Ma DL, Che CM, Siu FM, Yang M, Wong KY. DNA binding and cytotoxicity of ruthenium(II) and rhenium(I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine.
Inorg Chem 2007;
46:740-9. [PMID:
17257015 DOI:
10.1021/ic061518s]
[Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Ru(tBu2bpy)2(2-appt)](PF6)2 [1.(PF6)2, tBu2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 2-appt = 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine] and [Re(CO)3(2-appt)Cl] (2) were prepared and characterized by X-ray crystal analysis. The binding of 1.(PF6)2 and 2 to calf thymus DNA (ct DNA) led to increases in the DNA melting temperature (Delta Tm = +12 degrees C), modest hypochromism (29% and 5% of the absorption bands at lambda max = 450 and 376 nm, respectively), and insignificant shifts in the absorption maxima. The binding constants of 1.(PF6)2 and 2 with ct DNA, as determined by absorption titration, are (8.9 +/- 0.5) x 104 and (3.6 +/- 0.1) x 104 dm3 mol-1, respectively. UV-vis absorption titration, DNA melting studies, and competition dialysis using synthetic oligonucleotides [poly(dA-dT)2 and poly(dG-dC)2] revealed that 1.(PF6)2 and 2 exhibit a binding preference for AT sequences. A modeling study on the interaction between 1 or 2 and B-DNA revealed that the minor groove is the most favored binding site and an extensive hydrogen-bonding network is formed. As determined by MTT assays, 1.(PF6)2 and 2 exhibited moderate cytotoxicities toward several human cancer cell lines (KB-3-1, HepG2, and HeLa), as well as a multi-drug-resistant cancer cell line (KB-V-1). According to confocal microscopic and flow cytometric studies, 1.(PF6)2 and 2 induced apoptosis (50-60%) in cancer cells with <5% necrosis detected.
Collapse