1
|
Tomasina R, González FC, Echeverría S, Cabrera A, Robello C. Insights into the Cell Division of Neospora caninum. Microorganisms 2023; 12:61. [PMID: 38257886 PMCID: PMC10818811 DOI: 10.3390/microorganisms12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Neospora caninum is an apicomplexan protozoan parasite responsible for causing neosporosis in a range of animal species. It results in substantial economic losses in the livestock industry and poses significant health risks to companion and wild animals. Central to its survival and pathogenicity is the process of cell division, which remains poorly understood in this parasite. In this study, we explored the cell division of Neospora caninum using a combination of modern and classic imaging tools, emphasizing its pivotal role in perpetuating the parasite's life cycle and contributing to its ability to persist within host organisms. We described the intricacies of endodyogeny in Neospora caninum, detailing the dynamics of the cell assembly and the nuclear division by ultrastructure expansion microscopy and regular confocal microscopy. Furthermore, we explored the centrosome dynamics, the centrioles and the apicoplast through the advancement of the cell cycle. Our analysis described with unprecedented detail, the endodyogeny in this parasite. By advancing our understanding of these molecular mechanisms, we aimed to inspire innovative strategies for disease management and control, with the ultimate goal of mitigating the devastating impact of neosporosis on animal health and welfare.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Fabiana C. González
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
| | - Soledad Echeverría
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
| | - Andrés Cabrera
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.); (S.E.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
2
|
Zanet S, Veronesi F, Giglia G, Baptista CRP, Morganti G, Mandara MT, Vada R, De Carvalho LMM, Ferroglio E. The Dangerous Side of Being a Predator: Toxoplasma gondii and Neospora caninum in Birds of Prey. Pathogens 2023; 12:pathogens12020271. [PMID: 36839542 PMCID: PMC9963945 DOI: 10.3390/pathogens12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Toxoplasma gondii and Neospora caninum are apicomplexan protozoa of major concern in livestock and T. gondii is also considered one of the major threats and a public health concern. These protozoa have a wide range of intermediate hosts, including birds. The present work aimed to assess the prevalence of these cyst-forming parasites in migratory and sedentary birds of prey. The skeletal muscle and myocardium of 159 birds of prey from Central Italy, belonging to 19 species and recovered across 6 Wildlife Recovery Centers/Care structures along the Italian migratory route, were collected specifically for molecular (PCR) and for histopathological analysis to detect T. gondii and N. caninum. For the molecular analysis, genomic DNA was extracted. The DNA was tested by sequence typing, targeting GRA6, 529 bp repeated element, B1, PK1, BTUB, SAG2, alt.SAG2, and APICO genes for T. gondii and to end-point PCR targeting NC5 gene for N. caninum. Thirty-seven out of the one hundred and fifty-nine analyzed samples tested positive for T. gondii with a prevalence of 23.27% and nine for N. caninum, with a prevalence of 5.66%. Thirty-two sequences were obtained from the thirty-seven isolates of T. gondii. Among these, 26 presented alleles compatible with type I strain in 1 or more loci, 4 with type II strain and 2 consisted of atypical strains. Toxoplasma gondii genetic variability in birds of prey confirms previous findings of wildlife as reservoirs of atypical strains. Results from the histology showed few protozoal tissue cysts in skeletal muscle (n. 4) and hearts (n. 2).
Collapse
Affiliation(s)
- Stefania Zanet
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Fabrizia Veronesi
- Department of Veterinary Medicine, University of Perugia, San Costanzo Street 6, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-(07)-55857744
| | - Giuseppe Giglia
- Department of Veterinary Medicine, University of Perugia, San Costanzo Street 6, 06126 Perugia, Italy
| | - Carolina Raquel Pinto Baptista
- Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Giulia Morganti
- Department of Veterinary Medicine, University of Perugia, San Costanzo Street 6, 06126 Perugia, Italy
| | - Maria Teresa Mandara
- Department of Veterinary Medicine, University of Perugia, San Costanzo Street 6, 06126 Perugia, Italy
| | - Rachele Vada
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Luis Manuel Madeira De Carvalho
- Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ezio Ferroglio
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
3
|
Brazilian Horses from Bahia State Are Highly Infected with Sarcocystis bertrami. Animals (Basel) 2022; 12:ani12243491. [PMID: 36552411 PMCID: PMC9774797 DOI: 10.3390/ani12243491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The protozoan Sarcocystis bertrami (syn. Sarcocystis fayeri) infects horses and has dogs as definitive hosts. Herein we aimed to detect S. bertrami in Brazilian horses destined for human consumption and to determine the frequency of infection in the examined animals. Muscle fragments from 51 horses were collected in a slaughterhouse in Bahia State during three different seasons of the year. Samples from six tissues from each animal were prepared for macroscopic and microscopic evaluation, using tissue grinding, squash and histology. Sarcocystis sp. was observed in 100% of the examined horses. Selected samples were processed for transmission electron microscopy (TEM). Species identification was confirmed using a PCR targeted to the mitochondrial cytochrome c oxidase subunit 1 gene (cox1). Histological examination revealed sarcocysts with variable sizes and shapes, and dispersed within the muscle fibers. When observed by TEM, the sarcocyst wall was wavy and covered by an electrodense layer. The villar protrusions were digitiform and bent. To our knowledge, this study is the first morphological and molecular confirmation of S. bertrami in horses in Brazil and South America.
Collapse
|
4
|
Zhao SS, Tao DL, Chen JM, Wu JP, Yang X, Song JK, Zhu XQ, Zhao GH. RNA sequencing reveals dynamic expression of lncRNAs and mRNAs in caprine endometrial epithelial cells induced by Neospora caninum infection. Parasit Vectors 2022; 15:297. [PMID: 35999576 PMCID: PMC9398501 DOI: 10.1186/s13071-022-05405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background The effective transmission mode of Neospora caninum, with infection leading to reproductive failure in ruminants, is vertical transmission. The uterus is an important reproductive organ that forms the maternal–fetal interface. Neospora caninum can successfully invade and proliferate in the uterus, but the molecular mechanisms underlying epithelial-pathogen interactions remain unclear. Accumulating evidence suggests that host long noncoding RNAs (lncRNAs) play important roles in cellular molecular regulatory networks, with reports that these RNA molecules are closely related to the pathogenesis of apicomplexan parasites. However, the expression profiles of host lncRNAs during N. caninum infection has not been reported. Methods RNA sequencing (RNA-seq) analysis was used to investigate the expression profiles of messenger RNAs (mRNAs) and lncRNAs in caprine endometrial epithelial cells (EECs) infected with N. caninum for 24 h (TZ_24h) and 48 h (TZ_48 h), and the potential functions of differentially expressed (DE) lncRNAs were predicted by using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of their mRNA targets. Results RNA-seq analysis identified 1280.15 M clean reads in 12 RNA samples, including six samples infected with N. caninum for 24 h (TZ1_24h-TZ3_24h) and 48 h (TZ1_48h-TZ3_48h), and six corresponding control samples (C1_24h-C3_24h and C1_48h-C3_48h). Within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, there were 934 (665 upregulated and 269 downregulated), 1238 (785 upregulated and 453 downregulated) and 489 (252 upregulated and 237 downregulated) DEmRNAs, respectively. GO enrichment and KEGG analysis revealed that these DEmRNAs were mainly involved in the regulation of host immune response (e.g. TNF signaling pathway, MAPK signaling pathway, transforming growth factor beta signaling pathway, AMPK signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway), signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). A total of 88 (59 upregulated and 29 downregulated), 129 (80 upregulated and 49 downregulated) and 32 (20 upregulated and 12 downregulated) DElncRNAs were found within the categories TZ_24h-vs-C_24h, TZ_48h-vs-C_48h and TZ_48h-vs-TZ_24h, respectively. Functional prediction indicated that these DElncRNAs would be involved in signal transduction (e.g. MAPK signaling pathway, PPAR signaling pathway, ErbB signaling pathway, calcium signaling pathway), neural transmission (e.g. GABAergic synapse, serotonergic synapse, cholinergic synapse), metabolism processes (e.g. glycosphingolipid biosynthesis-lacto and neolacto series, glycosaminoglycan biosynthesis-heparan sulfate/heparin) and signaling molecules and interaction (e.g. cytokine-cytokine receptor interaction, cell adhesion molecules and ECM-receptor interaction). Conclusions This is the first investigation of global gene expression profiles of lncRNAs during N. caninum infection. The results provide valuable information for further studies of the roles of lncRNAs during N. caninum infection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05405-5.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - De-Liang Tao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Ming Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiang-Ping Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China. .,Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Christiansen C, Maus D, Hoppenz E, Murillo-León M, Hoffmann T, Scholz J, Melerowicz F, Steinfeldt T, Seeber F, Blume M. In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nat Commun 2022; 13:1168. [PMID: 35246532 PMCID: PMC8897399 DOI: 10.1038/s41467-022-28730-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current in vitro models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based in vitro culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of T. gondii these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of T. gondii under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention. Bradyzoites are a quiescent form of Toxoplasma gondii enclosed in cysts during chronic infections. Here, Christiansen et al. develop a human myotube-based in vitro culture model of cysts that are infectious to mice and characterize their metabolism in comparison to fast replicating tachyzoites.
