1
|
Veiga J, Garrido M, Garrigós M, Chagas CRF, Martínez-de la Puente J. A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals (Basel) 2024; 14:2019. [PMID: 39061481 PMCID: PMC11274142 DOI: 10.3390/ani14142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could facilitate local transmission of pathogens, impacting the epidemiology of some mosquito-borne diseases. Aedes albopictus is a vector of several pathogens affecting humans, including viruses such as dengue virus, Zika virus and Chikungunya virus, as well as parasites such as Dirofilaria. However, information about its competence for the transmission of parasites affecting wildlife, such as avian malaria parasites, is limited. In this literature review, we aim to explore the current knowledge about the relationships between Ae. albopictus and avian Plasmodium to understand the role of this mosquito species in avian malaria transmission. The prevalence of avian Plasmodium in field-collected Ae. albopictus is generally low, although studies have been conducted in a small proportion of the affected countries. In addition, the competence of Ae. albopictus for the transmission of avian malaria parasites has been only proved for certain Plasmodium morphospecies under laboratory conditions. Therefore, Ae. albopictus may play a minor role in avian Plasmodium transmission in the wild, likely due to its mammal-biased blood-feeding pattern and its reduced competence for the development of different avian Plasmodium. However, further studies considering other avian Plasmodium species and lineages circulating under natural conditions should be carried out to properly assess the vectorial role of Ae. albopictus for the Plasmodium species naturally circulating in its distribution range.
Collapse
Affiliation(s)
- Jesús Veiga
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | - Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
| | - Marta Garrigós
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | | | - Josué Martínez-de la Puente
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
2
|
Ravindran J, Eapen A. A comparative study on the vector competence of Anopheles stephensi from geographically distinct malarious and non-malarious urban areas in India to the malarial parasite, Plasmodium vivax. J Vector Borne Dis 2024; 61:413-419. [PMID: 38634456 DOI: 10.4103/jvbd.jvbd_7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND OBJECTIVES Anopheles stephensi is responsible for the transmission of malaria in urban areas. Vector competence of An. stephensi from a non-malarious (Coimbatore) and highly malarious (Chennai) urban area were investigated to find out the reason for the non-transmission of malaria in Coimbatore. METHODS Vector competence (Susceptibility/refractoriness) of An. stephensi mosquitoes from Chennai (Malarious) and Coimbatore (Non-malarious), Tamil Nadu, India to Plasmodium vivax (Chennai) were investigated. Bioassays were carried out concurrently in both these strains by artificial membrane feeding technique using the same malaria infected blood. An. stephensi were dissected to observe infection in the midgut and salivary glands. The parasite infection, oocyst and sporozoite positivity rate, the oocyst load, correlation between male-female gametocyte ratio and infection, and Survival Analysis of parasitic stages during sporogony were analyzed and compared. RESULTS The overall infection rate was 45.8 and 41.2 per cent in Chennai and Coimbatore. Oocyst count ranged from 1-80 and 1-208 respectively and not statistically significant. Oocyst positivity was high from Day 8-21in both strains. The Mean Survival Day (MSD) for oocyst was Day 14 in both strains. Sporozoite was observed in four experiments in each of the strains and the MSD for sporozoites was Day 20 and Day 17 in Chennai and Coimbatore. INTERPRETATION CONCLUSION An. stephensi of Chennai and Coimbatore are equally susceptible to P. vivax infection and the non-transmission of malaria in Coimbatore can be attributed to external factors such as the presence of preferential breeding habitat, vector density, vector survival, and weather. The only difference observed was the comparatively shortened oocyst maturation time in the Coimbatore strain which requires further investigation.
Collapse
Affiliation(s)
- John Ravindran
- ICMR-National Institute of Malaria Research, Field Unit, Chennai, India
| | | |
Collapse
|
3
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Zmarlak NM, Lavazec C, Brito-Fravallo E, Genève C, Aliprandini E, Aguirre-Botero MC, Vernick KD, Mitri C. The Anopheles leucine-rich repeat protein APL1C is a pathogen binding factor recognizing Plasmodium ookinetes and sporozoites. PLoS Pathog 2024; 20:e1012008. [PMID: 38354186 PMCID: PMC10898737 DOI: 10.1371/journal.ppat.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.
Collapse
Affiliation(s)
- Natalia Marta Zmarlak
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR8104, Université de Paris, Institut Cochin, Paris, France
| | - Emma Brito-Fravallo
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| | - Corinne Genève
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| | - Eduardo Aliprandini
- Institut Pasteur, Université de Paris, Unit of Malaria Infection & Immunity, Department of Parasites and Insect Vectors, Paris, France
| | - Manuela Camille Aguirre-Botero
- Institut Pasteur, Université de Paris, Unit of Malaria Infection & Immunity, Department of Parasites and Insect Vectors, Paris, France
| | - Kenneth D. Vernick
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Christian Mitri
- Institut Pasteur, Université de Paris, CNRS UMR2000, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Paris, France
| |
Collapse
|
5
|
Wang Z, Yang X, Zhou S, Zhang X, Zhu Y, Chen B, Huang X, Yang X, Zhou G, Zhang T. The Antigenic Membrane Protein (Amp) of Rice Orange Leaf Phytoplasma Suppresses Host Defenses and Is Involved in Pathogenicity. Int J Mol Sci 2023; 24:ijms24054494. [PMID: 36901925 PMCID: PMC10003417 DOI: 10.3390/ijms24054494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Phytoplasmas are uncultivable, phloem-limited, phytopathogenic bacteria that represent a major threat to agriculture worldwide. Phytoplasma membrane proteins are in direct contact with hosts and presumably play a crucial role in phytoplasma spread within the plant as well as by the insect vector. Three highly abundant types of immunodominant membrane proteins (IDP) have been identified within the phytoplasmas: immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). Although recent results indicate that Amp is involved in host specificity by interacting with host proteins such as actin, little is known about the pathogenicity of IDP in plants. In this study, we identified an antigenic membrane protein (Amp) of rice orange leaf phytoplasma (ROLP), which interacts with the actin of its vector. In addition, we generated Amp-transgenic lines of rice and expressed Amp in tobacco leaves by the potato virus X (PVX) expression system. Our results showed that the Amp of ROLP can induce the accumulation of ROLP and PVX in rice and tobacco plants, respectively. Although several studies have reported interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins, this example demonstrates that Amp protein can not only interact with the actin protein of its insect vector but can also directly inhibit host defense responses to promote the infection. The function of ROLP Amp provides new insights into the phytoplasma-host interaction.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaorong Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Siqi Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xishan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingzhi Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- College of Marine and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (T.Z.)
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (T.Z.)
| |
Collapse
|
6
|
Amazonian Anopheles with low numbers of oocysts transmit Plasmodium vivax sporozoites during a blood meal. Sci Rep 2022; 12:19442. [PMID: 36376491 PMCID: PMC9663451 DOI: 10.1038/s41598-022-24058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Anopheles darlingi is the main malarial vector in the Brazilian Amazon region. An. nuneztovari s.l., An. triannulatus s.l., An. evansae, and An. benarrochi s.l. do not have a defined role as malarial vectors, although they have been found to be naturally infected with Plasmodium vivax, and some develop oocysts. In this study, we evaluated the importance of low numbers of oocysts in sporozoite salivary gland invasion and transmission. Field-collected mosquitoes were experimentally infected with P. vivax. The infection rates and oocyst and sporozoite infection intensities were evaluated and compared with those of An. aquasalis. We found the highest number of oocysts in An. darlingi (mean = 39.47) and the lowest in An. nuneztovari s.l. (mean = 2). The highest number of sporozoites was observed in An. darlingi (mean = 610) and lowest in An. benarrochi s.l. (mean = 30). Plasmodium vivax DNA was detected in the saliva of all mosquito species after a blood meal. Regardless of the number of oocysts, all species transmitted sporozoites during blood meals. Considering the abundance of these mosquitoes and transmission of sporozoites, it is logical to assume that An. nuneztovari s.l. and An. triannulatus s.l. are involved in the transmission of P. vivax.
