1
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
2
|
Brückmann J, Müller C, Friedländer I, Mengele AK, Peneva K, Dietzek‐Ivanšić B, Rau S. Photocatalytic Reduction of Nicotinamide Co-factor by Perylene Sensitized Rh III Complexes. Chemistry 2022; 28:e202201931. [PMID: 35920047 PMCID: PMC9825842 DOI: 10.1002/chem.202201931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
The ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center (RhIII phenPer). The excited-state dynamics were investigated by means of steady-state and time-resolved absorption and emission spectroscopy. The studies reveal that photoexcitation of RhIII phenPer yields the formation of a charge-separated intermediate, namely RhII phenPer⋅+ , that results in a catalytically active species in the presence of protons.
Collapse
Affiliation(s)
- Jannik Brückmann
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Carolin Müller
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
| | - Ilse Friedländer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
3
|
DFT studies of the redox behavior of oligo(aza)pyridines and experimental CVs of 4'-substituted terpyridines. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Conradie J. DFT Study of bis(1,10-phenanthroline)copper complexes: Molecular and electronic structure, redox and spectroscopic properties and application to Solar Cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Paul S, Joy BP, Sasikala G, Raghuthaman AG, Gudimetla VB. Copper‐NHC Based Ullmann Catalysis in Water for Selective N‐Arylation of 3‐Aminophenols. ChemistrySelect 2020. [DOI: 10.1002/slct.202003455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sudeep Paul
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Bony P. Joy
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Geethu Sasikala
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Advaya G. Raghuthaman
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| | - Vittal B. Gudimetla
- Department of Chemistry School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610 005 Tamil Nadu India
| |
Collapse
|
6
|
Nunes P, Correia I, Marques F, Matos AP, Dos Santos MMC, Azevedo CG, Capelo JL, Santos HM, Gama S, Pinheiro T, Cavaco I, Pessoa JC. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg Chem 2020; 59:9116-9134. [PMID: 32578983 DOI: 10.1021/acs.inorgchem.0c00925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.
Collapse
Affiliation(s)
- Patrique Nunes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Pedro Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cristina G Azevedo
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José-Luis Capelo
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Hugo M Santos
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Sofia Gama
- Department of Analytical Chemistry, Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Teresa Pinheiro
- Institute for Bioengineering and Biosciences and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Liang Y, Zhang X, MacMillan DWC. Decarboxylative sp 3 C-N coupling via dual copper and photoredox catalysis. Nature 2018; 559:83-88. [PMID: 29925943 PMCID: PMC6106865 DOI: 10.1038/s41586-018-0234-8] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 12/01/2022]
Abstract
Over the past three decades, considerable progress has been made in the development of methods to construct sp2 carbon-nitrogen (C-N) bonds using palladium, copper or nickel catalysis1,2. However, the incorporation of alkyl substrates to form sp3 C-N bonds remains one of the major challenges in the field of cross-coupling chemistry. Here we demonstrate that the synergistic combination of copper catalysis and photoredox catalysis can provide a general platform from which to address this challenge. This cross-coupling system uses naturally abundant alkyl carboxylic acids and commercially available nitrogen nucleophiles as coupling partners. It is applicable to a wide variety of primary, secondary and tertiary alkyl carboxylic acids (through iodonium activation), as well as a vast array of nitrogen nucleophiles: nitrogen heterocycles, amides, sulfonamides and anilines can undergo C-N coupling to provide N-alkyl products in good to excellent efficiency, at room temperature and on short timescales (five minutes to one hour). We demonstrate that this C-N coupling protocol proceeds with high regioselectivity using substrates that contain several amine groups, and can also be applied to complex drug molecules, enabling the rapid construction of molecular complexity and the late-stage functionalization of bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Xiaheng Zhang
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
8
|
Muthuramalingam S, Velusamy M, Mayilmurugan R. Fixation and sequestration of carbon dioxide by copper(II) complexes. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1489-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Muthuramalingam S, Khamrang T, Velusamy M, Mayilmurugan R. Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands. Dalton Trans 2017; 46:16065-16076. [DOI: 10.1039/c7dt03062b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The copper(ii) complexes of simple bidentate ligands have shown selective fixation and sequestration of atmospheric CO2. The fixation of CO2 proceeds via copper(i) species and geometrical interconversions and afforded CO32− bound complexes.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| | - Themmila Khamrang
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | - Marappan Velusamy
- Department of Chemistry
- North Eastern Hill University