Collapse
Affiliation(s)
- Céline Christiansen
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Deborah Maus
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Ellen Hoppenz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tobias Hoffmann
- ZBS 4: Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jana Scholz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Florian Melerowicz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, 13353, Berlin, Germany
| | - Martin Blume
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
6
|
Dorsch MA, Cesar D, Bullock HA, Uzal FA, Ritter JM, Giannitti F. Fatal Toxoplasma gondii myocarditis in an urban pet dog. Vet Parasitol Reg Stud Reports 2022; 27:100659. [PMID: 35012716 DOI: 10.1016/j.vprsr.2021.100659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023]
Abstract
A 70-day-old Boxer dog from a household in Montevideo, Uruguay, died after presenting neurologic, respiratory, and gastrointestinal signs for 6 days. Autopsy findings included lymphadenomegaly, ascites and hepatomegaly. Histopathology revealed severe widespread lymphohistiocytic and plasmacytic myocarditis with cardiomyocyte necrosis, mineralization and numerous intrasarcoplasmic protozoa immunoreactive with anti-Toxoplasma gondii antisera on immunohistochemistry. The protozoa were ultrastructurally confirmed as T. gondii by transmission electron microscopy. Other lesions included diffuse centrilobular hepatocellular necrosis, multifocal lymphohistiocytic portal hepatitis and interstitial nephritis. Other causes of myocarditis, including Neospora caninum, Trypanosoma cruzi, Sarcocystis neurona, canine distemper virus, and canine parvovirus were ruled out by immunohistochemistry. Toxoplasma gondii infections in dogs are usually subclinical; however, clinical disease with fatal outcome can occur. To our knowledge, this is the first report of fatal toxoplasmosis in a dog in Uruguay. This case raises awareness for dogs as sentinels and possible sources of human toxoplasmosis in urban settings in Uruguay.
Collapse
Affiliation(s)
- Matías A Dorsch
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50 km 11, La Estanzuela 70000, Colonia, Uruguay
| | | | | | - Francisco A Uzal
- California Animal Health and Food Safety (CAHFS) Laboratory, University of California Davis, San Bernardino, CA, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Federico Giannitti
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental La Estanzuela, Ruta 50 km 11, La Estanzuela 70000, Colonia, Uruguay.
| |
Collapse
|
7
|
Urrutia A, Mitsi K, Foster R, Ross S, Carr M, Ward GM, van Aerle R, Marigomez I, Leger MM, Ruiz-Trillo I, Feist SW, Bass D. Txikispora philomaios n. sp., n. g., a Micro-Eukaryotic Pathogen of Amphipods, Reveals Parasitism and Hidden Diversity in Class Filasterea. J Eukaryot Microbiol 2021; 69:e12875. [PMID: 34726818 DOI: 10.1111/jeu.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting amphipod genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly haemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host haemocytes, resulting in haemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.
Collapse
Affiliation(s)
- Ander Urrutia
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK.,Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology (Faculty of Science and Technology), Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Pasealekua z/g, Plentzia, 48620, Basque Country, Spain
| | - Konstantina Mitsi
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain
| | - Rachel Foster
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Stuart Ross
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - Martin Carr
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Georgia M Ward
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - Ionan Marigomez
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology (Faculty of Science and Technology), Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Areatza Pasealekua z/g, Plentzia, 48620, Basque Country, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.,Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, 08028, Catalonia, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Stephen W Feist
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Barrack Road, Weymouth, DT4 8UB, UK.,Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
8
|
Cai YC, Yang CL, Hu W, Song P, Xu B, Lu Y, Ai L, Chu YH, Chen MX, Chen JX, Chen SH. Molecular Characterization and Immunological Evaluation of Truncated Babesia microti Rhoptry Neck Protein 2 as a Vaccine Candidate. Front Immunol 2021; 12:616343. [PMID: 33717108 PMCID: PMC7943735 DOI: 10.3389/fimmu.2021.616343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Babesia microti is a protozoan that infects red blood cells. Babesiosis is becoming a new global threat impacting human health. Rhoptry neck proteins (RONs) are proteins located at the neck of the rhoptry and studies indicate that these proteins play an important role in the process of red blood cell invasion. In the present study, we report on the bioinformatic analysis, cloning, and recombinant gene expression of two truncated rhoptry neck proteins 2 (BmRON2), as well as their potential for incorporation in a candidate vaccine for babesiosis. Western blot and immunofluorescence antibody (IFA) assays were performed to detect the presence of specific antibodies against BmRON2 in infected mice and the localization of N-BmRON2 in B. microti parasites. In vitro experiments were carried out to investigate the role of BmRON2 proteins during the B. microti invasion process and in vivo experiments to investigate immunoprotection. Homologous sequence alignment and molecular phylogenetic analysis indicated that BmRON2 showed similarities with RON2 proteins of other Babesia species. We expressed the truncated N-terminal (33-336 aa, designated rN-BmRON2) and C-terminal (915-1171 aa, designated rC-BmRON2) fragments of the BmRON2 protein, with molecular weights of 70 and 29 kDa, respectively. Western blot assays showed that the native BmRON2 protein is approximately 170 kDa, and that rN-BmRON2 was recognized by serum of mice experimentally infected with B. microti. Immunofluorescence analysis indicated that the BmRON2 protein was located at the apical end of merozoites, at the opposite end of the nucleus. In vitro red blood cell invasion inhibition studies with B. microti rBmRON2 proteins showed that relative invasion rate of rN-BmRON2 and rC-BmRON2 group is 45 and 56%, respectively. Analysis of the host immune response after immunization and B. microti infection showed that both rN-BmRON2 and rC-BmRON2 enhanced the immune response, but that rN-BmRON2 conferred better protection than rC-BmRON2. In conclusion, our results indicate that truncated rhoptry neck protein 2, especially its N-terminal fragment (rN-BmRON2), plays an important role in the invasion of host red blood cells, confers immune protection, and shows good potential as a candidate vaccine against babesiosis.
