric processes can alter these ratios through time. Over the past few decades, D/H ratios in meteorites from Vesta and Mars, as well as from S- and C-type asteroids, have been measured. The aim of this article is to bring together all previously published data from these bodies, as well as the Earth, in order to determine the original D/H ratio for each of these inner Solar System planetary bodies. Once all secondary processes have been stripped away, the inner Solar System appears to be relatively homogeneous in terms of water D/H, with the original water D/H ratios of Vesta, Mars, the Earth, and S- and C-type asteroids all falling between δD values of -100‰ and -590‰. This homogeneity is in accord with the 'Grand tack' model of Solar System formation, where giant planet migration causes the S- and C-type asteroids to be mixed within 1 AU to eventually form the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Collapse
Affiliation(s)
- L J Hallis
- School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Perry RS, Hartmann WK. Mars primordial crust: unique sites for investigating proto-biologic properties. ORIGINS LIFE EVOL B 2006; 36:533-40. [PMID: 17131091 DOI: 10.1007/s11084-006-9037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet's environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal "missing link" proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.
Collapse
Affiliation(s)
- Randall S Perry
- Department of Earth Science and Engineering, South Kensington Campus, Impacts and Astromaterials Research Centre, Imperial College, London, UK.
| | | |
Collapse
|
6
|
Treiman AH. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. ASTROBIOLOGY 2003; 3:369-392. [PMID: 14577885 DOI: 10.1089/153110703769016451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).
Collapse
|
7
|
|
8
|
Vecht A, Ireland TG. The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. GEOCHIMICA ET COSMOCHIMICA ACTA 2000; 64:2719-2725. [PMID: 11543352 DOI: 10.1016/s0016-7037(00)00381-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A simple synthesis of various forms of calcium carbonate with spherical and 'floral' morphologies is reported. Vaterite formation occurs at approximately 25 degrees C, aragonite at approximately 70 degrees C and calcite at about approximately 80 degrees C. These are produced when CO2 is reacted with an aqueous solution of calcium chloride in the presence of ammonia. These conditions may have existed at the surface of Mars in the past, leading us to conclude that such mineral formations may be common there. Although the initial phases are modified over time with changing temperature and pressure conditions, they still influence the final morphology of the carbonates observed. A comparison of these structures with those found in the Martian meteorite ALH84001 suggests, but does not confirm, a non-biogenic origin for the ALH84001 carbonates.
Collapse
Affiliation(s)
- A Vecht
- University of Greenwich Centre for Phosphors and Display Materials, London, UK.
| | | |
Collapse
|
9
|
Borg LE, Connelly JN, Nyquist LE, Shih CY, Wiesmann H, Reese Y. The age of the carbonates in martian meteorite ALH84001. Science 1999; 286:90-4. [PMID: 10506566 DOI: 10.1126/science.286.5437.90] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The age of secondary carbonate mineralization in the martian meteorite ALH84001 was determined to be 3.90 +/- 0.04 billion years by rubidium-strontium (Rb-Sr) dating and 4.04 +/- 0.10 billion years by lead-lead (Pb-Pb) dating. The Rb-Sr and Pb-Pb isochrons are defined by leachates of a mixture of high-graded carbonate (visually estimated as approximately 5 percent), whitlockite (trace), and orthopyroxene (approximately 95 percent). The carbonate formation age is contemporaneous with a period in martian history when the surface is thought to have had flowing water, but also was undergoing heavy bombardment by meteorites. Therefore, this age does not distinguish between aqueous and impact origins for the carbonates.