- Shillong 793022
- India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021
- India
| |
Collapse
|
10
|
Ferreira H, Conradie MM, von Eschwege KG, Conradie J. Electrochemical and DFT study of the reduction of substituted phenanthrolines. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
García‐Ramos JC, Galindo‐Murillo R, Tovar‐Tovar A, Alonso‐Saenz AL, Gómez‐Vidales V, Flores‐Álamo M, Ortiz‐Frade L, Cortes‐Guzmán F, Moreno‐Esparza R, Campero A, Ruiz‐Azuara L. The π‐Back‐Bonding Modulation and Its Impact in the Electronic Properties of Cu
II
Antineoplastic Compounds: An Experimental and Theoretical Study. Chemistry 2014; 20:13730-41. [DOI: 10.1002/chem.201402775] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Carlos García‐Ramos
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| | - Rodrigo Galindo‐Murillo
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, 2000 East 30 South Skaggs 201, Salt Lake City, Utah 84112 (USA)
| | - Araceli Tovar‐Tovar
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| | - Ana Luisa Alonso‐Saenz
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| | - Virginia Gómez‐Vidales
- Instituto de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| | - Marcos Flores‐Álamo
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| | - Luis Ortiz‐Frade
- Electrochemistry Department, Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C. Parque Tecnológico Querétaro, Sanfandila, Pedro de Escobedo, C.P. 76703. Querétaro (México)
| | - Fernando Cortes‐Guzmán
- Instituto de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
- Centro Conjunto de Investigación en Química Sustentable UAEMex‐UNAM, Carretera Toluca‐Atlacomulco Km. 14.5, Toluca, 50200 (México)
| | - Rafael Moreno‐Esparza
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| | - Antonio Campero
- Departamento de Química Inorgánica, Universidad Autónoma Metropolitana (Iztapalapa), Av. San Rafael Atlixco No. 186, Col. Vicentina, Delegación Iztapalapa, 09340 (Mexico)
| | - Lena Ruiz‐Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional, Autónoma de México, Av. Universidad 3000, C.U. Mexico City (Mexico)
| |
Collapse
|
12
|
Servaty K, Cauët E, Thomas F, Lambermont J, Gerbaux P, De Winter J, Ovaere M, Volker L, Vaeck N, Van Meervelt L, Dehaen W, Moucheron C, Kirsch-De Mesmaeker A. Peculiar properties of homoleptic Cu complexes with dipyrromethene derivatives. Dalton Trans 2013; 42:14188-99. [DOI: 10.1039/c3dt51541a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Lefèvre G, Franc G, Tlili A, Adamo C, Taillefer M, Ciofini I, Jutand A. Contribution to the Mechanism of Copper-Catalyzed C–N and C–O Bond Formation. Organometallics 2012. [DOI: 10.1021/om300636f] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guillaume Lefèvre
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC
8640, 24 rue Lhomond, F-75231 Paris Cedex 5, France
| | - Grégory Franc
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC
8640, 24 rue Lhomond, F-75231 Paris Cedex 5, France
| | - Anis Tlili
- Institut Charles Gerhardt Montpellier, AM2N, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier
Cedex 5, France
| | - Carlo Adamo
- Chimie ParisTech, ENSCP, UMR 7575, 11 Rue Pierre et
Marie Curie, F-75231 Paris Cedex 5, France
| | - Marc Taillefer
- Institut Charles Gerhardt Montpellier, AM2N, ENSCM, 8 rue de l’Ecole Normale, F-34296 Montpellier
Cedex 5, France
| | - Ilaria Ciofini
- Chimie ParisTech, ENSCP, UMR 7575, 11 Rue Pierre et
Marie Curie, F-75231 Paris Cedex 5, France
| | - Anny Jutand
- Ecole Normale Supérieure, Département de Chimie, UMR CNRS-ENS-UPMC
8640, 24 rue Lhomond, F-75231 Paris Cedex 5, France
| |
Collapse
|
14
|
Franc G, Jutand A. On the origin of copper(i) catalysts from copper(ii) precursors in C–N and C–O cross-couplings. Dalton Trans 2010; 39:7873-5. [DOI: 10.1039/c0dt00632g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Bravo-Gómez ME, García-Ramos JC, Gracia-Mora I, Ruiz-Azuara L. Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N)(glycinato)]NO3 complexes, (Casiopeínas). J Inorg Biochem 2008; 103:299-309. [PMID: 19027166 DOI: 10.1016/j.jinorgbio.2008.10.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
Mixed chelate copper(II) complexes patented and mark title registered as Casiopeínas are antineoplastic agents with general formulas [Cu(N-N)(alpha-l-amino acidato)]NO(3) and [Cu(N-N)(O-O)]NO(3), where the N-N donor is an aromatic substituted diimine (1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy)) and the O-O donor is acetylacetonate (acac) or salicylaldehydate (salal). In the present work, the series of complexes [Cu(N-N)(acac)]NO(3) and [Cu(N-N)(gly)]NO(3) with several substituents on the diimine ligand were selected to perform a quantitative structure-activity relationship (QSAR) study. Two main analysis were performed: (1) the study of the influence of the substituents on diimine ligand on physicochemical properties such as half-wave potential (E(1/2)) and their relationship with medial lethal dose (LD50) or medial inhibitory concentration (IC50) on several tumor cell lines and (2) the study of the influence of the secondary ligand when acac is changed for glycinate (gly). Results showed that the presence of the central fused aromatic ring in the phen containing complexes is necessary to preserve the antiproliferative activity. The QSAR equations showed a strong relationship between the IC50 and E(1/2); the most active complexes are the weaker oxidants. The change of secondary ligand from acac to gly has less influence on biological activity than the changes on the diimine ligand.