Collapse
Affiliation(s)
- Yu chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Chun li Yang
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yan hong Chu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Shao hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Pastor-Fernández I, Collantes-Fernández E, Jiménez-Pelayo L, Ortega-Mora LM, Horcajo P. Modeling the Ruminant Placenta-Pathogen Interactions in Apicomplexan Parasites: Current and Future Perspectives. Front Vet Sci 2021; 7:634458. [PMID: 33553293 PMCID: PMC7859336 DOI: 10.3389/fvets.2020.634458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Neospora caninum and Toxoplasma gondii are one of the main concerns of the livestock sector as they cause important economic losses in ruminants due to the reproductive failure. It is well-known that the interaction of these parasites with the placenta determines the course of infection, leading to fetal death or parasite transmission to the offspring. However, to advance the development of effective vaccines and treatments, there are still important gaps on knowledge on the placental host-parasite interactions that need to be addressed. Ruminant animal models are still an indispensable tool for providing a global view of the pathogenesis, lesions, and immune responses, but their utilization embraces important economic and ethics restrictions. Alternative in vitro systems based on caruncular and trophoblast cells, the key cellular components of placentomes, have emerged in the last years, but their use can only offer a partial view of the processes triggered after infection as they cannot mimic the complex placental architecture and neglect the activity of resident immune cells. These drawbacks could be solved using placental explants, broadly employed in human medicine, and able to preserve its cellular architecture and function. Despite the availability of such materials is constrained by their short shelf-life, the development of adequate cryopreservation protocols could expand their use for research purposes. Herein, we review and discuss existing (and potential) in vivo, in vitro, and ex vivo ruminant placental models that have proven useful to unravel the pathogenic mechanisms and the host immune responses responsible for fetal death (or protection) caused by neosporosis and toxoplasmosis.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Horcajo
- Animal Health and Zoonoses (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens 2020; 9:E384. [PMID: 32429367 PMCID: PMC7281608 DOI: 10.3390/pathogens9050384] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
: Neospora caninum is an intracellular protozoan parasite affecting numerous animal species. It induces significant economic losses because of abortion and neonatal abnormalities in cattle. In case of infection, the parasite secretes numerous arsenals to establish a successful infection in the host cell. In the same context but for a different purpose, the host resorts to different strategies to eliminate the invading parasite. During this battle, numerous key factors from both parasite and host sides are produced and interact for the maintaining and vanishing of the infection, respectively. Although several reviews have highlighted the role of different compartments of the immune system against N. caninum infection, each one of them has mostly targeted specific points related to the immune component and animal host. Thus, in the current review, we will focus on effector molecules derived from the host cell or the parasite using a comprehensive survey method from previous reports. According to our knowledge, this is the first review that highlights and discusses immune response at the host cell-parasite molecular interface against N. caninum infection in different susceptible hosts.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| |
Collapse
|
11
|
Sánchez-Sánchez R, Vázquez P, Ferre I, Ortega-Mora LM. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem 2019; 18:1304-1323. [PMID: 30277158 PMCID: PMC6340160 DOI: 10.2174/1568026618666181002113617] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a live-attenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against ne-osporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treat-ments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporo-sis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
12
|
First Characterization of the Neospora caninum Dense Granule Protein GRA9. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6746437. [PMID: 29259983 PMCID: PMC5702412 DOI: 10.1155/2017/6746437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/28/2017] [Indexed: 11/17/2022]
Abstract
The obligate intracellular apicomplexan parasite Neospora caninum (N. caninum) is closely related to Toxoplasma gondii (T. gondii). The dense granules, which are present in all apicomplexan parasites, are important secretory organelles. Dense granule (GRA) proteins are released into the parasitophorous vacuole (PV) following host cell invasion and are known to play important roles in the maintenance of the host-parasite relationship and in the acquisition of nutrients. Here, we provide a detailed characterization of the N. caninum dense granule protein NcGRA9. The in silico genomic organization and key protein characteristics are described. Immunofluorescence-based localization studies revealed that NcGRA9 is located in the dense granules and is released into the interior of the PV following host cell invasion. Immunogold-electron microscopy confirmed the dense granule localization and showed that NcGRA9 is associated with the intravacuolar network. In addition, NcGRA9 is found in the "excreted secreted antigen" (ESA) fraction of N. caninum. Furthermore, by analysing the distribution of truncated versions of NcGRA9, we provide evidence that the C-terminal region of this protein is essential for the targeting of NcGRA9 into the dense granules of N. caninum, and the truncated proteins show reduced secretion.
Collapse
|
13
|
Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites. Parasitol Res 2017; 116:2707-2719. [DOI: 10.1007/s00436-017-5579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
14
|
Guiton PS, Sagawa JM, Fritz HM, Boothroyd JC. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells. PLoS One 2017; 12:e0173018. [PMID: 28362800 PMCID: PMC5376300 DOI: 10.1371/journal.pone.0173018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/12/2017] [Indexed: 01/13/2023] Open
Abstract
Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world’s human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection.
Collapse
Affiliation(s)
- Pascale S. Guiton
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janelle M. Sagawa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Heather M. Fritz
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
In contrast to Toxoplasma gondii, Neospora caninum tachyzoites did not sustain multiplication in vitro at increased incubation temperatures. Vet Parasitol 2016; 234:19-24. [PMID: 28115178 DOI: 10.1016/j.vetpar.2016.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/24/2016] [Accepted: 12/19/2016] [Indexed: 11/24/2022]
Abstract
Neospora caninum and Toxoplasma gondii are coccidian parasites that infect a wide range of mammalian and avian species. While viable T. gondii has been in vitro isolated in natural infections from wild and domestic birds, attempts to isolate N. caninum from naturally-infected birds were unsuccessful. We speculate that body temperatures of birds, which are usually higher than those of mammals, may impair the multiplication of N. caninum. In contrast to N. caninum, T. gondii can grow in vitro at temperatures higher than 37°C. To test the hypothesis that N. caninum tachyzoites are impaired to grow in vitro at high temperatures, three strains of N. caninum (NC-1, NC-Liverpool, and NC-Bahia) and three of T. gondii (RH, ME-49 and NED) were cultivated at gradually increasing temperatures starting at 37°C up to 41.5°C. A permanent chicken cell line was chosen for the study. Parasites were observed microscopically and their presence in culture was evaluated by species-specific conventional PCRs. In a second experiment, growth rates of T. gondii (RH strain) and N. caninum (NC-1 strain) were evaluated after direct passage of tachyzoites from 37°C to 41.5°C, and quantified by real-time PCR. In addition to comparisons between N. caninum and T. gondii, growth rates of three T. gondii strains were compared at high temperatures. Neospora caninum tachyzoites could not sustain multiplication at temperatures between 39°C and 41.5°C. Toxoplasma gondii tachyzoites continued to multiply at the same experimental conditions. Direct passage of N. caninum tachyzoites from 37°C to 41.5°C caused a significant decrease in the number of parasites during 96h of observation, while T. gondii had a significant increase in the number of stages after the same period of time. T. gondii RH strain (clonal type I) presented a different growth rate at 41.5°C when compared with type II and type III strains. In conclusion, multiplication of N. caninum tachyzoites in vitro was inhibited at temperatures similar to those of chickens, what may be one of the reasons that isolation of the parasite is difficult in avian species. In contrast to N. caninum, T. gondii continued to grow at 41.5°C.
Collapse
|
16
|
Park CH, Ikadai H, Yoshida E, Isomura H, Inukai H, Oyamada T. Cutaneous Toxoplasmosis in a Female Japanese Cat. Vet Pathol 2016; 44:683-7. [PMID: 17846241 DOI: 10.1354/vp.44-5-683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 16-year-old female Japanese cat was presented with a single mammary-gland nodule approximately 3 cm in diameter. Histologically, the nodule consisted of necrotizing granulomatous panniculitis, vasculitis, and mastitis, and contained free and clustered protozoal organisms. The organism was present in the cytoplasm of macrophages, fibroblasts, endothelial cells, and mammary-gland epithelia. The organism was positive for anti- Toxoplasma gondii and anti- Neospora caninum antibodies. Electron microscopy showed single and grouped tachyzoites, with morphologic features similar to those of T. gondii. Polymerase chain reaction and deoxyribonucleic acid sequence analysis was consistent with T. gondii infection. This is the first report of cutaneous toxoplasmosis in a Japanese cat.
Collapse
Affiliation(s)
- C-H Park
- Department of Veterinary Pathology, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada 034-8628, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Silva RC, Machado GP. Canine neosporosis: perspectives on pathogenesis and management. VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 7:59-70. [PMID: 30050838 PMCID: PMC6055790 DOI: 10.2147/vmrr.s76969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Canine neosporosis is a worldwide disease caused by the obligate intracellular parasite protozoan Neospora caninum, manifesting mainly neurological symptoms. N. caninum has a heteroxenous life cycle and affects a wide range of warm-blooded animals. The domestic and wild canids are the definitive host of the parasite. They shed oocysts after ingestion of tissue cysts from infected intermediate hosts (ovine, equine, bovine, canine, and many other species), containing bradyzoites, or oocyst-contaminated water and food. The presence of dogs in farms is considered a risk factor for production animals. A wide range of diagnostic methods are currently available, but the most used is serology, ie, indirect fluorescent antibody test specific to the antibody detection in blood serum samples. No vaccine is available, but control strategies should be focused on the vertical and horizontal transmission of the parasite, ie, avoid feeding dogs with raw or undercooked meat, and taking care with water for human and animal consumption. No medicines to control the transplacental transmission are available yet.
