1
|
Kim SY, Bae EB, Huh JW, Ahn JJ, Bae HY, Cho WT, Huh JB. Bone Regeneration Using a Three-Dimensional Hexahedron Channeled BCP Block Combined with Bone Morphogenic Protein-2 in Rat Calvarial Defects. MATERIALS 2019; 12:ma12152435. [PMID: 31370160 PMCID: PMC6696350 DOI: 10.3390/ma12152435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
It is important to obtain sufficient bone mass before implant placement on alveolar bone, and synthetic bone such as biphasic calcium phosphate (BCP) has been studied to secure this. This study used a BCP block bone with a specific structure of the three-dimensional (3D) hexahedron channel and coating with recombinant human bone morphogenetic protein-2 (rhBMP-2) impregnated carboxymethyl cellulose (CMC) was used to examine the enhancement of bone regeneration of this biomaterial in rat calvarial defect. After the preparation of critical-size calvarial defects in fifteen rats, defects were divided into three groups and were implanted with the assigned specimen (n = 5): Boneplant (untreated 3D hexahedron channeled BCP block), Boneplant/CMC (3D hexahedron channeled BCP block coated with CMC), and Boneplant/CMC/BMP (3D hexahedron channeled BCP block coated with CMC containing rhBMP-2). After 4 weeks, the volumetric, histologic, and histometric analyses were conducted to measure the newly formed bone. Histologically, defects in the Boneplant/CMC/BMP group were almost completely filled with new bone compared to the Boneplant and Boneplant/CMC groups. The new bone volume (P < 0.05) and area (P < 0.001) in the Boneplant/CMC/BMP group (20.12% ± 2.17, 33.79% ± 3.66) were much greater than those in the Boneplant (10.77% ± 4.8, 16.48% ± 9.11) and Boneplant/CMC (10.72% ± 3.29, 16.57% ± 8.94) groups, respectively. In conclusion, the 3D hexahedron channeled BCP block adapted rhBMP-2 with carrier CMC showed high possibility as an effective bone graft material.
Collapse
Affiliation(s)
- So-Yeun Kim
- Department of Prosthodontics, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jae-Woong Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Seroun Dental Clinic, Suyeong-ro, Nam-gu, Busan 48445, Korea
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hyun-Young Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
2
|
Andrzejowski P, Giannoudis PV. The 'diamond concept' for long bone non-union management. J Orthop Traumatol 2019; 20:21. [PMID: 30976944 PMCID: PMC6459453 DOI: 10.1186/s10195-019-0528-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 11/15/2022] Open
Abstract
Long bone non-union continues to be a significant worldwide problem. Since its inception over a decade ago, the ‘diamond concept’, a conceptual framework of what is essential for a successful bone healing response, has gained great acceptance for assessing and planning the management of fracture non-unions. Herein, we discuss the epidemiology of non-unions, the basic science of bone healing in the context of the diamond concept, the currently available results and areas for future research.
Collapse
Affiliation(s)
- Paul Andrzejowski
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Clarendon Wing, Floor D, Great George Street, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, Clarendon Wing, Floor D, Great George Street, Leeds General Infirmary, Leeds, LS1 3EX, UK.
| |
Collapse
|
3
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Oshiro JA, Scardueli CR, de Oliveira GJPL, Marcantonio RAC, Chiavacci LA. Development of ureasil–polyether membranes for guided bone regeneration. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa56a6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Verdonk R, Goubau Y, Almqvist FK, Verdonk P. Biological methods to enhance bone healing and fracture repair. Arthroscopy 2015; 31:715-8. [PMID: 25682328 DOI: 10.1016/j.arthro.2014.11.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 02/02/2023]
Abstract
This article looks into normal physiological fracture healing with special emphasis on the diamond concept. A precise definition of nonunion of long bones is described. Most often inadequate fixation (too rigid or too loose) is the reason for nonunion in long bone fractures. Because a critical bone defect cannot be bridged, it may lead directly or indirectly (lack of fixation) to nonunion. Individual inadequate local biological characteristics are also often found to be the cause; poor soft tissue coverage as well as a lack of periosteum and muscle or fascia or skin defects can lead to compromised vascularity in situ. Systemic factors are now much more recognized, e.g., smoking, diabetes, and cachexia, as well as the limited impact of some medications, e.g., nonsteroidal anti-inflammatory drugs and steroids. Today's mode of treatment for nonunion is approached in this article, and suggestions for appropriate treatment of long bone nonunion is presented.