Collapse
|
7
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Stewart Merrill TE, Rapti Z, Cáceres CE. Host Controls of Within-Host Disease Dynamics: Insight from an Invertebrate System. Am Nat 2021; 198:317-332. [PMID: 34403315 DOI: 10.1086/715355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWithin-host processes (representing the entry, establishment, growth, and development of a parasite inside its host) may play a key role in parasite transmission but remain challenging to observe and quantify. We develop a general model for measuring host defenses and within-host disease dynamics. Our stochastic model breaks the infection process down into the stages of parasite exposure, entry, and establishment and provides associated probabilities for a host's ability to resist infections with barriers and clear internal infections. We tested our model on Daphnia dentifera and the parasitic fungus Metschnikowia bicuspidata and found that when faced with identical levels of parasite exposure, Daphnia patent (transmitting) infections depended on the strength of internal clearance. Applying a Gillespie algorithm to the model-estimated probabilities allowed us to visualize within-host dynamics, within which signatures of host defense could be clearly observed. We also found that early within-host stages were the most vulnerable to internal clearance, suggesting that hosts have a limited window during which recovery can occur. Our study demonstrates how pairing longitudinal infection data with a simple model can reveal new insight into within-host dynamics and mechanisms of host defense. Our model and methodological approach may be a powerful tool for exploring these properties in understudied host-parasite interactions.
Collapse
|
9
|
Nourani L, Baghkheirati AA, Zargar M, Karimi V, Djadid ND. Haemoproteosis and avian malaria in Columbidae and Corvidae from Iran. Vet Med Sci 2021; 7:2043-2050. [PMID: 34240581 PMCID: PMC8464302 DOI: 10.1002/vms3.549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Avian malaria (Plasmodium) and related genera (Haemoproteus and Leucocytozoon) are diverse and widespread parasites. Despite the extent of knowledge on avian haemosporidian parasites, information about domestic and wild bird's blood parasites is overall insufficient in Iran. Prevalence of the haemosporidian parasites’ and phylogenetic relationship of lineages are studied by using molecular and morphological results of 152 examined hosts belonging to 17 species. Molecular analysis for haemosporidian detections demonstrated overall prevalence 22.36%. Inspected hosts mostly belonging to Common Pigeons (Columba livia) parasitized by Haemoproteus spp., and Hooded Crows (Corvus cornix) and Carrion Crow (C. corone) were identified as hosting Plasmodium spp. Detected lineages COLIV03, COQUI05, LINN01, ROFI04 and SGS01 are identified as new reports from Iran. We detected no evidence of Leucocytozoon lineages, while the high prevalence of H. columbae was found in Common Pigeons. Such investigation on avian blood parasites contributes to providing new information on the prevalence, epidemiology and geographical distribution of haemosporidian parasites circulating in domestic, pets and wild birds.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mostafa Zargar
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Karimi
- Faculty of Veterinary Medicine, Department of Poultry Diseases, University of Tehran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Viswanath VK, Gore ST, Valiyaparambil A, Mukherjee S, Lakshminarasimhan A. Plasmodium chitinases: revisiting a target of transmission-blockade against malaria. Protein Sci 2021; 30:1493-1501. [PMID: 33934433 DOI: 10.1002/pro.4095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Malaria is a life-threatening disease caused by one of the five species of Plasmodium, among which Plasmodium falciparum cause the deadliest form of the disease. Plasmodium species are dependent on a vertebrate host and a blood-sucking insect vector to complete their life cycle. Plasmodium chitinases belonging to the GH18 family are secreted inside the mosquito midgut, during the ookinete stage of the parasite. Chitinases mediate the penetration of parasite through the peritrophic membrane, facilitating access to the gut epithelial layer. In this review, we describe Plasmodium chitinases with special emphasis on chitinases from P. falciparum and P. vivax, the representative examples of the short and long forms of this protein. In addition to the chitinase domain, chitinases belonging to the long form contain a pro-domain and chitin-binding domain. Amino acid sequence alignment of long and short form chitinase domains reveals multiple positions containing variant residues. A subset of these positions was found to be conserved or invariant within long or short forms, indicating the role of these positions in attributing form-specific activity. The reported differences in affinities to allosamidin for P. vivax and P. falciparum were predicted to be due to different residues at two amino acid positions, resulting in altered interactions with the inhibitor. Understanding the role of these amino acids in Plasmodium chitinases will help us elucidate the mechanism of catalysis and the mode of inhibition, which will be the key for identification of potent inhibitors or antibodies demonstrating transmission-blocking activity.
Collapse
Affiliation(s)
- Vysakh K Viswanath
- Tata Institute for Genetics and Society, Center at inStem, Bengaluru, India
| | - Suraj T Gore
- Aurigene Discovery Technologies Ltd, Bengaluru, India
| | | | | | | |
Collapse
|
11
|
Witmer K, Dahalan FA, Metcalf T, Talman AM, Howick VM, Lawniczak MKN. Using scRNA-seq to Identify Transcriptional Variation in the Malaria Parasite Ookinete Stage. Front Cell Infect Microbiol 2021; 11:604129. [PMID: 33732658 PMCID: PMC7958875 DOI: 10.3389/fcimb.2021.604129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
The crossing of the mosquito midgut epithelium by the malaria parasite motile ookinete form represents the most extreme population bottleneck in the parasite life cycle and is a prime target for transmission blocking strategies. However, we have little understanding of the clonal variation that exists in a population of ookinetes in the vector, partially because the parasites are difficult to access and are found in low numbers. Within a vector, variation may result as a response to specific environmental cues or may exist independent of those cues as a potential bet-hedging strategy. Here we use single-cell RNA-seq to profile transcriptional variation in Plasmodium berghei ookinetes across different vector species, and between and within individual midguts. We then compare our results to low-input transcriptomes from individual Anopheles coluzzii midguts infected with the human malaria parasite Plasmodium falciparum. Although the vast majority of transcriptional changes in ookinetes are driven by development, we have identified candidate genes that may be responding to environmental cues or are clonally variant within a population. Our results illustrate the value of single-cell and low-input technologies in understanding clonal variation of parasite populations.
Collapse
Affiliation(s)
- Kathrin Witmer
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Farah Aida Dahalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tom Metcalf
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Arthur M. Talman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Virginia M. Howick
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mara K. N. Lawniczak
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
12
|
Ferreira JL, Heincke D, Wichers JS, Liffner B, Wilson DW, Gilberger TW. The Dynamic Roles of the Inner Membrane Complex in the Multiple Stages of the Malaria Parasite. Front Cell Infect Microbiol 2021; 10:611801. [PMID: 33489940 PMCID: PMC7820811 DOI: 10.3389/fcimb.2020.611801] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 01/31/2023] Open
Abstract
Apicomplexan parasites, such as human malaria parasites, have complex lifecycles encompassing multiple and diverse environmental niches. Invading, replicating, and escaping from different cell types, along with exploiting each intracellular niche, necessitate large and dynamic changes in parasite morphology and cellular architecture. The inner membrane complex (IMC) is a unique structural element that is intricately involved with these distinct morphological changes. The IMC is a double membrane organelle that forms de novo and is located beneath the plasma membrane of these single-celled organisms. In Plasmodium spp. parasites it has three major purposes: it confers stability and shape to the cell, functions as an important scaffolding compartment during the formation of daughter cells, and plays a major role in motility and invasion. Recent years have revealed greater insights into the architecture, protein composition and function of the IMC. Here, we discuss the multiple roles of the IMC in each parasite lifecycle stage as well as insights into its sub-compartmentalization, biogenesis, disassembly and regulation during stage conversion of P. falciparum.