Collapse
Affiliation(s)
- Rodrigo C Silva
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA,
| | - Gustavo P Machado
- Department of Internal Medicine and Surgery of Small Animals, Dr Munhoz Veterinary Hospital, Itápolis, Brazil
| |
Collapse
|
18
|
Paredes-Santos TC, Tomita T, Yan Fen M, de Souza W, Attias M, Vommaro RC, Weiss LM. Development of dual fluorescent stage specific reporter strain of Toxoplasma gondii to follow tachyzoite and bradyzoite development in vitro and in vivo. Microbes Infect 2016; 18:39-47. [PMID: 26432517 PMCID: PMC4715970 DOI: 10.1016/j.micinf.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii is a protozoan that infects 30% of humans as intermediate hosts. T Sexual reproduction can occur only within the intestinal tract of felines, however, infection in other mammals and birds is associated with asexual replication and interconversion between the tachyzoite and bradyzoite stages. Bradyzoites are slow growing forms found in tissue cysts in latent infection. Recently, our group described the biological behavior of the EGS strain that forms thick walled cysts spontaneously in tissue culture, constituting a useful tool for examining the developmental biology of T. gondii. To further improve the usefulness of this model, we constructed genetically modified EGS parasites that express fluorescent tags under the control of stage specific promoters. The promoter regions for SAG-1 (tachyzoite specific), BAG-1 and LDH-2 (bradyzoite specific) were amplified by PCR and plasmids were constructed with mCherry (redT) and sfGFP (greenB) sequences, respectively. Strains of parasites were selected using FACS to arrive at single fluorescent and dual fluorescent strains of EGS expressing tags in a stage specific manner. In cell cultures, vacuoles labeled by immunofluorescence assay using anti-CST-1 a marker for T. gondii cyst wall contained parasites that were positive for BAG1-GFP and negative for SAG1-mCherry. Tachyzoites and bradyzoites harvested from the mice expressed stage specific mCherry and GFP proteins, respectively. These new dual fluorescent transgenic EGS strains are a promising tool to elucidate the mechanisms of T. gondii differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- T C Paredes-Santos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - T Tomita
- Departments of Pathology and Medicine, Albert Einstein College of Medicine - AECOM, USA
| | - M Yan Fen
- Departments of Pathology and Medicine, Albert Einstein College of Medicine - AECOM, USA
| | - W de Souza
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - M Attias
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
| | - R C Vommaro
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil.
| | - L M Weiss
- Departments of Pathology and Medicine, Albert Einstein College of Medicine - AECOM, USA.
| |
Collapse
|
19
|
Stewart RJ, Ferguson DJP, Whitehead L, Bradin CH, Wu HJ, Tonkin CJ. Phosphorylation of αSNAP is Required for Secretory Organelle Biogenesis inToxoplasma gondii. Traffic 2015; 17:102-16. [DOI: 10.1111/tra.12348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Rebecca J. Stewart
- The Walter and Eliza Hall Institute of Medical Research; Melbourne 3052 Australia
- The Department of Medical Biology; The University of Melbourne; Melbourne 3010 Australia
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science; Oxford University, John Radcliffe Hospital; Oxford OX3 9DU UK
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research; Melbourne 3052 Australia
| | - Clare H. Bradin
- The Walter and Eliza Hall Institute of Medical Research; Melbourne 3052 Australia
| | - Hong J. Wu
- The Walter and Eliza Hall Institute of Medical Research; Melbourne 3052 Australia
- The Department of Medical Biology; The University of Melbourne; Melbourne 3010 Australia
| | - Christopher J. Tonkin
- The Walter and Eliza Hall Institute of Medical Research; Melbourne 3052 Australia
- The Department of Medical Biology; The University of Melbourne; Melbourne 3010 Australia
| |
Collapse
|
20
|
Rodriguez JA, Xu R, Chen CC, Huang Z, Jiang H, Chen AL, Raines KS, Pryor Jr A, Nam D, Wiegart L, Song C, Madsen A, Chushkin Y, Zontone F, Bradley PJ, Miao J. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells. IUCRJ 2015; 2:575-83. [PMID: 26306199 PMCID: PMC4547825 DOI: 10.1107/s205225251501235x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/26/2015] [Indexed: 05/21/2023]
Abstract
A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.
Collapse
Affiliation(s)
- Jose A. Rodriguez
- Biological Chemistry, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Rui Xu
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chien-Chun Chen
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Zhifeng Huang
- Carl ZEISS X-ray Microscopy Inc., Pleasanton, CA 94588, USA
| | - Huaidong Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| | - Allan L. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Kevin S. Raines
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Alan Pryor Jr
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Daewoong Nam
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Lutz Wiegart
- NSLS-II Photon Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Changyong Song
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Anders Madsen
- European X-ray Free Electron Laser, Albert-Einstein-Ring 19, Hamburg 22761, Germany
| | - Yuriy Chushkin
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Federico Zontone
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Peter J. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:216-38. [PMID: 25973393 PMCID: PMC4427759 DOI: 10.1016/j.ijppaw.2015.04.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Neospora caninum is an apicomplexan parasite that is the etiologic agent of neosporosis, a devastating infectious disease regarded as a major cause of reproductive loss in cattle and neuromuscular disease in dogs worldwide. This protozoan pathogen is maintained in the environment by a heteroxenous life cycle that involves a definitive canid host and a wide range of intermediate hosts. In recent years, a number of wildlife species have been investigated for their possible involvement in the N. caninum life cycle and many have been implicated as intermediate hosts. However, in many instances these studies have utilized serological and molecular techniques to detect infection in clinically normal animals, and investigation of possible associated morbidity, mortality, and pathology has been neglected. As such, the occurrence and importance of Neospora-associated disease in wildlife species are unknown. In order to improve our understanding of the significance of N. caninum infection in nondomestic species, the present review provides an up-to-date summary of clinical neosporosis and N. caninum-associated pathologic lesions in naturally and experimentally infected wildlife species. We provide a list of all free-ranging and captive wildlife species identified with N. caninum infection to date using currently available diagnostic tools. The advantages and disadvantages of diagnostic methods in wildlife are addressed in order to recommend optimal diagnosis of confirming N. caninum infection and neosporosis in nondomestic species. Although current data would suggest that N. caninum infection does not adversely impact wildlife populations, there is a need for greater international uniformity in the diagnosis of N. caninum infection and neosporosis in nondomestic species in order to assess the true consequences of parasite infection.
Collapse
|
22
|
Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles. EUKARYOTIC CELL 2015; 14:454-73. [PMID: 25750213 DOI: 10.1128/ec.00262-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.
Collapse
|
23
|
Langenmayer MC, Gollnick NS, Scharr JC, Schares G, Herrmann DC, Majzoub-Altweck M, Hermanns W. Besnoitia besnoiti infection in cattle and mice: ultrastructural pathology in acute and chronic besnoitiosis. Parasitol Res 2015; 114:955-63. [DOI: 10.1007/s00436-014-4261-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
24
|
Monney T, Hemphill A. Vaccines against neosporosis: what can we learn from the past studies? Exp Parasitol 2014; 140:52-70. [PMID: 24602874 DOI: 10.1016/j.exppara.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/09/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
25
|
Beiting DP, Peixoto L, Akopyants NS, Beverley SM, Wherry EJ, Christian DA, Hunter CA, Brodsky IE, Roos DS. Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One 2014; 9:e88398. [PMID: 24505488 PMCID: PMC3914978 DOI: 10.1371/journal.pone.0088398] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022] Open
Abstract
The closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II (γ) interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (α/β) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits TLR3-dependent type I interferon responses when targeted to the host endo-lysosomal system. Although live Toxoplasma fail to induce type I interferon, heat-killed parasites do trigger this response, albeit much weaker than Neospora, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that related parasite species interact with this pathway in distinct ways.
Collapse
Affiliation(s)
- Daniel P. Beiting
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalia S. Akopyants
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, United States of America
| | - E. John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
26
|
A review of the infection, genetics, and evolution of Neospora caninum: from the past to the present. INFECTION GENETICS AND EVOLUTION 2012; 13:133-50. [PMID: 22985682 DOI: 10.1016/j.meegid.2012.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/05/2012] [Accepted: 08/07/2012] [Indexed: 12/30/2022]
Abstract
This paper is a review of current knowledge on Neospora caninum in the context of other apicomplexan parasites and with an emphasis on: life cycle, disease, epidemiology, immunity, control and treatment, evolution, genomes, and biological databases and web resources. N. caninum is an obligate, intracellular, coccidian, protozoan parasite of the phylum Apicomplexa. Infection can cause the clinical disease neosporosis, which most notably is associated with abortion in cattle. These abortions are a major root cause of economic loss to both the dairy and beef industries worldwide. N. caninum has been detected in every country in which a study has been specifically conducted to detect this parasite in cattle. The major mode of transmission in cattle is transplacental (or vertical) transmission and several elements of the N. caninum life cycle are yet to be studied in detail. The outcome of an infection is inextricably linked to the precise timing of the infection coupled with the status of the immune system of the dam and foetus. There is no community consensus as to whether it is the dam's pro-inflammatory cytotoxic response to tachyzoites that kills the foetus or the tachyzoites themselves. From economic analysis the most cost-effective approach to control neosporosis is a vaccine. The perfect vaccine would protect against both infection and the clinical disease, and this implies a vaccine is needed that can induce a non-foetopathic cell mediated immunity response. Researchers are beginning to capitalise on the vast potential of -omics data (e.g. genomes, transcriptomes, and proteomes) to further our understanding of pathogens but especially to identify vaccine and drug targets. The recent publication of a genome for N. caninum offers vast opportunities in these areas.