Collapse
Affiliation(s)
- L E Borg
- SN2/NASA Johnson Space Center Houston, TX 77058, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Scott ER. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001. JOURNAL OF GEOPHYSICAL RESEARCH 1999; 104:3803-13. [PMID: 11542931 DOI: 10.1029/1998je900034] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A review of the mineralogical, isotopic, and chemical properties of the carbonates and associated submicrometer iron oxides and sulfides in Martian meteorite ALH84001 provides minimal evidence for microbial activity. Some magnetites resemble those formed by magnetotactic microorganisms but cubic crystals <50 nm in size and elongated grains <25 nm long are too small to be single-domain magnets and are probably abiogenic. Magnetites with shapes that are clearly unique to magnetotactic bacteria appear to be absent in ALH84001. Magnetosomes have not been reported in plutonic rocks and are unlikely to have been transported in fluids through fractures and uniformly deposited where abiogenic magnetite was forming epitaxially on carbonate. Submicrometer sulfides and magnetites probably formed during shock heating. Carbonates have correlated variations in Ca, Mg, and 18O/16O, magnetite-rich rims, and they appear to be embedded in pyroxene and plagiociase glass. Carbonates with these features have not been identified in carbonaceous chondrites and terrestrial rocks, suggesting that the ALH84001 carbonates have a unique origin. Carbonates and hydrated minerals in ALH84001, like secondary phases in other Martian meteorites, have O and H isotopic ratios favoring formation from fluids that exchanged with the Martian atmosphere. I propose that carbonates originally formed in ALH84001 from aqueous fluids and were subsequently shock heated and vaporized. The original carbonates were probably dolomite-magnesite-siderite assemblages that formed in pores at interstitial sites with minor sulfate, chloride, and phyllosilicates. These phases, like many other volatile-rich phases in Martian meteorites, may have formed as evaporate deposits from intermittent floods.
Collapse
Affiliation(s)
- E R Scott
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, USA.
| |
Collapse
|
11
|
Warren PH. Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. JOURNAL OF GEOPHYSICAL RESEARCH 1998; 103:16759-73. [PMID: 11542298 DOI: 10.1029/98je01544] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-temperature models for origin of the carbonates in Martian meteorite ALH84001 are implausible. The impact metasomatism model, invoking reaction between CO2 rich fluid and the host orthopyroxenite, requires conversion of olivine into orthopyroxene, yet olivine in ALH84001 shows no depletion in carbonate-rich areas; or else conversion of orthopyroxene into silica, which should have yielded a higher silica/carbonate ratio. The impact melt model implies that the fracture-linked carbonates, as products of melt injection, should appear as continuous planar veins, but in many areas they do not. Both vapor deposition and impact melting seem inconsistent with the zoned poikilotopic texture of many large carbonates. The popular hydrothermal model is inconsistent with the virtual absence of secondary hydrated silicates in ALH84001. Prior brecciation should have facilitated alteration. Hydrothermal fluids would be warm, and rate of hydration of mafic silicates obeys an Arrhenius law, at least up to approximately 100 degrees C. Most important, hydrothermal episodes tend to last for many years. Many areas of the ancient Martian crust show evidence for massive flooding. I propose that the carbonates formed as evaporite deposits from floodwaters that percolated through the fractures of ALH84001, but only briefly, as evaporation and groundwater flow caused the water table to quickly recede beneath the level of this rock during the later stages of the flood episode. The setting might have been a layer of megaregolith beneath a surface catchment of pooled floodwater, analogous to a playa lake. Carbonate precipitation would occur in response to evaporative concentration of the water. To explain the scarcity of sulfates in ALH84001, the water table must be assumed to recede quickly relative to the rate of evaporation. During the period when ALH84001 was above the water table, evaporation would have slowed, as the evaporation front passed beneath the surface of the debris layer, and possibly earlier, if the shrinking pool of surface water developed a porous sulfate crust. Alternatively, ALH84001 may have developed as a Martian form of calcrete, i.e., the evaporating flood(s) may have been entirely below ground as it (they) passed slowly through ALH84001. The greatest advantage of the flood evaporite model is that it exposes ALH84001 to carbonate precipitation without prolonged exposure to aqueous alteration. The model also seems consistent with the heavy and extremely heterogeneous oxygen isotopic compositions of the carbonates. However, this hypothesis seems no more than marginally consistent with the suggestion of McKay et al. [1996] that the carbonates are biogenic.