Collapse
Affiliation(s)
| | - Yannick Goubau
- Department of Orthopaedic Surgery and Traumatology, University Hospital, Gent, Belgium
| | | | - Peter Verdonk
- Orthopaedic and Trauma Department, Monica Ziekenhuizen, Antwerp, Belgium
| |
Collapse
|
6
|
Zhao D, Lei L, Wang S, Nie H. Understanding cell homing-based tissue regeneration from the perspective of materials. J Mater Chem B 2015; 3:7319-7333. [DOI: 10.1039/c5tb01188d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The triad of cell homing-based tissue engineering.
Collapse
Affiliation(s)
- Dapeng Zhao
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Lei Lei
- Department of Orthodontics
- Xiangya Stomatological Hospital
- Central South University
- Changsha 410008
- China
| | - Shuo Wang
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| | - Hemin Nie
- Department of Biomedical Engineering
- College of Biology
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
7
|
Rousseau M, Anderson DE, Lillich JD, Apley MD, Jensen PJ, Biris AS. In vivo assessment of a multicomponent and nanostructural polymeric matrix as a delivery system for antimicrobials and bone morphogenetic protein-2 in a unicortical tibial defect in goats. Am J Vet Res 2014; 75:240-50. [DOI: 10.2460/ajvr.75.3.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Bertesteanu S, Triaridis S, Stankovic M, Lazar V, Chifiriuc MC, Vlad M, Grigore R. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int J Pharm 2013; 463:119-26. [PMID: 24361265 DOI: 10.1016/j.ijpharm.2013.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022]
Abstract
Acute and chronic wounds represent a very common health problem in the entire world. The dermal wounds are colonized by aerobic and anaerobic bacterial and fungal strains, most of them belonging to the resident microbiota of the surrounding skin, oral cavity and gut, or from the external environment, forming polymicrobial communities called biofilms, which are prevalent especially in chronic wounds. A better understanding of the precise mechanisms by which microbial biofilms delay repair processes together with optimizing methods for biofilm detection and prevention may enhance opportunities for chronic wounds healing. The purpose of this minireview is to assess the role of polymicrobial biofilms in the occurrence and evolution of wound infections, as well as the current and future preventive and therapeutic strategies used for the management of polymicrobial wound infections.
Collapse
Affiliation(s)
- Serban Bertesteanu
- "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania; Otorhinolaryngology, "Carol Davila University" of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania
| | - Stefanos Triaridis
- Otolaryngology Department, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, Greece
| | - Milan Stankovic
- Otolaryngology and Ophthalmology Department, Faculty of Medicine, University of Nis, Serbia
| | - Veronica Lazar
- University of Bucharest, Faculty of Biology, Microbiology Department, Ale. Portocalelor 1-3, 60101 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Microbiology Department, Ale. Portocalelor 1-3, 60101 Bucharest, Romania.