Collapse
|
27
|
Cronstedt-Fell A, Richter B, Voracek T, Kübber-Heiss A. Neosporosis in a captive Parma wallaby (Macropus parma). J Comp Pathol 2012; 146:274-7. [PMID: 21689827 DOI: 10.1016/j.jcpa.2011.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/06/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
Infection with Neospora caninum has been diagnosed in a variety of animal species; however, reports in marsupials are rare. A captive Parma wallaby (Macropus parma) died suddenly and was subjected to necropsy examination. The main finding was necrotizing myocarditis associated with protozoan parasites. The protozoa were identified as N. caninum by use of immunohistochemistry and partial gene sequence analysis. Neospora and Toxoplasma should be considered a possible cause of disease in captive marsupials. Further work is required to determine whether marsupials are an accidental or terminal host of this protozoan in order to better understand the host-parasite relationship.
Collapse
Affiliation(s)
- A Cronstedt-Fell
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria.
| | | | | | | |
Collapse
|
28
|
Crystalloid body, refractile body and virus-like particles in Apicomplexa: what is in there? Parasitology 2012; 139:285-93. [PMID: 22217113 DOI: 10.1017/s0031182011002034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The phylum of Apicomplexa comprises parasitic protozoa that share distinctive features such as the apical complex, the apicoplast, specialized cytoskeletal components and secretory organelles. Other unique cytoplasmic inclusions sharing similar features have been described in some representatives of Apicomplexa, although under different denominations. These are the crystalloid body, present for example in Cryptosporidium, Plasmodium and Cystoisospora; the refractile body in Eimeria and Lankesterella; and virus-like particles, also present in Eimeria and Cryptosporidium. Yet, the specific role of these cytoplasmic inclusions in the cell cycle of these protozoa is still unknown. Here, we discuss their morphology, possible inter-relatedness and speculate upon their function to bring these organelles back to the attention of the scientific community and promote new interest towards original research on these elusive structures.
Collapse
|
29
|
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol 2010; 26:297-304. [PMID: 20347614 DOI: 10.1016/j.pt.2010.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/13/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Apicomplexan parasites possess specialized secretory organelles (rhoptries and micronemes) that release their contents during host cell invasion. Although the rhoptries were once thought to be merely a bulbous 'protein reservoir' connected to an anterior neck region, the localization of a protein specifically to the neck suggested that this region was more than just a duct. Recent studies have shown that the rhoptry neck sub-compartment possesses a distinct protein repertoire. Some of these proteins share common features, including conservation across the phylum and involvement in tight-junction formation. A sub-group of rhoptry neck proteins, the RONs, their association with the microneme protein apical membrane antigen AMA1, and their involvement in invasion are discussed.
Collapse
|
30
|
|
31
|
Eastick FA, Elsheikha HM. Stress-driven stage transformation of Neospora caninum. Parasitol Res 2010; 106:1009-14. [PMID: 20165871 DOI: 10.1007/s00436-010-1788-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/25/2010] [Indexed: 11/29/2022]
Abstract
Neosporiosis, a serious disease caused by the apicomplexan intracellular parasite Neospora caninum, is considered to be one of the most economically important diseases in cattle. It is associated with potentially serious complications such as abortion, stillbirth and maternal infertility. To survive in fluctuating physiological and immunological environments, N. caninum has evolved a diverse set of regulatory mechanisms that govern various adaptive responses. The most intriguing paradigm in N. caninum adaptive evolutionary biology is its ability to alternate between two phenotypically and functionally distinct stages within the host. Recent research has reinforced the notion that N. caninum tachyzoite-bradyzoite stage switching on and off is correlated with its ability to form dormant cysts. Knowledge of the specific mechanisms that govern the dynamics of N. caninum phenotype switching enables a better understanding of the pathogenesis of the disease and effective control measures to be identified. Herein we review the available knowledge relating to various aspects of stage interconversion in N. caninum, with particular focus on the stress-related hypothesis presumed to be involved in this event. Finally, we put forward the postulation that N. caninum uses stage interconversion as an adaptive process to cope with the hostile environment within the host and to ensure its continuity in nature.
Collapse
Affiliation(s)
- Faye A Eastick
- Division of Veterinary Medicine, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | |
Collapse
|
32
|
Protection against lethal Neospora caninum infection in mice induced by heterologous vaccination with a mic1 mic3 knockout Toxoplasma gondii strain. Infect Immun 2009; 78:651-60. [PMID: 19995895 DOI: 10.1128/iai.00703-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neospora caninum and Toxoplasma gondii are closely related, obligate intracellular parasites infecting a wide range of vertebrate hosts and causing abortion and neonatal morbidity and mortality. Several lines of evidence suggest that cross immunity between these two pathogens could be exploited in the design of strategies for heterologous vaccination. We assessed the ability of an attenuated strain of T. gondii ("mic1-3KO strain") conferring strong protection against chronic and congenital toxoplasmosis to protect mice against lethal N. caninum infection. Mice immunized with mic1-3KO tachyzoites by the oral and intraperitoneal routes developed a strong cellular Th1 response and displayed significant protection against lethal heterologous N. caninum infection, with survival rates of 70% and 80%, respectively, whereas only 30% of the nonimmunized mice survived. We report here the acquisition of heterologous protective immunity against N. caninum following immunization with a live attenuated mic1-3KO strain of T. gondii.
Collapse
|
33
|
Gentry MS, Pace RM. Conservation of the glucan phosphatase laforin is linked to rates of molecular evolution and the glucan metabolism of the organism. BMC Evol Biol 2009; 9:138. [PMID: 19545434 PMCID: PMC2714694 DOI: 10.1186/1471-2148-9-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/22/2009] [Indexed: 02/02/2023] Open
Abstract
Background Lafora disease (LD) is a fatal autosomal recessive neurodegenerative disease. A hallmark of LD is cytoplasmic accumulation of insoluble glucans, called Lafora bodies (LBs). Mutations in the gene encoding the phosphatase laforin account for ~50% of LD cases, and this gene is conserved in all vertebrates. We recently demonstrated that laforin is the founding member of a unique class of phosphatases that dephosphorylate glucans. Results Herein, we identify laforin orthologs in a protist and two invertebrate genomes, and report that laforin is absent in the vast majority of protozoan genomes and it is lacking in all other invertebrate genomes sequenced to date. We biochemically characterized recombinant proteins from the sea anemone Nematostella vectensis and the amphioxus Branchiostoma floridae to demonstrate that they are laforin orthologs. We demonstrate that the laforin gene has a unique evolutionary lineage; it is conserved in all vertebrates, a subclass of protists that metabolize insoluble glucans resembling LBs, and two invertebrates. We analyzed the intron-exon boundaries of the laforin genes in each organism and determine, based on recently published reports describing rates of molecular evolution in Branchiostoma and Nematostella, that the conservation of laforin is linked to the molecular rate of evolution and the glucan metabolism of an organism. Conclusion Our results alter the existing view of glucan phosphorylation/dephosphorylation and strongly suggest that glucan phosphorylation is a multi-Kingdom regulatory mechanism, encompassing at least some invertebrates. These results establish boundaries concerning which organisms contain laforin. Laforin is conserved in all vertebrates, it has been lost in the vast majority of lower organisms, and yet it is an ancient gene that is conserved in a subset of protists and invertebrates that have undergone slower rates of molecular evolution and/or metabolize a carbohydrate similar to LBs. Thus, the laforin gene holds a unique place in evolutionary biology and has yielded insights into glucan metabolism and the molecular etiology of Lafora disease.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S, Limestone, BBSRB, B177, Lexington, Kentucky 40536-0509, USA.
| | | |
Collapse
|
34
|
Kang SW, Lee EH, Jean YH, Choe SE, Van Quyen D, Lee MS. The differential protein expression profiles and immunogenicity of tachyzoites and bradyzoites of in vitro cultured Neospora caninum. Parasitol Res 2008; 103:905-13. [PMID: 18597117 DOI: 10.1007/s00436-008-1075-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
We report a study on the variations in the protein expression profiles of tachyzoites and bradyzoites of Neospora caninum. The in vitro stage conversion of N. caninum-infected Vero cells was induced by continuous treatment of infected cultures with 70 muM sodium nitroprusside (SNP) for up to 9 days. The stage conversion indicated by the expression of the bradyzoite-specific antigen BAG1 was analyzed by immunofluoresence assay. Morphological changes between tachyzoites and bradyzoites and localization of nuclei were demonstrated by transmission electron microscopy. Notably, we showed the differential protein expression profiles of tachyzoites and bradyzoites of N. caninum upon treatment with SNP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated different protein patterns between tachyzoites and bradyzoites. Furthermore, Western blotting using rabbit polyclonal antibodies directed against tachyzoites revealed several reactive bands, one of which represented a tachyzoite-specific antigen of approximately 40 kDa remarkably expressed in the tachyzoite stage, but was absent from bradyzoites. Moreover, rabbit polyclonal serum raised against bradyzoites recognized a significant increased expression of an antigen with a MW of approximately 25 kDa in bradyzoites by Western blotting, suggesting that this protein is specifically expressed at the bradyzoite stage. Taken together, our data showed that differential protein expression profiling is a useful tool for discriminating between the two stages during tachyzoite-bradyzoite interconversion in N. caninum infections.