Collapse
Affiliation(s)
- Josie Liane Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Heinrich Pette Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Dorothee Heincke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, Melbourne, VIC, Australia
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Morel AP, Webster A, Prusch F, Anicet M, Marsicano G, Trainini G, Stocker J, Giani D, Bandarra PM, da Rocha MIS, Zitelli LC, Umeno KA, Souza UA, Dall'Agnol B, Reck J. Molecular detection and phylogenetic relationship of Haemosporida parasites in free-ranging wild raptors from Brazil. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 23:100521. [PMID: 33678376 DOI: 10.1016/j.vprsr.2020.100521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
The order Haemosporida is widely distributed parasitizing members of the Aves class. In birds of prey, infection with Plasmodium spp. parasites varies from an apathogenic form to a clinical syndrome. However, studies on Haemosporida in raptors from the neotropical region are scarce. The aim of this study was to investigate natural infection by Plasmodium spp., Haemoproteus spp. and Leucocytozoon spp. in free-ranging wild raptors from southern Brazil. For this, we sampled 206 individuals of 21 species: 94 live-trapped Southern Caracaras (Caracara plancus) and 112 raptors from other species that were brought to rehabilitation centers. The presence of infection was investigated using a nested-PCR for Haemosporida performed on blood samples. Overall, 56 out of 206 birds were positive for Plasmodium spp./Haemoproteus spp. Twenty-two percent (21/94) of the C. plancus samples were positive. Of the 112 wild raptors rescued, 31% (35/112) of those belonging to 15 other species tested positive. No sample was positive for Leucocytozoon spp. Herein, we demonstrated nine lineages of Haemosporidian parasites (eight Plasmodium sp. and one Haemoproteus sp.) in free-living species of Brazilian birds of prey, being six of them potential novel lineages. It suggests that information currently available on South-American haemosporidian from these birds greatly underestimate the potential lineage diversity in this region.
Collapse
Affiliation(s)
- Ana Paula Morel
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil.
| | - Anelise Webster
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabiane Prusch
- Clinica Veterinária Toca dos Bichos, Marechal José Inácio da Silva, 404 Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Anicet
- Clinica Veterinária Toca dos Bichos, Marechal José Inácio da Silva, 404 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gleide Marsicano
- Clinica Veterinária Toca dos Bichos, Marechal José Inácio da Silva, 404 Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo Trainini
- Hayabusa Consultoria Ambiental, Estrada da Carapina, 1001 São Francisco de Paula, Rio Grande do Sul, Brazil
| | - Julian Stocker
- Hayabusa Consultoria Ambiental, Estrada da Carapina, 1001 São Francisco de Paula, Rio Grande do Sul, Brazil
| | - Denise Giani
- Hayabusa Consultoria Ambiental, Estrada da Carapina, 1001 São Francisco de Paula, Rio Grande do Sul, Brazil
| | - Paulo Mota Bandarra
- Núcleo de Rabilitação de Fauna Silvestre-NURFS, Universidade Federal de Pelotas (UFPEL), Campus Universitário, Capão do Leão, Rio Grande do Sul, Brazil
| | | | - Larissa Caló Zitelli
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Karen Akemi Umeno
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Ugo Araújo Souza
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Bruno Dall'Agnol
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil
| | - José Reck
- Centro de Pequisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Estrada do Conde, 6000 Eldorado do Sul, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Hajkazemian M, Bossé C, Mozūraitis R, Emami SN. Battleground midgut: The cost to the mosquito for hosting the malaria parasite. Biol Cell 2020; 113:79-94. [PMID: 33125724 DOI: 10.1111/boc.202000039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
In eco-evolutionary studies of parasite-host interactions, virulence is defined as a reduction in host fitness as a result of infection relative to an uninfected host. Pathogen virulence may either promote parasite transmission, when correlated with higher parasite replication rate, or decrease the transmission rate if the pathogen quickly kills the host. This evolutionary mechanism, referred to as 'trade-off' theory, proposes that pathogen virulence evolves towards a level that most benefits the transmission. It has been generally predicted that pathogens evolve towards low virulence in their insect vectors, mainly due to the high dependence of parasite transmission on their vector survival. Therefore, the degree of virulence which malaria parasites impose on mosquito vectors may depend on several external and internal factors. Here, we review briefly (i) the role of mosquito in parasite development, with a particular focus on mosquito midgut as the battleground between Plasmodium and the mosquito host. We aim to point out (ii) the histology of the mosquito midgut epithelium and its role in host defence against parasite's countermeasures in the three main battle sites, namely (a) the lumen (microbiota and biochemical environment), (b) the peritrophic membrane (physical barrier) and (c) the tubular epithelium including the basal membrane (physical and biochemical barrier). Lastly, (iii) we describe the impact which malaria parasite and its virulence factors have on mosquito fitness.
Collapse
Affiliation(s)
- Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Clément Bossé
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,François Rabelais University, Tours, France
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Molecular Attraction AB, Hägersten, Stockholm, Sweden.,Natural Resources Institute, FES, University of Greenwich, London, UK
| |
Collapse
|
15
|
Miller JJ, Odom John AR. The Malaria Metabolite HMBPP Does Not Trigger Erythrocyte Terpene Release. ACS Infect Dis 2020; 6:2567-2572. [PMID: 32966041 DOI: 10.1021/acsinfecdis.0c00548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infection with malarial parasites renders hosts more mosquito-attractive than their uninfected, healthy counterparts. One volatile organic compound, α-pinene, is associated with Plasmodium spp. infection in multiple studies and is a known mosquito attractant. However, how malarial infection results in elevated levels of host-associated α-pinene remains unclear. One study suggested that exposure of erythrocytes to the malarial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) results in increased levels of α-pinene. Here we establish that endogenous levels of α-pinene are present in human erythrocytes, that these levels vary widely by erythrocyte donor, and that α-pinene levels are not altered by HMBPP treatment.
Collapse
Affiliation(s)
- Justin J. Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Volohonsky G, Paul-Gilloteaux P, Štáfková J, Soichot J, Salamero J, Levashina EA. Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. PLoS Pathog 2020; 16:e1008739. [PMID: 32946522 PMCID: PMC7526910 DOI: 10.1371/journal.ppat.1008739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria-causing Plasmodium parasites traverse the mosquito midgut cells to establish infection at the basal side of the midgut. This dynamic process is a determinant of mosquito vector competence, yet the kinetics of the parasite migration is not well understood. Here we used transgenic mosquitoes of two Anopheles species and a Plasmodium berghei fluorescence reporter line to track parasite passage through the mosquito tissues at high spatial resolution. We provide new quantitative insight into malaria parasite invasion in African and Indian Anopheles species and propose that the mosquito complement-like system contributes to the species-specific dynamics of Plasmodium invasion. The traversal of the mosquito midgut cells is one of the critical stages in the life cycle of malaria parasites. Motile parasite forms, called ookinetes, traverse the midgut epithelium in a dynamic process which is not fully understood. Here, we harnessed transgenic reporters to track invasion of Plasmodium parasites in African and Indian mosquito species. We found important differences in parasite dynamics between the two Anopheles species and demonstrated a role of the mosquito complement-like system in regulation of parasite invasion of the midgut cells.