Collapse
Affiliation(s)
- María Elena Bravo-Gómez
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Av. Universidad 3000, México, DF 04510, Mexico
| | | | | | | |
Collapse
|
16
|
Ortiz-Frade LA, Ruiz-Ramírez L, González I, Marín-Becerra A, Alcarazo M, Alvarado-Rodriguez JG, Moreno-Esparza R. Synthesis and spectroelectrochemical studies of mixed heteroleptic chelate complexes of ruthenium(II) with 1,8-bis(2-pyridyl)-3,6-dithiaoctane (pdto) and substituted 1,10-phenanthrolines. Inorg Chem 2003; 42:1825-34. [PMID: 12639114 DOI: 10.1021/ic025849q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction of dichlorotris(triphenylphosphine) ruthenium(II) [RuCl(2)(PPh(3))(3)] with 1,8-bis(2-pyridyl)-3,6-dithiaoctane (pdto), a (N(2)S(2)) tetradentate donor, yields a new compound [Ru(pdto)(PPh(3))Cl]Cl (1), which has been fully characterized. (1)H and (31)P NMR studies of 1 in acetonitrile at several temperatures show the substitution of both coordinated chloride and triphenylphosphine with two molecules of acetonitrile, as confirmed by the isolation of the complex [Ru(pdto)(CH(3)CN)(2)]Cl(2) (2). Cyclic voltammetric and spectroelectrochemical techniques allowed us to determine the electrochemical behavior of compound 1. The substitution of the chloride and triphenylphosphine by acetonitrile molecules in the Ru(II) coordination sphere of compound 1 was also established by electrochemical studies. The easy substitution of this complex led us to use it as starting material to synthesize the substituted phenanthroline coordination compounds with (pdto) and ruthenium(II), [Ru(pdto)(4,7-diphenyl-1,10-phenanthroline)]Cl(2).4H(2)O (3), [Ru(pdto)(1,10-phenanthroline)]Cl(2).5H(2)O (4), [Ru(pdto)(5,6-dimethyl-1,10-phenanthroline)]Cl(2).5H(2)O (5), [Ru(pdto)(4,7-dimethyl-1,10-phenanthroline)]Cl(2).3H(2)O (6), and [Ru(pdto)(3,4,7,8-tetramethyl-1,10-phenanthroline)]Cl(2).4H(2)O (7). These compounds were fully characterized, and the crystal structure of 4 was obtained. Cyclic voltammetric and spectroelectrochemical techniques allowed us to determine their electrochemical behavior. The electrochemical oxidation processes in these compounds are related to the oxidation of ionic chlorides, and to the reversible transformation from Ru(II) to Ru(III). On the other hand, a single reduction process is associated to the reduction of the substituted phenanthroline in the coordination compound. The E(1/2) (phen/phen(-)) and E(1/2) (Ru(II)/Ru(III)) for the compounds (3-7) were evaluated, and, as expected, the modification of the substituted 1,10-phenanthrolines in the complexes also modifies the redox potentials. Correlations of both electrochemical potentials with pK(a) of the free 1,10-phenathrolines, lambda(max) MLCT transition band, and chemical shifts of phenanthrolines in these complexes were found, possibly as a consequence of the change in the electron density of the Ru(II) and the coordinated phenanthroline.