Collapse
Affiliation(s)
- Seung-Won Kang
- Department of Bacteria and Parasitology, National Veterinary Research and Quarantine Service (NVRQS), 480 Anyang 6 dong, Anyang City 420-480, South Korea.
| | | | | | | | | | | |
Collapse
|
35
|
Guimarães EV, de Carvalho L, Barbosa HS. Primary culture of skeletal muscle cells as a model for studies of Toxoplasma gondii cystogenesis. J Parasitol 2008; 94:72-83. [PMID: 18372624 DOI: 10.1645/ge-1273.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Toxoplasma gondii is a protozoan pathogen of birds and mammals, including humans. The infective stage, the bradyzoite, lives within cysts, which occur predominantly in cells of the central nervous system and skeletal and cardiac muscles, characterizing the chronic phase of toxoplasmosis. In the present study, we employed for the first time primary mouse culture of skeletal muscle cells (SkMC) infected with bradyzoites, as a cellular model for cystogenesis. The interconversion of bradyzoite and tachyzoite was analyzed by immunofluorescence using 2 stage-specific antibodies, i.e., anti-bradyzoite (anti-BAG1) and anti-tachyzoite (anti-SAG1). After 24 hr of interaction only bradyzoites were multiplying, as revealed by anti-BAG1 incubation; interconversion to tachyzoites was not observed. After 48 hr of infection, 2 types of vacuoles were seen, i.e., BAG1+ and SAG1+, indicating the presence of bradyzoites as well as their interconversion to tachyzoites. After 96 hr of infection, BAG1+ vacuoles presented a higher number of parasites when compared to 48 hr, indicating multiplication of bradyzoites without interconversion. Using ultrastructural analysis, bradyzoites were found to adhere to the cell membranes via both the apical and posterior regions or were associated with SkMC membrane expansions. During bradyzoite invasion of SkMC, migration of the rough endoplasmic reticulum (RER) profiles to the parasite invasion site was observed. Later, RER profiles were localized between the mitochondria and parasitophorous vacuole membrane (PVM) that contained the parasite. After 31 days of parasite-host cell infection, RER profiles and mitochondria were not observed in association with the cyst wall. Alterations of the PVM, including increased thickness and electrondensity gain on its inner membrane face, were observed 48 hr after infection. Cystogenesis was complete 96 hr after infection, resulting in the formation of the cyst wall, which displayed numerous membrane invaginations. In addition, an electron-dense granular region enriched with vesicles and tubules was present, as well as numerous intracystic bradyzoites. These results show that the in vitro T. gondii model and SkMC are potential tools for both the study of cystogenesis using molecular approaches and the drug screening action on tissue cysts and bradyzoites.
Collapse
Affiliation(s)
- Erick Vaz Guimarães
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
36
|
Risco-Castillo V, Fernández-García A, Zaballos A, Aguado-Martínez A, Hemphill A, Rodríguez-Bertos A, Alvarez-García G, Ortega-Mora LM. Molecular characterisation of BSR4, a novel bradyzoite-specific gene from Neospora caninum. Int J Parasitol 2007; 37:887-96. [PMID: 17376452 DOI: 10.1016/j.ijpara.2007.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/26/2007] [Accepted: 02/04/2007] [Indexed: 11/21/2022]
Abstract
Here we present the identification and cloning of the NcBSR4 gene, the putative Neospora caninum orthologue to the Toxoplasma gondii TgBSR4 gene. To isolate NcBSR4, genome walking PCR was performed on N. caninum genomic DNA using the expressed sequence tag NcEST3c28h02.y1 sequence, which shares a 44% identity with the TgBSR4 gene, as a framework. Nucleotide sequencing of amplified DNA fragments revealed a single uninterrupted 1227 bp open reading frame that encodes a protein of 408 amino acids with 66% similarity to the TgBSR4 antigen. A putative 39-residue signal peptide was found at the NH2-terminus, followed by a hydrophilic region. At the COOH-terminus, a potential site for a glycosylphosphatidylinositol anchor was identified at amino acid 379. A polyclonal serum against recombinant NcBSR4 protein was raised in rabbits, and immunolabelling demonstrated stage-specific expression of the NcBSR4 antigen in N. caninum bradyzoites produced in vitro and in vivo. Furthermore, RT-PCR analysis showed a slight increase of NcBSR4 transcripts in bradyzoites generated during in vitro tachyzoite-to-bradyzoite stage-conversion, suggesting that this gene is specifically expressed at the bradyzoite stage and that its transcription relies on the switch to this stage.
Collapse
Affiliation(s)
- V Risco-Castillo
- SALUVET. Dpto. de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim SK, Fouts AE, Boothroyd JC. Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. THE JOURNAL OF IMMUNOLOGY 2007; 178:5154-65. [PMID: 17404298 DOI: 10.4049/jimmunol.178.8.5154] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that persists for the life of a mammalian host. The parasite's ability to block the potent IFN-gamma response may be one of the key mechanisms that allow Toxoplasma to persist. Using a genome-wide microarray analysis, we show here a complete dysregulation of IFN-gamma-inducible gene expression in human fibroblasts infected with Toxoplasma. Notably, 46 of the 127 IFN-gamma-responsive genes were induced and 19 were suppressed in infected cells before they were exposed to IFN-gamma, indicating that other stimuli produced during infection may also regulate these genes. Following IFN-gamma treatment, none of the 127 IFN-gamma-responsive genes could be significantly induced in infected cells. Immunofluorescence assays showed at single-cell levels that infected cells, regardless of which Toxoplasma strain was used, could not be activated by IFN-gamma to up-regulate the expression of IFN regulatory factor 1, a transcription factor that is under the direct control of STAT1, whereas uninfected cells in the same culture expressed IFN regulatory factor 1 normally in response to IFN-gamma. STAT1 trafficked to the nucleus normally and indistinguishably in all uninfected and infected cells treated with IFN-gamma, indicating that the inhibitory effects of Toxoplasma infection likely occur via blocking STAT1 transcriptional activity in the nucleus. In contrast, a closely related apicomplexan, Neospora caninum, was unable to inhibit IFN-gamma-induced gene expression. A differential ability to interfere with the IFN-gamma response may, in part, account for the differences in the pathogenesis seen among Toxoplasma and Neospora parasite strains.
Collapse
Affiliation(s)
- Seon-Kyeong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
38
|
Hemphill A. Response to Innes and Mattsson: Neospora caninum emerges from the shadow of Toxoplasma gondii. Trends Parasitol 2007. [DOI: 10.1016/j.pt.2006.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Hemphill A, Vonlaufen N, Naguleswaran A. Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 2006; 133:261-78. [PMID: 16753081 DOI: 10.1017/s0031182006000485] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/04/2006] [Accepted: 04/08/2006] [Indexed: 11/07/2022]
Abstract
Neospora caninum is an apicomplexan parasite that is closely related to Toxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast to T. gondii, N. caninum represents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused by N. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, by analogy with T. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.
Collapse
Affiliation(s)
- A Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | | | |
Collapse
|
40
|
Hughes JM, Williams RH, Morley EK, Cook DAN, Terry RS, Murphy RG, Smith JE, Hide G. The prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations. Parasitology 2006; 132:29-36. [PMID: 16393351 DOI: 10.1017/s0031182005008784] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 11/06/2022]
Abstract
Neospora caninum and Toxoplasma gondii are closely related intracellular protozoan parasites associated with bovine and ovine abortion respectively. Little is known about the extent of Neospora/Toxoplasma co-infection in naturally infected populations of animals. Using nested PCR techniques, based on primers from the Nc5 region of N. caninum and SAG1 for T. gondii, the prevalence of N. caninum and its co-infection with T. gondii were investigated in populations of Mus domesticus, Rattus norvegicus and aborted lambs (Ovis aries). A low frequency of infection with N. caninum was detected in the Mus domesticus (3%) and Rattus norvegicus (4.4%) populations. A relatively high frequency of infection with N. caninum was detected in the brains of aborted lambs (18.9%). There was no significant relationship between N. caninum and T. gondii co-infection. Investigation of the tissue distribution of Neospora, in aborted lambs, showed that Neospora could not be detected in tissues other than brain and this was in contrast to Toxoplasma where the parasite could be frequently detected in a range of tissues.