Collapse
Affiliation(s)
- Gloria Volohonsky
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Perrine Paul-Gilloteaux
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Jitka Štáfková
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Julien Soichot
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Jean Salamero
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Elena A Levashina
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France.,Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
17
|
Chauhan C, Das De T, Kumari S, Rani J, Sharma P, Tevatiya S, Pandey KC, Pande V, Dixit R. Hemocyte-specific FREP13 abrogates the exogenous bacterial population in the hemolymph and promotes midgut endosymbionts in Anopheles stephensi. Immunol Cell Biol 2020; 98:757-769. [PMID: 32623757 DOI: 10.1111/imcb.12374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
The immune blood cells "hemocytes" of mosquitoes impart a highly selective immune response against various microorganisms/pathogens. Among several immune effectors, fibrinogen-related proteins (FREPs) have been recognized as key modulators of cellular immune responses; however, their physiological relevance has not been investigated in detail. Our ongoing comparative RNA-sequencing analysis identified a total of 13 FREPs originating from naïve sugar-fed, blood-fed, bacterial challenged and Plasmodium vivax-infected hemocytes in Anopheles stephensi. Transcriptional profiling of the selected seven FREP transcripts showed distinct responses against different pathophysiological conditions, where an exclusive induction of FREP12 after 10 days of P. vivax infection was observed. This represents a possible role of FREP12 in immunity against free circulating sporozoites and needs to be explored in the future. When challenged with live bacterial injection in the thorax, we observed a higher affinity of FREP13 and FREP65 toward Gram-negative and Gram-positive bacteria in the mosquito hemocytes, respectively. Furthermore, we observed increased bacterial survival and proliferation, which is likely compromised by the downregulation of TEP1, in FREP13 messenger RNA-depleted mosquito hemolymph. In contrast, after blood-feeding, we also noticed a significant delay of 24 h in the enrichment of gut endosymbionts in the FREP13-silenced mosquitoes. Taken together, we conclude that hemocyte-specific FREP13 carries the unique ability of tissue-specific regulation, having an antagonistic antibacterial role in the hemolymph, and an agonistic role against gut endosymbionts.
Collapse
Affiliation(s)
- Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| |
Collapse
|
18
|
Ganley JG, Pandey A, Sylvester K, Lu KY, Toro-Moreno M, Rütschlin S, Bradford JM, Champion CJ, Böttcher T, Xu J, Derbyshire ER. A Systematic Analysis of Mosquito-Microbiome Biosynthetic Gene Clusters Reveals Antimalarial Siderophores that Reduce Mosquito Reproduction Capacity. Cell Chem Biol 2020; 27:817-826.e5. [PMID: 32619453 DOI: 10.1016/j.chembiol.2020.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Advances in infectious disease control strategies through genetic manipulation of insect microbiomes have heightened interest in microbially produced small molecules within mosquitoes. Herein, 33 mosquito-associated bacterial genomes were mined and over 700 putative biosynthetic gene clusters (BGCs) were identified, 135 of which belong to known classes of BGCs. After an in-depth analysis of the 135 BGCs, iron-binding siderophores were chosen for further investigation due to their high abundance and well-characterized bioactivities. Through various metabolomic strategies, eight siderophore scaffolds were identified in six strains of mosquito-associated bacteria. Among these, serratiochelin A and pyochelin were found to reduce female Anopheles gambiae overall fecundity likely by lowering their blood-feeding rate. Serratiochelin A and pyochelin were further found to inhibit the Plasmodium parasite asexual blood and liver stages in vitro. Our work supplies a bioinformatic resource for future mosquito-microbiome studies and highlights an understudied source of bioactive small molecules.
Collapse
Affiliation(s)
- Jack G Ganley
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Ashmita Pandey
- Department of Biology, Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Sina Rütschlin
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | | | - Cody J Champion
- Department of Biology, Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Jiannong Xu
- Department of Biology, Molecular Biology Program, New Mexico State University, Las Cruces, NM, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector. Proc Natl Acad Sci U S A 2020; 117:7363-7373. [PMID: 32165544 PMCID: PMC7132314 DOI: 10.1073/pnas.1919709117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Malaria is transmitted among humans through mosquito bites. Here, we characterize a protein found on the surface of mosquito stages of malaria parasites and reveal that it serves to evade the mosquito immune system and ensure disease transmission. Neutralization of PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43), either by eliminating it from the parasite genome or by preincubating parasites with antibodies that bind to the PIMMS43 protein, inhibits mosquito infection with malaria parasites. Differences in PIMMS43 detected between African malaria parasite populations suggest that these populations have adapted for transmission by different mosquito vectors that are also differentially distributed across the continent. We conclude that targeting PIMMS43 can block malaria parasites inside mosquitoes before they can infect humans. After being ingested by a female Anopheles mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, Plasmodium parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission. We show that an ookinete and sporozoite surface protein designated as PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43) is required for parasite evasion of the Anopheles coluzzii complement-like response. Disruption of PIMMS43 in the rodent malaria parasite Plasmodium berghei triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing components of the complement-like system through RNAi largely restores ookinete-to-oocyst transition but oocysts remain small in size and produce a very small number of sporozoites that additionally are not infectious, indicating that PIMMS43 is also essential for sporogonic development in the oocyst. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African Plasmodium falciparum populations indicates allelic adaptation to sympatric vector populations. These data add to our understanding of mosquito–parasite interactions and identify PIMMS43 as a target of malaria transmission blocking.
Collapse
|
20
|
Chali W, Ashine T, Hailemeskel E, Gashaw A, Tafesse T, Lanke K, Esayas E, Kedir S, Shumie G, Behaksra SW, Bradley J, Yewhalaw D, Mamo H, Petros B, Drakeley C, Gadisa E, Bousema T, Tadesse FG. Comparison of infectivity of Plasmodium vivax to wild-caught and laboratory-adapted (colonized) Anopheles arabiensis mosquitoes in Ethiopia. Parasit Vectors 2020; 13:120. [PMID: 32143713 PMCID: PMC7059271 DOI: 10.1186/s13071-020-3998-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito-feeding assays that assess transmission of Plasmodium from man-to-mosquito typically use laboratory mosquito colonies. The microbiome and genetic background of local mosquitoes may be different and influence Plasmodium transmission efficiency. In order to interpret transmission studies to the local epidemiology, it is therefore crucial to understand the relationship between infectivity in laboratory-adapted and local mosquitoes. METHODS We assessed infectivity of Plasmodium vivax-infected patients from Adama, Ethiopia, using laboratory-adapted (colony) and wild-caught (wild) mosquitoes raised from larval collections in paired feeding experiments. Feeding assays used 4-6 day-old female Anopheles arabiensis mosquitoes after starvation for 12 h (colony) and 18 h (wild). Oocyst development was assessed microscopically 7 days post-feeding. Wild mosquitoes were identified morphologically and confirmed by genotyping. Asexual parasites and gametocytes were quantified in donor blood by microscopy. RESULTS In 36 paired experiments (25 P. vivax infections and 11 co-infections with P. falciparum), feeding efficiency was higher in colony (median: 62.5%; interquartile range, IQR: 47.0-79.0%) compared to wild mosquitoes (median: 27.8%; IQR: 17.0-38.0%; Z = 5.02; P < 0.001). Plasmodium vivax from infectious individuals (51.6%, 16/31) infected a median of 55.0% (IQR: 6.7-85.7%; range: 5.5-96.7%; n = 14) of the colony and 52.7% (IQR: 20.0-80.0%; range: 3.2-95.0%; n = 14) of the wild mosquitoes. A strong association (ρ(16) = 0.819; P < 0.001) was observed between the proportion of infected wild and colony mosquitoes. A positive association was detected between microscopically detected gametocytes and the proportion of infected colony (ρ(31) = 0.452; P = 0.011) and wild (ρ(31) = 0.386; P = 0.032) mosquitoes. CONCLUSIONS Infectivity assessments with colony and wild mosquitoes yielded similar infection results. This finding supports the use of colony mosquitoes for assessments of the infectious reservoir for malaria in this setting whilst acknowledging the importance of mosquito factors influencing sporogonic development of Plasmodium parasites.