Collapse
Affiliation(s)
- Luis A Ortiz-Frade
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, México
| | | | | | | | | | | | | |
Collapse
|
17
|
Paulovicova A, El-Ayaan U, Fukuda Y. Synthesis, characterization and X-ray crystal structures of two five-coordinate ternary copper(II) complexes containing acetylacetonate with 1,10-phenanthroline and 2,9-dimethyl phenanthroline. Inorganica Chim Acta 2001. [DOI: 10.1016/s0020-1693(01)00514-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Kulkarni P, Padhye S, Sinn E. Neutral metal complex in an ionic pocket: synthesis, physicochemical properties and X-ray structure of a copper(II) complex containing neutral as well as cationic dafone ligands and dafonium perchlorate. Inorganica Chim Acta 2001. [DOI: 10.1016/s0020-1693(01)00516-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Martínez A, Salcedo R, Sansores LE, Medina G, Gasque L. A density functional study of the reactivity and stability of mixed copper complexes. Is hardness the reason? Inorg Chem 2001; 40:301-6. [PMID: 11170535 DOI: 10.1021/ic000117o] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mixed-ligand Cu2+ ternary complexes, formed by an aromatic diimine and a second ligand with O donor atoms, show a higher than expected stability. To understand the factors affecting the stability of these systems, we performed a density functional study of [Cu(H2O)5]2+, [Cu(N-N)(H2O)3]2+, and [Cu(N-N)(O-O)H2O] (N-N is 1,10-phenanthroline, 5-nitro-1,10-phenanthroline, or 3,4,7,8-tetramethyl-1,10-phenanthroline; and O-O is oxalate). In the present study, full geometry optimization (B3LYP/3-21G**) has been performed without symmetry constraints and a comparison with some available experimental results has been made. Bond distances, equilibrium geometries, harmonic frequencies, and net atomic charges from Mulliken populations are presented. Since the principle of hard and soft acids and bases has been widely used to explain the stability of these complexes, we also calculated and analyzed the global hardness and the local softness. The results of the global hardness do not support the commonly held idea that harder acids will preferably bind to harder ligands, while softer acids will bind to softer ligands. Interestingly, local softness and electron affinity correlate well with the formation constants of these compounds and provide an explanation of the reactivity behavior. The present results may help to rationalize the stability and reactivity of these systems.
Collapse
Affiliation(s)
- A Martínez
- Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n, C.U., P.O. Box 70-360, Coyoacán, 04510, Mexico
| | | | | | | | | |
Collapse
|
20
|
Gasque L, Medina G, Ruiz-Ramı́rez L, Moreno-Esparza R. Cu–O stretching frequency correlation with phenanthroline pKa values in mixed copper complexes. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(99)00034-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Eggleston MK, McMillin DR, Koenig KS, Pallenberg AJ. Steric Effects in the Ground and Excited States of Cu(NN)2+ Systems. Inorg Chem 1997. [DOI: 10.1021/ic960698a] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Léonel E, Dolhem E, Devaud M, Paugam J, Nédélec J. Electrochemical study of the formation of cyclopropanes from gem-dihalocompounds and alkenes catalyzed by copper 1,10-phenanthroline complexes. Electrochim Acta 1997. [DOI: 10.1016/s0013-4686(97)85489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Zoroddu MA, Zanetti S, Pogni R, Basosi R. An electron spin resonance study and antimicrobial activity of copper(II)-phenanthroline complexes. J Inorg Biochem 1996; 63:291-300. [PMID: 8757142 DOI: 10.1016/0162-0134(96)00015-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The antimicrobial activities of some copper(II) binary complexes with unsubstituted and different substituted phenanthroline ligands were investigated. A considerable increase in the biocidal activity of the ligands on being coordinated with the copper(II) ions was observed in terms of their minimum inhibitory concentration (MIC) values. EPR measurements were performed at room and low temperature with the aim of gaining an insight into the structure/activity relationship of these complexes. Subtle differences in the chemical arrangement result in appreciable differences in the antimicrobial activity. Copper(II) complexes with 2,9-dimethyl derivative phenanthrolines were observed to be more active against Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- M A Zoroddu
- Dipartimento di Chimica, Università di Sassari, Italy
| | | | | | | |
Collapse
|
24
|
Ohlmann D, Marchand CM, Sch�nberg H, Gr�tzmacher H, Pritzkow H. Darstellung und Kristallstruktur der Kupfer(I)-chalkogenolat-2,2?-Bipyridin-Komplexe [CuS(2,4,6-iPr3C6H2)]4(Bipy)2 und [CuSe(2,4,6-iPr3C6H2)]2(Bipy)2. Z Anorg Allg Chem 1996. [DOI: 10.1002/zaac.19966220813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Stange AF, Kaim W. Bis(homoleptische) vs. heteroleptische Kupfer(I)-Komplexe: Elektrosynthese, Spektroskopie und Kristallstruktur von {[Cu(BIK)2]+}2{[Cu4(SR)6]2?} � 3(CH3CN) � (RSH); BIK = Bis(N-methylimidazol-2-yl)keton, R = o-Tolyl. Z Anorg Allg Chem 1996. [DOI: 10.1002/zaac.19966220703] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Zoroddu MA, Gladiali S, Marchettini N, Dallocchio R. Synthesis and spectroscopic characterization of ternary complexes of copper(II) glycylglycine and substituted phenanthrolines. TRANSIT METAL CHEM 1995. [DOI: 10.1007/bf00139127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|