| | - Mihaela Vlad
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Raluca Grigore
- "Carol Davila" University of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania; Otorhinolaryngology, "Carol Davila University" of Medicine and Pharmacy, Traian Vuia no. 6, Bucharest 020956, Romania
| |
Collapse
|
9
|
Rentsch C, Schneiders W, Hess R, Rentsch B, Bernhardt R, Spekl K, Schneider K, Scharnweber D, Biewener A, Rammelt S. Healing properties of surface-coated polycaprolactone-co-lactide scaffolds: A pilot study in sheep. J Biomater Appl 2013; 28:654-66. [DOI: 10.1177/0885328212471409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of this pilot study was to evaluate the bioactive, surface-coated polycaprolactone-co-lactide scaffolds as bone implants in a tibia critical size defect model. Polycaprolactone-co-lactide scaffolds were coated with collagen type I and chondroitin sulfate and 30 piled up polycaprolactone-co-lactide scaffolds were implanted into a 3 cm sheep tibia critical size defect for 3 or 12 months ( n = 5 each). Bone healing was estimated by quantification of bone volume in the defects on computer tomography and microcomputer tomography scans, plain radiographs, biomechanical testing as well as by histological evaluations. New bone formation occurred at the proximal and distal ends of the tibia in both groups. The current pilot study revealed a mean new bone formation of 63% and 172% after 3 and 12 months, respectively. The bioactive, surface coated, highly porous three-dimensional polycaprolactone-co-lactide scaffold stack itself acted as a guide rail for new bone formation along and into the implant. These preliminary data are encouraging for future experiments with a larger group of animals.
Collapse
Affiliation(s)
- Claudia Rentsch
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Wolfgang Schneiders
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Ricarda Hess
- Max Bergmann Center of Biomaterials, Dresden, Germany
| | | | | | | | - Konrad Schneider
- Department of Mechanic und Structure, Leibniz Institute of Polymer Research Dresden e.V., Dresden, Germany
| | - Dieter Scharnweber
- Max Bergmann Center of Biomaterials, Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Achim Biewener
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stefan Rammelt
- Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
10
|
Ma J, Granton PV, Holdsworth DW, Turley EA. Oral administration of hyaluronan reduces bone turnover in ovariectomized rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:339-345. [PMID: 23256527 DOI: 10.1021/jf300651d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of oral hyaluronan (HA) on bone loss in ovariectomized (OVX) 3-month-old rats was measured using serum markers of bone turnover and bone mineral density. OVX rats were administered 1 mg/kg HA (OVX + HA) or phosphate-buffered saline (PBS) (OVX + PBS) by oral gavage (5 days/week for 54 days). Additional controls included sham ovariectomy with PBS gavage (Sham + PBS) and no treatment. Oral administration of HA resulted in approximately 50% (p < 0.05) increases in serum HA. Gel filtration analyses showed this was high molecular weight HA (300-500 kDa). Osteopenia was mild due to the young age of the animals. Thus, ovariectomy resulted in a 30% increase in serum collagen N-terminal telopeptides (p < 0.001), a 20% increase in serum nitrate/nitrite levels (p = 0.05), and a 5-6% decrease in femur bone mineral density/content (p < 0.05). HA gavage blunted the development of osteopenia in this model as determined by preventing the 30% increase in serum collagen N-terminal telopeptide levels (p < 0.001) and by reducing bone mineral content loss from 6 to 4%. These results show that oral supplements of HA (gavage solution, 0.12% solution) significantly reduce bone turnover associated with mild osteopenia in rats.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Density
- Bone Density Conservation Agents/administration & dosage
- Bone Density Conservation Agents/blood
- Bone Density Conservation Agents/metabolism
- Bone Density Conservation Agents/therapeutic use
- Bone Diseases, Metabolic/blood
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/prevention & control
- Bone Remodeling
- Dietary Supplements
- Female
- Humans
- Hyaluronic Acid/administration & dosage
- Hyaluronic Acid/blood
- Hyaluronic Acid/metabolism
- Hyaluronic Acid/therapeutic use
- Osteoporosis, Postmenopausal/blood
- Osteoporosis, Postmenopausal/etiology
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy/adverse effects
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jenny Ma
- London Regional Cancer Program, London Health Sciences Center, Victoria Hospital, and Department of Biochemistry and Oncology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: role of growth factors in normal and pathological wound healing: therapeutic potential and methods of delivery. Adv Skin Wound Care 2012; 25:349-70. [PMID: 22820962 DOI: 10.1097/01.asw.0000418541.31366.a3] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is the second of 2 articles that discuss the biology and pathophysiology of wound healing, reviewing the role that growth factors play in this process and describing the current methods for growth factor delivery into the wound bed.