Collapse
Affiliation(s)
- Wakweya Chali
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Temesgen Ashine
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Elifaged Hailemeskel
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Abrham Gashaw
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Temesgen Tafesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Endashaw Esayas
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Soriya Kedir
- Oromia Regional Laboratory, Oromia Regional Health Bureau, Adama, Ethiopia
| | - Girma Shumie
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Sinknesh Wolde Behaksra
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - John Bradley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, P.O.Box 5195, Jimma, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, WC1E 7HT London, UK
| | - Fitsum G. Tadesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Institute of Biotechnology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas - A review. INFECTION GENETICS AND EVOLUTION 2020; 81:104244. [PMID: 32087345 DOI: 10.1016/j.meegid.2020.104244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
Avian Plasmodium is of special interest to health care scientists and veterinarians due to the potency of causing avian malaria in non-adapted birds and their evolutionary phylogenetic relationship with human malaria species. This article aimed to provide a comprehensive list of the common avian Plasmodium parasites in the birds and mosquitoes, to specify the common Plasmodium species and lineages in the selected regions of West of Asia, East of Europe, and North of Africa/Middle East, and to determine the contribution of generalist and host-specific Plasmodium species and lineages. The final list of published infected birds includes 146 species, among which Passer domesticus was the most prevalent in the studied areas. The species of Acrocephalus arundinaceus and Sylvia atricapilla were reported as common infected hosts in the examined regions of three continents. The highest numbers of common species of infected birds between continent pairs were from Asia and Europe, and no common record was found from Europe and Africa. The species of Milvus migrans and Upupa epops were recorded as common species from Asia and Africa. The lineage of GRW11 and species of P. relictum were the most prevalent parasites among all the infection records in birds. The most prevalent genus of vectors of avian malaria belonged to Culex and species of Cx. pipiens. The lineage SGS1 with the highest number of occurrence has been found in various vectors comprising Cx. pipiens, Cx. modestus, Cx. theileri, Cx. sasai, Cx. perexiguus, Lutzia vorax, and Culicoides alazanicus. A total of 31 Plasmodium species and 59 Plasmodium lineages were recorded from these regions. SGS1, GRW04, and GRW11, and P. relictum and P. vaughani are specified as common generalist avian malaria parasites from these three geographic areas. The presence of avian Plasmodium parasites in distant geographic areas and various hosts may be explained by the movement of the infected birds through the migration routes. Although most recorded lineages were from Asia, investigating the distribution of lineages in some of the countries has not been done. Thus, the most important outcome of this review is the determination of the distribution pattern of parasite and vector species that shed light on gaps requiring further studies on the monitoring of avian Plasmodium and common vectors extension. This task could be achieved through scientific field and laboratory networking, performing active surveillance and designing regional/continental control programs of birds' malaria and other zoonotic diseases.
Collapse
|
22
|
Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Mol Biol Rep 2019; 47:211-224. [PMID: 31643044 DOI: 10.1007/s11033-019-05121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.
Collapse
|
23
|
Kojin BB, Adelman ZN. The Sporozoite's Journey Through the Mosquito: A Critical Examination of Host and Parasite Factors Required for Salivary Gland Invasion. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
24
|
The transmission dynamics of a within-and between-hosts malaria model. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Itsara LS, Zhou Y, Do J, Grieser AM, Vaughan AM, Ghosh AK. The Development of Whole Sporozoite Vaccines for Plasmodium falciparum Malaria. Front Immunol 2018; 9:2748. [PMID: 30619241 PMCID: PMC6297750 DOI: 10.3389/fimmu.2018.02748] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Each year malaria kills hundreds of thousands of people and infects hundreds of millions of people despite current control measures. An effective malaria vaccine will likely be necessary to aid in malaria eradication. Vaccination using whole sporozoites provides an increased repertoire of immunogens compared to subunit vaccines across at least two life cycle stages of the parasite, the extracellular sporozoite, and intracellular liver stage. Three potential whole sporozoite vaccine approaches are under development and include genetically attenuated parasites, radiation attenuated sporozoites, and wild-type sporozoites administered in combination with chemoprophylaxis. Pre-clinical and clinical studies have demonstrated whole sporozoite vaccine immunogenicity, including humoral and cellular immunity and a range of vaccine efficacy that depends on the pre-exposure of vaccinated individuals. While whole sporozoite vaccines can provide protection against malaria in some cases, more recent studies in malaria-endemic regions demonstrate the need for improvements. Moreover, challenges remain in manufacturing large quantities of sporozoites for vaccine commercialization. A promising solution to the whole sporozoite manufacturing challenge is in vitro culturing methodology, which has been described for several Plasmodium species, including the major disease-causing human malaria parasite, Plasmodium falciparum. Here, we review whole sporozoite vaccine immunogenicity and in vitro culturing platforms for sporozoite production.
Collapse
Affiliation(s)
| | | | - Julie Do
- MalarVx, Inc., Seattle, WA, United States
| | | | - Ashley M Vaughan
- Seattle Children's Research Institute, Seattle, WA, United States
| | | |
Collapse
|
26
|
Palinauskas V, Bernotienė R, Žiegytė R, Bensch S, Valkiūnas G. Experimental evidence for hybridization of closely related lineages in Plasmodium relictum. Mol Biochem Parasitol 2017; 217:1-6. [PMID: 28803842 DOI: 10.1016/j.molbiopara.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/02/2017] [Accepted: 08/05/2017] [Indexed: 02/02/2023]
Abstract
Over 50 avian Plasmodium species have been described. However, PCR-based information shows much broader diversity of genetic lineages in these parasites. This discrepancy indicates insufficient knowledge about taxonomic diversity and boundaries of a single species in avian Plasmodium species. In recent taxonomy, most of genetically closely related lineages that share the same morphology and development patterns are attributed to the same biological species, but there is no information if these lineages are able to cross. This information is crucial to understand if these lineages form single or multiple evolutionary units. Due to presence of sexual process and sporogonic development of Plasmodium parasites in mosquitoes, self and cross-fertilization can occur and be identified during the oocyst stage. We initiated in vivo hybridization experiments of two widespread Plasmodium relictum lineages (pSGS1 and pGRW11) in experimentally infected Culex pipiens pipiens form molestus mosquitoes. To study putative hybrid oocysts, we used a laser microdissection technique together with PCR-based analyses of mitochondrial and nuclear genes. We demonstrate that both pSGS1 and pGRW11 lineages develop in infected mosquitoes in parallel, but also form hybrid oocysts of these two lineages. Our results are in accord to a recent global phylogeographic study of P. relictum that suggested that cross-fertilization between pSGS1 and pGRW11 might occur. This information helps to understand population structure, gene flow and the evolutionary process of haemosporidian parasites.
Collapse
Affiliation(s)
| | - Rasa Bernotienė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Staffan Bensch
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden
| | | |
Collapse
|
27
|
Yurayart N, Kaewthamasorn M, Tiawsirisup S. Vector competence of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) for Plasmodium gallinaceum infection and transmission. Vet Parasitol 2017; 241:20-25. [DOI: 10.1016/j.vetpar.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
|
28
|
Artesunate-tafenoquine combination therapy promotes clearance and abrogates transmission of the avian malaria parasite Plasmodium gallinaceum. Vet Parasitol 2017; 233:97-106. [DOI: 10.1016/j.vetpar.2016.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
|
29
|
Avian and simian malaria: do they have a cancer connection? Parasitol Res 2016; 116:839-845. [DOI: 10.1007/s00436-016-5352-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/11/2016] [Indexed: 12/31/2022]
|
30
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
31
|
Palinauskas V, Žiegytė R, Iezhova TA, Ilgūnas M, Bernotienė R, Valkiūnas G. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite. Int J Parasitol 2016; 46:697-707. [PMID: 27349510 DOI: 10.1016/j.ijpara.2016.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Plasmodium elongatum causes severe avian malaria and is distributed worldwide. This parasite is of particular importance due to its ability to develop and cause lethal malaria not only in natural hosts, but also in non-adapted endemic birds such as the brown kiwi and different species of penguins. Information on vectors of this infection is available but is contradictory. PCR-based analysis indicated the possible existence of a cluster of closely related P. elongatum lineages which might differ in their ability to develop in certain mosquitoes and birds. This experimental study provides information about molecular and morphological characterisation of a virulent P. elongatum strain (lineage pERIRUB01) isolated from a naturally infected European robin, Erithacus rubecula. Phylogenetic analysis based on partial cytochrome b gene sequences showed that this parasite lineage is closely related to P. elongatum (lineage pGRW6). Blood stages of both parasite lineages are indistinguishable, indicating that they belong to the same species. Both pathogens develop in experimentally infected canaries, Serinus canaria, causing death of the hosts. In both these lineages, trophozoites and erythrocytic meronts develop in polychromatic erythrocytes and erythroblasts, gametocytes parasitize mature erythrocytes, exoerythrocytic stages develop in cells of the erythrocytic series in bone marrow and are occasionally reported in spleen and liver. Massive infestation of bone marrow cells is the main reason for bird mortality. We report here on syncytium-like remnants of tissue meronts, which slip out of the bone marrow into the peripheral circulation, providing evidence that the syncytia can be a template for PCR amplification. This finding contributes to better understanding positive PCR amplifications in birds when parasitemia is invisible and improved diagnostics of abortive haemosporidian infections. Sporogony of P. elongatum (pERIRUB01) completes the cycle and sporozoites develop in widespread Culex quinquefasciatus and Culex pipiens pipiens form molestus mosquitoes. This experimental study provides information on virulence and within species lineage diversity in a single pathogenic species of haemosporidian parasite.