Collapse
Affiliation(s)
- J M Hughes
- Centre for Parasitology, Molecular Epidemiology and Ecology, Biosciences Research Institute, School of Environment and Life Sciences, University of Salford, Salford M5 4WT
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Neospora caninum and neosporosis — recent achievements in host and parasite cell biology and treatment. Acta Parasitol 2006. [DOI: 10.2478/s11686-006-0002-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractNeospora caninum is an apicomplexan parasite, which owes its importance to the fact that it represents the major infectious cause of bovine abortion worldwide. Its life cycle is comprised of three distinct stages: Tachyzoites, representing the proliferative and disease-causing stage, bradyzoites, representing a slowly replicating, tissue cyst-forming stage, and sporozoites, which represent the end product of a sexual process taking place within the intestinal tissue of the final canine host. Tachyzoites are capable of infecting a large variety of host cells in vitro and in vivo, while bradyzoites have been found mainly within the central nervous system. In order to survive, proliferate, and proceed in its life cycle, N. caninum has evolved some amazing features. First, the parasite profits immensely from its ability to interact with, and invade, a large number of host cell types. Secondly, N. caninum exploits its capability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite or vice versa). Thirdly, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long term survival of not only the parasite but also of the host cell. These three key events (host cell invasion — stage conversion — host cell modulation) represent potential targets for intervention. In order to elucidate the molecular and cellular bases of these important features of N. caninum, cell culture-based approaches and laboratory animal models are extensively exploited. In this review, we will summarize the present knowledge and achievements related to host cell and parasite cell biology.
Collapse
|
42
|
King BJ, Keegan AR, Monis PT, Saint CP. Environmental temperature controls Cryptosporidium oocyst metabolic rate and associated retention of infectivity. Appl Environ Microbiol 2005; 71:3848-57. [PMID: 16000797 PMCID: PMC1169051 DOI: 10.1128/aem.71.7.3848-3857.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium is a significant cause of water-borne enteric disease throughout the world and represents a challenge to the water industry and a threat to public health. In this study we report the use of a cell culture-TaqMan PCR assay to measure oocyst inactivation rates in reagent-grade and environmental waters over a range of temperatures. While oocysts incubated at 4 degrees C and 15 degrees C remained infective over the 12-week holding period, we observed a 4 log(10) reduction in infectivity for both 20 and 25 degrees C incubation treatments at 12 and 8 weeks, respectively, for all water types examined, a faster rate of inactivation for oocysts than previously reported. This temperature-dependent inactivation was further investigated using a simple and rapid ATP assay described herein. Time course experiments performed in reagent-grade water at incubation temperatures of 4, 15, 20, 25, 30, and 37 degrees C identified a close relationship between oocyst infectivity and oocyst ATP content, demonstrating that temperature inactivation at higher temperatures is a function of increased oocyst metabolic activity. While water quality did not affect oocyst inactivation, biological antagonism appears to be a key factor affecting oocyst removal from environmental waters. Both the cell culture-TaqMan PCR assay and the ATP assay provide a sensitive and quantitative method for the determination of environmental oocyst inactivation, providing an alternative to the more costly and time-consuming mouse infection assay. The findings presented here relating temperature to oocyst inactivation provide valuable information for determining the relative risks associated with Cryptosporidium oocysts in water.
Collapse
Affiliation(s)
- Brendon J King
- Co-operative Research Centre for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, Salisbury, South Australia 5108, Australia
| | | | | | | |
Collapse
|
43
|
Dubey JP, Sreekumar C, Knickman E, Miska KB, Vianna MCB, Kwok OCH, Hill DE, Jenkins MC, Lindsay DS, Greene CE. Biologic, morphologic, and molecular characterisation of Neospora caninum isolates from littermate dogs. Int J Parasitol 2004; 34:1157-67. [PMID: 15380687 DOI: 10.1016/j.ijpara.2004.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 11/24/2022]
Abstract
Isolation and biologic and molecular attributes of Neospora caninum from three littermate dogs are described. Tissue cysts were confined to the brain and striated muscles. N. caninum was isolated (isolates NC-6, NC-7, and NC-8) in rodents and cell culture that had been inoculated with brain tissue from the dogs. Schizont-like stages reactive with N. caninum antibodies were seen in cell cultures seeded with bradyzoites released from Percoll-isolated N. caninum tissue cysts from the brain of one dog. Tissue cysts were infective orally to mice and gerbils, but not to cats and dogs. The isolates were also identified as N. caninum by PCR and sequence analysis.
Collapse
Affiliation(s)
- J P Dubey
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Parasitic Diseases Laboratory, BARC-East, Building 1040, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hemphill A, Vonlaufen N, Naguleswaran A, Keller N, Riesen M, Guetg N, Srinivasan S, Alaeddine F. Tissue culture and explant approaches to studying and visualizing Neospora caninum and its interactions with the host cell. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:602-620. [PMID: 15525434 DOI: 10.1017/s1431927604040930] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Indexed: 05/24/2023]
Abstract
Neospora caninum is an apicomplexan parasite first mentioned in 1984 as a causative agent of neuromuscular disease in dogs. It is closely related to Toxoplasma gondii and Hammondia heydorni, and its subsequent description in 1988 has been, and still is, accompanied by discussions on the true phylogenetical status of the genus Neospora. N. caninum exhibits features that clearly distinguish this parasite from other members of the Apicomplexa, including distinct ultrastructural properties, genetic background, antigenic composition, host cell interactions, and the definition of the dog as a final host. Most importantly, N. caninum has a particular significance as a cause of abortion in cattle. In vitro culture has been indispensable for the isolation of this parasite and for investigations on the ultrastructural, cellular, and molecular characteristics of the different stages of N. caninum. Tissue culture systems include maintenance of N. caninum tachyzoites, which represent the rapidly proliferating stage in a large number of mammalian host cells, culture of parasites in organotypic brain slice cultures as a tool to investigate cerebral infection by N. caninum, and the use of techniques to induce the stage conversion from the tachyzoite stage to the slowly proliferating and tissue cyst-forming bradyzoite stage. This review will focus on the use of these tissue culture models as well as light- and electron-microscopical techniques for studies on N. caninum tachyzoites and bradyzoites, and on the physical interactions between parasites and host cells.
Collapse
Affiliation(s)
- Andrew Hemphill
- Institute of Parasitology, University of Berne, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Romero JJ, Pérez E, Frankena K. Effect of a killed whole Neospora caninum tachyzoite vaccine on the crude abortion rate of Costa Rican dairy cows under field conditions. Vet Parasitol 2004; 123:149-59. [PMID: 15325041 DOI: 10.1016/j.vetpar.2004.06.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 05/18/2004] [Accepted: 06/04/2004] [Indexed: 11/30/2022]
Abstract
A standard field trial was carried out to assess the effect of a commercial Neospora-vaccine based on whole killed tachyzoites (Bovilis-Neoguard, Intervet) on the abortion rate. Eight hundred and seventy-six cows, over 2.5 months pregnant, belonging to 25 Costa Rican dairy herds, were used in the analysis. For each cow vaccinated, a cow of the same herd, breed and age category, was selected as control. The period of administration of treatments extended from June to November of 2000. The treatments were administered in two, 5-ml doses 1 month apart, the first dose given between day 75 and 90 of gestation. The incidence of abortion among all treated cows was of 16.0% (140/876). The treatment specific incidence was 11.2% (49/438) and 20.8% (91/438) for the vaccinated and the placebo group, respectively. The prevented fraction by vaccination amounted to 0.46 (95% CI: 0.26, 0.61), and the cumulative incidence ratio for the vaccinated group was 0.54. The Cox hazard ratio was 0.51(95% CI: 0.37, 0.72), meaning that the force of abortion is reduced twice in the vaccinated group. The results of this study, the first one following this type of design, shows that the killed whole Neospora caninum tachyzoite preparation had a reasonable effect on the abortion rate in Costa Rican dairy cattle.