Collapse
|
12
|
Abstract
INTRODUCTION The biological process of fracture healing is complex with influences that are both patient-dependent and related to the trauma experienced and stability of the fracture. Fracture healing complications negatively affect the patient's quality of life, even more when fractures occur in the elderly osteoporotic patients. AREAS COVERED In the polytherapy for bone regeneration, a high success rate was obtained with the use of growth factors, osteogenic cells, and osteoconductive factors. There have been high expectations that treatment with drugs active on bone remodeling would be efficient for acceleration of fracture healing. A literature search was undertaken using wording like "drug or pharmacology of fracture healing." This report will review the systemic pharmacological agents for which clinical trials documenting their efficacy on bone healing have been carried out or are underway. EXPERT OPINION At present the use of systemic pharmacological agents to enhance fracture healing in the clinical setting is still controversial. However, future clinical trials will offer the possibility to obtain data that will make possible the registration of a drug as a "healer."
Collapse
Affiliation(s)
- Maria Luisa Brandi
- University of Florence, Department of Surgery and Translational Medicine, Mineral and Bone Metabolic Diseases Unit, Largo Palagi, 1, 50100 Florence, Italy.
| |
Collapse
|
13
|
Dinopoulos H, Dimitriou R, Giannoudis PV. Bone graft substitutes: What are the options? Surgeon 2012; 10:230-9. [PMID: 22682580 DOI: 10.1016/j.surge.2012.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Currently, a number of bone grafting materials are available in the clinical setting to enhance bone regeneration, varying from autologous bone to several bone graft substitutes. Although autologous bone remains the "gold standard" for stimulating bone repair and regeneration, the morbidity from its harvesting and its restricted availability generated the need for the development of other materials or strategies either to substitute autologous bone graft or expand its limited supply. Bone graft substitutes can possess one or more components: an osteoconductive matrix, acting as a scaffold; osteoinductive proteins and other growth factors to induce differentiation and proliferation of bone-forming cells; and osteogenic cells for bone formation. Based on their distinct properties, all these bone grafting alternatives have specific indications, and can be used either alone or in combination. In this review, we summarise the available bone grafting materials, focussing mainly on the various bone substitutes and their characteristics, in an effort to specify the indications for their use.
Collapse
Affiliation(s)
- Haralambos Dinopoulos
- Academic Department of Trauma & Orthopaedic Surgery, Clarendon Wing, Floor A, Great George Street, Leeds General Infirmary, LS1 3EX Leeds, UK
| | | | | |
Collapse
|
14
|
|
15
|
Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: concepts and evidence. Injury 2011; 42:609-13. [PMID: 21489529 DOI: 10.1016/j.injury.2011.03.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 03/17/2011] [Indexed: 02/02/2023]
Abstract
Over the last decades, the medical world has advanced dramatically in the understanding of fracture repair. The three components needed for fracture healing are osteoconduction, osteoinduction and osteogenesis. With newly designed scaffolds, ex vivo produced growth factors and isolated stem cells, most of the challenges of critical size bone defects have been resolved in vitro, and in some cases in animal models as well. However, there are still challenges needed to be overcome before these technologies can be fully converted from the bench to the bedside. These technological and biological advancements need to be converted to mass production of affordable products that can be used in every part of the world. Vascularity, full substation of scaffolds by native bone, and bio-safety are the three most critical steps to be challenged before reaching the clinical setting.
Collapse
Affiliation(s)
- Josh E Schroeder
- Orthopedic Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
16
|
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011; 9:66. [PMID: 21627784 PMCID: PMC3123714 DOI: 10.1186/1741-7015-9-66] [Citation(s) in RCA: 1119] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023] Open
Abstract
Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
Collapse
Affiliation(s)
- Rozalia Dimitriou
- Department of Trauma and Orthopaedics, Academic Unit, Clarendon Wing, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | |
Collapse
|