Collapse
Affiliation(s)
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | | | - Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Rasa Bernotienė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | | |
Collapse
|
32
|
Carvalho TG, Morahan B, John von Freyend S, Boeuf P, Grau G, Garcia-Bustos J, Doerig C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol Biochem Parasitol 2016; 208:2-15. [PMID: 27211241 DOI: 10.1016/j.molbiopara.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Belinda Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Department of Medicine, Melbourne, Victoria 3010, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Georges Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jose Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
33
|
Lotta IA, Pacheco MA, Escalante AA, González AD, Mantilla JS, Moncada LI, Adler PH, Matta NE. Leucocytozoon Diversity and Possible Vectors in the Neotropical highlands of Colombia. Protist 2016; 167:185-204. [DOI: 10.1016/j.protis.2016.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
34
|
Habtewold T, Groom Z, Duchateau L, Christophides GK. Detection of viable plasmodium ookinetes in the midguts of anopheles coluzzi using PMA-qrtPCR. Parasit Vectors 2015; 8:455. [PMID: 26373633 PMCID: PMC4572643 DOI: 10.1186/s13071-015-1087-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosquito infection with malaria parasites depends on complex interactions between the mosquito immune response, the parasite developmental program and the midgut microbiota. Simultaneous monitoring of the parasite and bacterial dynamics is important when studying these interactions. PCR based methods of genomic DNA (gDNA) have been widely used, but their inability to discriminate between live and dead cells compromises their application. The alternative method of quantification of mRNA mainly reports on cell activity rather than density. METHOD Quantitative real-time (qrt) PCR in combination with Propidium Monoazide (PMA) treatment (PMA-qrtPCR) has been previously used for selectively enumerating viable microbial cells. PMA penetrates damaged cell membranes and intercalates in the DNA inhibiting its PCR amplification. Here, we tested the potential of PMA-qrtPCR to discriminate between and quantify live and dead Plasmodium berghei malarial parasites and commensal bacteria in the midgut of Anopheles coluzzii Coetzee & Wilkerson 2013 (formerly An. gambiae M-form). RESULTS By combining microscopic observations with reverse transcriptase PCR (RT-PCR) we reveal that, in addition to gDNA, mRNA from dead parasites also persists inside the mosquito midgut, therefore its quantification cannot accurately reflect live-only parasites at the time of monitoring. In contrast, pre-treating the samples with PMA selectively inhibited qrtPCR amplification of parasite gDNA, with about 15 cycles (Ct-value) difference between PMA-treated and control samples. The limit of detection corresponds to 10 Plasmodium ookinetes. Finally, we show that the PMA-qrtPCR method can be used to quantify bacteria that are present in the mosquito midgut. CONCLUSION The PMA-qrtPCR is a suitable method for quantification of viable parasites and bacteria in the midgut of Anopheles mosquitoes. The method will be valuable when studying the molecular interactions between the mosquito, the malaria parasite and midgut microbiota.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK.
- Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium.
| | - Zoe Groom
- Department of Life Sciences, Imperial College London, London, UK
- Costello Medical Consulting, Cambridge, UK
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium
| | | |
Collapse
|
35
|
Wu Y, Sinden RE, Churcher TS, Tsuboi T, Yusibov V. Development of malaria transmission-blocking vaccines: from concept to product. ADVANCES IN PARASITOLOGY 2015; 89:109-52. [PMID: 26003037 DOI: 10.1016/bs.apar.2015.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches.
Collapse
Affiliation(s)
- Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | | | - Thomas S Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Takafumi Tsuboi
- Division of Malaria Research, Ehime University, Matsuyama, Ehime, Japan
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
36
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
37
|
Da DF, Churcher TS, Yerbanga RS, Yaméogo B, Sangaré I, Ouedraogo JB, Sinden RE, Blagborough AM, Cohuet A. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol 2014; 149:74-83. [PMID: 25541384 DOI: 10.1016/j.exppara.2014.12.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
Abstract
The evaluation of transmission reducing interventions (TRI) to control malaria widely uses membrane feeding assays. In such assays, the intensity of Plasmodium infection in the vector might affect the measured efficacy of the candidates to block transmission. Gametocyte density in the host blood is a determinant of the infection success in the mosquito, however, uncertain estimates of parasite densities and intrinsic characteristics of the infected blood can induce variability. To reduce this variation, a feasible method is to dilute infectious blood samples. We describe the effect of diluting samples of Plasmodium-containing blood samples to allow accurate relative measures of gametocyte densities and their impact on mosquito infectivity and TRI efficacy. Natural Plasmodium falciparum samples were diluted to generate a wide range of parasite densities, and fed to Anopheles coluzzii mosquitoes. This was compared with parallel dilutions conducted on Plasmodium berghei infections. We examined how blood dilution influences the observed blocking activity of anti-Pbs28 monoclonal antibody using the P. berghei/Anopheles stephensi system. In the natural species combination P. falciparum/An. coluzzii, blood dilution using heat-inactivated, infected blood as diluents, revealed positive near linear relationships, between gametocyte densities and oocyst loads in the range tested. A similar relationship was observed in the P. berghei/An. stephensi system when using a similar dilution method. In contrast, diluting infected mice blood with fresh uninfected blood dramatically increases the infectiousness. This suggests that highly infected mice blood contains inhibitory factors or reduced blood moieties, which impede infection and may in turn, lead to misinterpretation when comparing individual TRI evaluation assays. In the lab system, the transmission blocking activity of an antibody specific for Pbs28 was confirmed to be density-dependent. This highlights the need to carefully interpret evaluations of TRI candidates, regarding gametocyte densities in the P. berghei/An. stephensi system.
