Tierney DL. Jahn-Teller dynamics in a series of high-symmetry Co(II) chelates determine paramagnetic relaxation enhancements.
J Phys Chem A 2012;
116:10959-72. [PMID:
23095055 DOI:
10.1021/jp309245e]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NMR paramagnetic relaxation enhancements (PREs) of a series of structurally characterized, trigonal bis-trispyrazolylborate (Tp) chelates of high-spin Co(II), spanning 100-850 MHz in field, are reported. Prior knowledge of the metal-nucleus distances allows numerical extraction of position-dependent electron spin relaxation rates (τ(c)(-1)) from direct measurement of the individual PREs of the four symmetry distinct protons in Co(Tp)(2), using available closed-form expressions. The data for this electronically complex system where spin-orbit coupling defines the ground state electronic structure are analyzed in terms of the Solomon-Bloembergen-Morgan (SBM) relations, as well as available zero-field splitting limit theories. A simple angular correction is shown to be sufficient to reconcile the individual τ(c)(T) data for the four classes of protons. The data identify a previously unrecognized dynamic Jahn-Teller effect in these historically important complexes, with a barrier of ~230 cm(-1), pointing to a level of dynamics in trispyrazolylborate chemistry that has not been described before, and further show that it is the Jahn-Teller that is responsible for the PREs in fluid solution. A field-dependent component is also identified for the two protons nearest g(//), which is suggested to arise due to Zeeman mixing of excited state character into the ground level.
Collapse