Collapse
Affiliation(s)
- J J Romero
- Programa de Investigación en Medicina Poblacional, Escuela de Medicina Veterinaria, Universidad Nacional, Barreal, PO Box 304-3000, Heredia, Costa Rica.
| | | | | |
Collapse
|
46
|
Keller N, Riesen M, Naguleswaran A, Vonlaufen N, Stettler R, Leepin A, Wastling JM, Hemphill A. Identification and characterization of a Neospora caninum microneme-associated protein (NcMIC4) that exhibits unique lactose-binding properties. Infect Immun 2004; 72:4791-800. [PMID: 15271941 PMCID: PMC470650 DOI: 10.1128/iai.72.8.4791-4800.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microneme proteins have been shown to play an important role in the early phase of host cell adhesion, by mediating the contact between the parasite and host cell surface receptors. In this study we have identified and characterized a lectin-like protein of Neospora caninum tachyzoites which was purified by alpha-lactose-agarose affinity chromatography. Upon separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this lactose-binding protein migrated at 70 and 55 kDa under reducing and nonreducing conditions, respectively. Immunofluorescence and immunogold electron microscopy with affinity-purified antibodies showed that the protein was associated with the tachyzoite micronemes. Mass spectrometry analyses and expressed sequence tag database mining revealed that this protein is a member of the Neospora microneme protein family; the protein was named NcMIC4 (N. caninum microneme protein 4). Upon two-dimensional gel electrophoresis, NcMIC4 separated into seven distinct isoforms. Incubation of extracellular parasites at 37 degrees C resulted in the secretion of NcMIC4 into the medium as a soluble protein, and the secreted protein exhibited a slightly reduced M(r) but retained its lactose-binding properties. Immunofluorescence was used to investigate the temporal and spatial distribution of NcMIC4 in tachyzoites entering their host cells and showed that reexpression of NcMIC4 took place 30 min after entry into the host cell. Incubation of secreted fractions and purified NcMIC4 with Vero cells demonstrated binding of NcMIC4 to Vero cells as well as binding to chondroitin sulfate A glycosaminoglycans.
Collapse
Affiliation(s)
- Nadine Keller
- Institute of Parasitology, University of Bern, Laenggass-Strasse 122, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Harris JR, Adrian M, Petry F. Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Parasitology 2004; 128:269-82. [PMID: 15074876 DOI: 10.1017/s003118200300458x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amylopectin is used for carbohydrate storage in different life-stages of a number of apicomplexan parasites. We have performed an ultrastructural analysis of amylopectin granules from the oocyst residual body and sporozoites of Cryptosporidium parvum. Amylopectin granules were studied in situ and after isolation from 'French' press disrupted parasites, by conventional transmission electron microscopy (TEM) of sectioned oocysts and various negative staining and cryoelectron microscopy techniques. Within the membrane-enclosed oocyst residuum large amylopectin granules (0.1-0.3 microm) can be found besides a characteristic large lipid body and a crystalline protein inclusion. Smaller granules were detected in sectioned sporozoites. Negative staining of isolated amylopectin granules revealed some ultrastructural features not readily visible in sectioned material. The large amylopectin granules had a smooth surface with a 'ball of string'-like inner structure. Granules isolated from sporozoites were more irregularly shaped and showed a rod-like particulate composition. With the exception of alpha-amylase, which led to some degree of damage of the surface of the particles, treatment of amylopectin granules with other glycohydrolases had little effect on the overall structure. However, granules adhered to one another. Only when the granules were boiled did the 'ball of string' structure gradually dissolve.
Collapse
Affiliation(s)
- J R Harris
- Institute of Zoology, Johannes Gutenberg-University, D-55099 Mainz, Germany
| | | | | |
Collapse
|
48
|
Vonlaufen N, Guetg N, Naguleswaran A, Müller N, Björkman C, Schares G, von Blumroeder D, Ellis J, Hemphill A. In vitro induction of Neospora caninum bradyzoites in vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infect Immun 2004; 72:576-83. [PMID: 14688139 PMCID: PMC343979 DOI: 10.1128/iai.72.1.576-583.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report on an optimized method for the in vitro culture of tissue cyst-forming Neospora caninum bradyzoites in Vero cells and the separation of viable parasites from host cells. Treatment of tachyzoite-infected Vero cell cultures with 17 microM sodium nitroprusside for 8 days severely scaled down parasite proliferation, led to reduced expression of tachyzoite surface antigens, and induced the expression of the bradyzoite marker NcBAG1 and the cyst wall antigen recognized by the monoclonal antibody MAbCC2. Transmission electron microscopy demonstrated that intracellular parasites were located within parasitophorous vacuoles that were surrounded by a cyst wall-like structure, and the dense granule antigens NcGRA1, NcGRA2, and NcGRA7 were incorporated into the cyst wall. Adhesion-invasion assays employing purified tachyzoites and bradyzoites showed that tachyzoites adhered to, and invaded, Vero cells with higher efficiency than bradyzoites. However, removal of terminal sialic acid residues from either the host cell or the parasite surface increased the invasion of Vero cells by bradyzoites, but not tachyzoites.
Collapse
Affiliation(s)
- Nathalie Vonlaufen
- Institute of Parasitology, Faculties of Veterinary Medicine and Medicine, University of Berne, CH-3012 Berne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Guimarães EV, de Carvalho L, Barbosa HS. An alternative technique to reveal polysaccharides in Toxoplasma gondii tissue cysts. Mem Inst Oswaldo Cruz 2003; 98:915-7. [PMID: 14762518 DOI: 10.1590/s0074-02762003000700010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrathin sections of tissue cysts isolated from the brain of Toxoplasma gondii infected mice were submitted to two different methodologies derived from the periodic acid - Schiff's reagent (PAS) technique. The use of osmium tetroxide vapor as a developing agent of the aldehyde oxidation to reveal polysaccharides with periodic acid resulted in positive reaction in amylopectin granules in bradyzoites, as well as in the wall and matrix of the cysts, with excellent increment of the ultrastructural morphology. This technique can be used for study of T. gondii-host cell intracellular cycle, the differentiation tachyzoite-bradyzoite, and also for the formation of cysts into the host cells.
Collapse
Affiliation(s)
- Erick Vaz Guimarães
- Laboratório de Ultra-estrutura Celular, Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, 21045-900, Brasil
| | | | | |
Collapse
|
50
|
Miller CMD, Quinn HE, Windsor PA, Ellis JT. Characterisation of the first Australian isolate of Neospora caninum from cattle. Aust Vet J 2002; 80:620-5. [PMID: 12465814 DOI: 10.1111/j.1751-0813.2002.tb10967.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To isolate Neospora caninum from a congenitally infected calf. PROCEDURE A calf was obtained from a N. caninum infected dam maintained in a dairy herd of Holstein-Friesian cattle located on the south coast of NSW near Nowra. The calf was euthanased and samples collected for serology and pathology. Samples of brain and spinal cord of the calf were homogenised and injected into immunocompromised mice in an attempt to recover protozoa by in vivo culture. Sequential passage of brain homogenate through IFNgammaPKO mice was performed and tissue culture flasks were inoculated with brain homogenate. Parasites were identified by electron microscopy and DNA sequencing. The antigen profile of the isolate was analysed using Western blotting. Pathogenicity was examined in BALB/c mice and transmission of the parasite during pregnancy was examined in Qs mice. RESULTS The calf was seropositive for N. caninum and histopathological examination of sections of cerebrum identified lesions consistent with a very mild infection with N. caninum. The parasites isolated using tissue culture were identified as N. caninum, based on the sequence of the ribosomal DNA and electron microscopy. The antigen profile of the new isolate was similar to that of the NC-Liverpool isolate, but quite different from that of Toxoplasma gondii. In BALB/c mice inoculated with the new isolate, severe clinical signs developed in only three of ten infected mice, compared with six of ten mice infected with NC-Liverpool. Mild to moderate nonsuppurative encephalitis was observed in BALB/c mice infected with the new isolate, compared with mice infected with NC-Liverpool, that developed severe nonsuppurative encephalitis. Transplacental transmission of the isolate arising from an acute infection during pregnancy occurred in about 87% of pups. CONCLUSION This is the first isolation of bovine Neospora caninum in Australia. This isolate, called NC-Nowra, appears to be a less virulent form and may prove to be a suitable candidate for vaccine development.
Collapse
Affiliation(s)
- C M D Miller
- Department of Cell and Molecular Biology, University of Technology, Sydney, Westbourne Street, Gore Hill, New South Wales 2065
| | | | | | | |
Collapse
|