Collapse
Affiliation(s)
- Dari F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France
| | - Thomas S Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Bienvenue Yaméogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Ibrahim Sangaré
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso
| | - Robert E Sinden
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom; The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Andrew M Blagborough
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Anna Cohuet
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, Bobo Dioulasso 01 01 BP 545, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, Montpellier Cedex 5 34394, France.
| |
Collapse
|
38
|
Suaréz-Cortés P, Silvestrini F, Alano P. A fast, non-invasive, quantitative staining protocol provides insights in Plasmodium falciparum gamete egress and in the role of osmiophilic bodies. Malar J 2014; 13:389. [PMID: 25274542 PMCID: PMC4194377 DOI: 10.1186/1475-2875-13-389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/27/2014] [Indexed: 12/23/2022] Open
Abstract
Background Ability of Plasmodium falciparum gametocytes to become extracellular during gametogenesis in the mosquito midgut is a key step of the parasite life cycle. Reliable and quantitative measurement of the efficiency of gamete egress is currently constrained by the fact that this phenomenon is usually observed and quantified in vitro either by live microscopy, by statistically limited ultrastructural analysis or by surface antibody-based protocols which can interfere with this fast and complex cellular process. Methods A protocol was developed based on fluorescent wheat germ agglutinin (WGA) surface staining of erythrocytes containing mature P. falciparum gametocytes. After a single centrifugation step and within minutes from the induction of gametogenesis, the activated gametes can be inspected for presence or absence of the fluorescent WGA staining of the host erythrocyte membrane and scored respectively as intracellular or emerged from the erythrocyte. Results Gametogenesis and gamete egress from WGA surface stained, infected erythrocytes occur with normal kinetics and efficiencies. Quantitative measurements of gamete egress can be obtained in live and in paraformaldehyde-fixed cells, which validates this protocol as a suitable tool both for live imaging studies and for higher throughput applications. The protocol was used here to provide functional information on the ability of gametes to egress through a single exit point induced in the host red blood cell membrane, and to re-analyse the phenotype of Pfg377- and osmiophilic body-defective gametes, suggesting that such parasite components are not directly involved in disruption and shedding of the erythrocyte membrane in female gamete egress. Conclusions The development of a reliable, fast, non-invasive and quantitative protocol to finely describe and to measure efficiency of P. falciparum gamete egress is a significant improvement in the tools for functional studies on this key process of the parasite life cycle. This protocol can be used to investigate the molecular mechanisms underlying gamete egress and its adaptation to high throughput applications will enable identification of transmission blocking inhibitors.
Collapse
Affiliation(s)
| | | | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n,299, 00161 Roma, Italy.
| |
Collapse
|
39
|
Morahan B, Garcia-Bustos J. Kinase signalling in Plasmodium sexual stages and interventions to stop malaria transmission. Mol Biochem Parasitol 2014; 193:23-32. [PMID: 24509402 DOI: 10.1016/j.molbiopara.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
Abstract
The symptoms of malaria, one of the infectious diseases with the highest mortality and morbidity world-wide, are caused by asexual parasites replicating inside red blood cells. Disease transmission, however, is effected by non-replicating cells which have differentiated into male or female gametocytes. These are the forms infectious to mosquito vectors and the insects are the only hosts where parasite sexual reproduction can take place. Malaria is thus a complex infection in which pharmacological treatment of symptoms may still allow transmission for long periods, while pharmacological blockage of infectivity may not cure symptoms. The process of parasite sexual differentiation and development is still being revealed but it is clear that kinase-mediated signalling mechanisms play a significant role. This review attempts to summarise our limited current knowledge on the signalling mechanisms involved in the transition from asexual replication to sexual differentiation and reproduction, with a brief mention to the effects of current treatments on the sexual stages and to some of the difficulties inherent in developing pharmacological interventions to curtail disease transmission.
Collapse
Affiliation(s)
- Belinda Morahan
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Jose Garcia-Bustos
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
40
|
Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. Proc Natl Acad Sci U S A 2014; 111:E492-500. [PMID: 24474798 DOI: 10.1073/pnas.1315517111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium ookinete invasion of the mosquito midgut is a crucial step of the parasite life cycle but little is known about the molecular mechanisms involved. Previously, a phage display peptide library screen identified SM1, a peptide that binds to the mosquito midgut epithelium and inhibits ookinete invasion. SM1 was characterized as a mimotope of an ookinete surface enolase and SM1 presumably competes with enolase, the presumed ligand, for binding to a putative midgut receptor. Here we identify a mosquito midgut receptor that binds both SM1 and ookinete surface enolase, termed "enolase-binding protein" (EBP). Moreover, we determined that Plasmodium berghei parasites are heterogeneous for midgut invasion, as some parasite clones are strongly inhibited by SM1 whereas others are not. The SM1-sensitive parasites required the mosquito EBP receptor for midgut invasion whereas the SM1-resistant parasites invaded the mosquito midgut independently of EBP. These experiments provide evidence that Plasmodium ookinetes can invade the mosquito midgut by alternate pathways. Furthermore, another peptide from the original phage display screen, midgut peptide 2 (MP2), strongly inhibited midgut invasion by P. berghei (SM1-sensitive and SM1-resistant) and Plasmodium falciparum ookinetes, suggesting that MP2 binds to a separate, universal receptor for midgut invasion.
Collapse
|
41
|
Transmission-blocking interventions eliminate malaria from laboratory populations. Nat Commun 2013; 4:1812. [PMID: 23652000 PMCID: PMC3674233 DOI: 10.1038/ncomms2840] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
Transmission-blocking interventions aim to reduce the prevalence of infection in endemic communities by targeting Plasmodium within the insect host. Although many studies have reported the successful reduction of infection in the mosquito vector, direct evidence that there is an onward reduction in infection in the vertebrate host is lacking. Here we report the first experiments using a population, transmission-based study of Plasmodium berghei in Anopheles stephensi to assess the impact of a transmission-blocking drug upon both insect and host populations over multiple transmission cycles. We demonstrate that the selected transmission-blocking intervention, which inhibits transmission from vertebrate to insect by only 32%, reduces the basic reproduction number of the parasite by 20%, and in our model system can eliminate Plasmodium from mosquito and mouse populations at low transmission intensities. These findings clearly demonstrate that use of transmission-blocking interventions alone can eliminate Plasmodium from a vertebrate population, and have significant implications for the future design and implementation of transmission-blocking interventions within the field. Transmission-blocking interventions aim to interrupt progression of Plasmodium parasites from the vertebrate host to the mosquito. Blagborough et al. demonstrate that only partially reducing transmission can be sufficient to eliminate experimental Plasmodium infection in successive mosquito and mice populations when biting rates are low.
Collapse
|
42
|
Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, Billingsley PF. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit Vectors 2013; 6:345. [PMID: 24326030 PMCID: PMC4029273 DOI: 10.1186/1756-3305-6-345] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/04/2013] [Indexed: 01/05/2023] Open
Abstract
Background Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector’s nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Methods Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Results Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Conclusions Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An. stephensi was a robust, successful vector regardless of its nutrional status upon emergence. The data suggest that small-sized An. gambiae, therefore, would contribute little to malaria transmission, whereas this size effect would not affect An. stephensi.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700, EH Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, Zettor A, Bourgouin C, Langel Ü, Faye I, Otvos L, Wade JD, Coulibaly MB, Traore SF, Tripet F, Eggleston P, Hurd H. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 2013; 9:e1003790. [PMID: 24278025 PMCID: PMC3836994 DOI: 10.1371/journal.ppat.1003790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.
Collapse
Affiliation(s)
- Victoria Carter
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ann Underhill
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ibrahima Baber
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Lakamy Sylla
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Mounirou Baby
- Centre National de Transfusion Sanguine, Bamako, Mali
| | - Isabelle Larget-Thiery
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Agnès Zettor
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Catherine Bourgouin
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Ülo Langel
- Department of Neurochemistry Svante Arrhenius v. 21A, Stockholm University, Stockholm, Sweden
| | - Ingrid Faye
- Department of Molecular Bioscience, the Wenner-Gren Institute, Svante Arrhenius v. 20C, Stockholm University, Stockholm, Sweden
| | - Laszlo Otvos
- Temple University Department of Biology, Philadelphia, Pennsylvania, United States of America
| | - John D. Wade
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Sekou F. Traore
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| | - Hilary Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| |
Collapse
|
44
|
Molina-Cruz A, Lehmann T, Knöckel J. Could culicine mosquitoes transmit human malaria? Trends Parasitol 2013; 29:530-7. [PMID: 24140295 PMCID: PMC10987011 DOI: 10.1016/j.pt.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/28/2022]
Abstract
Human malaria is known to be transmitted strictly by anopheline mosquitoes. Culicine mosquitoes such as Aedes spp. and Culex spp. are important vectors of other human pathogens including viruses and filarial worms, but have never been observed to transmit mammalian malarias. Culicines do transmit avian malarias and, interestingly, allow partial development of mammalian-infectious Plasmodium parasites, implying that physiological barriers in the mosquitoes prevent parasite transmission. Although the mechanism(s) are not known, the mosquito immune system is probably involved in eliminating Plasmodium. However, Plasmodium has shown substantial capacity to adapt to new vectors, and current ecological changes caused by humans could promote adaptation of human-infectious Plasmodium parasites to culicines. Such an event could have widespread epidemiological implications and therefore merits attention.