Collapse
Affiliation(s)
- P H Warren
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA
| |
Collapse
|
12
|
Scott ER, Krot AN, Yamaguchi A. Carbonates in fractures of Martian meteorite Allan Hills 84001: petrologic evidence for impact origin. METEORITICS & PLANETARY SCIENCE 1998; 33:709-719. [PMID: 11543072 DOI: 10.1111/j.1945-5100.1998.tb01677.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbonates in Martian meteorite Allan Hills 84001 occur as grains on pyroxene grain boundaries, in crushed zones, and as disks, veins, and irregularly shaped grains in healed pyroxene fractures. Some carbonate disks have tapered Mg-rich edges and are accompanied by smaller, thinner and relatively homogeneous, magnesite microdisks. Except for the microdisks, all types of carbonate grains show the same unique chemical zoning pattern on MgCO3-FeCO3-CaCO3 plots. This chemical characteristic and the close spatial association of diverse carbonate types show that all carbonates formed by a similar process. The heterogeneous distribution of carbonates in fractures, tapered shapes of some disks, and the localized occurrence of Mg-rich microdisks appear to be incompatible with growth from an externally derived CO2-rich fluid that changed in composition over time. These features suggest instead that the fractures were closed as carbonates grew from an internally derived fluid and that the microdisks formed from a residual Mg-rich fluid that was squeezed along fractures. Carbonate in pyroxene fractures is most abundant near grains of plagioclase glass that are located on pyroxene grain boundaries and commonly contain major or minor amounts of carbonate. We infer that carbonates in fractures formed from grain boundary carbonates associated with plagiociase that were melted by impact and dispersed into the surrounding fractured pyroxene. Carbonates in fractures, which include those studied by McKay et al. (1996), could not have formed at low temperatures and preserved mineralogical evidence for Martian organisms.
Collapse
Affiliation(s)
- E R Scott
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu 96822, USA.
| | | | | |
Collapse
|
13
|
Treiman AH. The history of Allan Hills 84001 revised: multiple shock events. METEORITICS & PLANETARY SCIENCE 1998; 33:753-764. [PMID: 11543074 DOI: 10.1111/j.1945-5100.1998.tb01681.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The geologic history of Martian meteorite Allan Hills (ALH) 84001 is more complex than previously recognized, with evidence for four or five crater-forming impacts onto Mars. This history of repeated deformation and shock metamorphism appears to weaken some arguments that have been offered for and against the hypothesis of ancient Martian life in ALH 84001. Allan Hills 84001 formed originally from basaltic magma. Its first impact event (I1) is inferred from the deformation (D1) that produced the granular-textured bands ("crush zones") that transect the original igneous fabric. Deformation D1 is characterized by intense shear and may represent excavation or rebound flow of rock beneath a large impact crater. An intense thermal metamorphism followed D1 and may be related to it. The next impact (I2) produced fractures, (Fr2) in which carbonate "pancakes" were deposited and produced feldspathic glass from some of the igneous feldspars and silica. After I2, carbonate pancakes and globules were deposited in Fr2 fractures and replaced feldspathic glass and possibly crystalline silicates. Next, feldspars, feldspathic glass, and possibly some carbonates were mobilized and melted in the third impact (I3). Microfaulting, intense fracturing, and shear are also associated with I3. In the fourth impact (I4), the rock was fractured and deformed without significant heating, which permitted remnant magnetization directions to vary across fracture surfaces. Finally, ALH 84001 was ejected from Mars in event I5, which could be identical to I4. This history of multiple impacts is consistent with the photogeology of the Martian highlands and may help resolve some apparent contradictions among recent results on ALH 84001. For example, the submicron rounded magnetite grains in the carbonate globules could be contemporaneous with carbonate deposition, whereas the elongate magnetite grains, epitaxial on carbonates, could be ascribed to vapor-phase deposition during I3.
Collapse
Affiliation(s)
- A H Treiman
- Lunar and Planetary Institute, Houston, Texas 77058-1113, USA.
| |
Collapse
|