Collapse
Affiliation(s)
- Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | |
Collapse
|
45
|
Basseri HR, Mohamadzadeh Hajipirloo H, Mohammadi Bavani M, Whitten MMA. Comparative susceptibility of different biological forms of Anopheles stephensi to Plasmodium berghei ANKA strain. PLoS One 2013; 8:e75413. [PMID: 24086525 PMCID: PMC3781038 DOI: 10.1371/journal.pone.0075413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 08/16/2013] [Indexed: 11/22/2022] Open
Abstract
Background There are varying degrees of compatibility between malaria parasite-mosquito species, and understanding this compatibility may be crucial for developing effective transmission-blocking vaccines. This study investigates the compatibility of different biological forms of a malaria vector, Anopheles stephensi, to Plasmodium berghei ANKA strain. Methods Several biologically different and allopatric forms of A. stephensi were studied. Three forms were isolated from different regions of southern Iran: the variety mysorensis, the intermediate form and the native type form, and an additional type form originated from India (Beech strain).The mosquitoes were experimentally infected with P. berghei to compare their susceptibility to parasitism. Anti-mosquito midgut antiserum was then raised in BALB/cs mice immunized against gut antigens from the most susceptible form of A. stephensi (Beech strain), and the efficacy of the antiserum was assessed in transmission-blocking assays conducted on the least susceptible mosquito biological form. Results The susceptibility of different biological forms of A. stephensi mosquito to P. berghei was specifically inter-type varied. The Beech strain and the intermediate form were both highly susceptible to infection, with higher oocyst and sporozoite infection rates than intermediate and mysorensis forms. The oocyst infection, and particularly sporozite infection, was lowest in the mysorensis strain. Antiserum raised against midgut proteins of the Indian Beech type form blocked infection in this mosquito population, but it was ineffective at blocking both oocyst and sporozoite development in the permissive but geographically distant intermediate form mosquitoes. This suggests that a strong degree of incompatibility exists between the mosquito strains in terms of midgut protein(s) acting as putative ookinete receptors. Conclusions The incompatibility in the midgut protein profiles between two biological forms of A. stephensi demonstrates a well-differentiated population structure according to geographical origin. Therefore, the design of potential transmission-blocking strategies should incorporate a more thorough understanding of intra-species variations in host-parasite interactions.
Collapse
Affiliation(s)
- Hamid R. Basseri
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Mohamadzadeh Hajipirloo
- Department of Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- * E-mail:
| | - Mulood Mohammadi Bavani
- Department of Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Miranda M. A. Whitten
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom
| |
Collapse
|
46
|
Williams AR, Zakutansky SE, Miura K, Dicks MDJ, Churcher TS, Jewell KE, Vaughan AM, Turner AV, Kapulu MC, Michel K, Long CA, Sinden RE, Hill AVS, Draper SJ, Biswas S. Immunisation against a serine protease inhibitor reduces intensity of Plasmodium berghei infection in mosquitoes. Int J Parasitol 2013; 43:869-74. [PMID: 23872520 PMCID: PMC3775004 DOI: 10.1016/j.ijpara.2013.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 12/19/2022]
Abstract
The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2. Antibodies against Anopheles gambiae serpin-2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines.
Collapse
Affiliation(s)
- Andrew R Williams
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Akhouayri IG, Habtewold T, Christophides GK. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae. PLoS One 2013; 8:e77619. [PMID: 24098592 PMCID: PMC3788111 DOI: 10.1371/journal.pone.0077619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/11/2013] [Indexed: 11/27/2022] Open
Abstract
Background The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. Results Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and denovo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival. Conclusion The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.
Collapse
Affiliation(s)
- Idir G. Akhouayri
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Tibebu Habtewold
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Georges K. Christophides
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 2013; 6:169-81. [PMID: 23988482 DOI: 10.1159/000353602] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/06/2013] [Indexed: 01/10/2023] Open
Abstract
The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite's successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito's innate immune system. This review will discuss our current understanding of the Anopheles mosquito's innate immune responses against the malaria parasite Plasmodium and the influence of the insect's intestinal microbiota on parasite infection.
Collapse
Affiliation(s)
- April M Clayton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | | | | |
Collapse
|
49
|
Mitraka E, Stathopoulos S, Siden-Kiamos I, Christophides GK, Louis C. Asaia accelerates larval development of Anopheles gambiae. Pathog Glob Health 2013; 107:305-11. [PMID: 24091152 DOI: 10.1179/2047773213y.0000000106] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arthropod borne diseases cause significant human morbidity and mortality and, therefore, efficient measures to control transmission of the disease agents would have great impact on human health. One strategy to achieve this goal is based on the manipulation of bacterial symbionts of vectors. Bacteria of the Gram-negative, acetic acid bacterium genus Asaia have been found to be stably associated with larvae and adults of the Southeast Asian malaria vector Anopheles stephensi, dominating the microbiota of the mosquito. We show here that after the infection of Anopheles gambiae larvae with Asaia the bacteria were stably associated with the mosquitoes, becoming part of the microflora of the midgut and remaining there for the duration of the life cycle. Moreover they were passed on to the next generation through vertical transmission. Additionally, we show that there is an increase in the developmental rate when additional bacteria are introduced into the organism which leads us to the conclusion that Asaia plays a yet undetermined crucial role during the larval stages. Our microarray analysis showed that the larval genes that are mostly affected are involved in cuticle formation, and include mainly members of the CPR gene family.
Collapse
Affiliation(s)
- Elvira Mitraka
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | | | | | | | | |
Collapse
|
50
|
Plasmodium dipeptidyl aminopeptidases as malaria transmission-blocking drug targets. Antimicrob Agents Chemother 2013; 57:4645-52. [PMID: 23836185 DOI: 10.1128/aac.02495-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Plasmodium falciparum and P. berghei genomes each contain three dipeptidyl aminopeptidase (dpap) homologs. dpap1 and -3 are critical for asexual growth, but the role of dpap2, the gametocyte-specific homolog, has not been tested. If DPAPs are essential for transmission as well as asexual growth, then a DPAP inhibitor could be used for treatment and to block transmission. To directly analyze the role of DPAP2, a dpap2-minus P. berghei (Pbdpap2Δ) line was generated. The Pbdpap2Δ parasites grew normally, differentiated into gametocytes, and generated sporozoites that were infectious to mice when fed to a mosquito. However, Pbdpap1 transcription was >2-fold upregulated in the Pbdpap2Δ clonal lines, possibly compensating for the loss of Pbdpap2. The role of DPAP1 and -3 in the dpap2Δ parasites was then evaluated using a DPAP inhibitor, ML4118S. When ML4118S was added to the Pbdpap2Δ parasites just before a mosquito membrane feed, mosquito infectivity was not affected. To assess longer exposures to ML4118S and further evaluate the role of DPAPs during gametocyte development in a parasite that causes human malaria, the dpap2 deletion was repeated in P. falciparum. Viable P. falciparum dpap2 (Pfdpap2)-minus parasites were obtained that produced morphologically normal gametocytes. Both wild-type and Pfdpap2-negative parasites were sensitive to ML4118S, indicating that, unlike many antimalarials, ML4118S has activity against parasites at both the asexual and sexual stages and that DPAP1 and -3 may be targets for a dual-stage drug that can treat patients and block malaria transmission.
Collapse
|