1
|
Ueno T, Oyama K, Hyung YJ, Ueno S, Oyama Y. Triphenyltin disrupts intracellular Zn 2+ homeostasis in rat thymic lymphocytes. Toxicol In Vitro 2020; 65:104782. [PMID: 31982641 DOI: 10.1016/j.tiv.2020.104782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Triphenyltin (TPT), previously used as an agricultural fungicide and industrial antifoulant, is now considered an environmental pollutant. The effect of TPT on human health is concerning due to its presence as a contaminant in seafood. In this study, the changes in intracellular Zn2+ concentration ([Zn2+]i) and cellular content of nonprotein thiols ([NPT]i) induced by triphenyltin chloride (TPTCH), were measured in rat thymic lymphocytes. This was studied by flow-cytometry using the fluorescent probes FluoZin-3-AM and 5-chloromethylfluorescein diacetate (5-CMF-DA). Incubation with TPTCH, at 0.1 μM or more (up to 3 μM), increased [Zn2+]i in a concentration-dependent manner. The TPTCH-induced elevation in [Zn2+]i was due to the increase in membrane Zn2+ permeability and intracellular Zn2+ release. Incubation with TPTCH at 0.3 μM significantly increased [NPT]i levels, whereas the addition of an intracellular Zn2+ chelator had no effect on the same. TPT at higher concentrations (1 or 3 μM) reduced [NPT]i. TPT may disturb intracellular Zn2+ signaling in lymphocytes that disturbs cellular functions.
Collapse
Affiliation(s)
- Toshiya Ueno
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keisuke Oyama
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Youn Jae Hyung
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Shinya Ueno
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Laboratory of Cell Signaling, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
2
|
Noma K, Akaike H, Kurauchi Y, Katsuki H, Oyama Y, Akaike N. Effects of triphenyltin on glycinergic transmission on rat spinal neurons. ENVIRONMENTAL RESEARCH 2018; 163:186-193. [PMID: 29453030 DOI: 10.1016/j.envres.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Glycine is a fast inhibitory transmitter like γ-aminobutyric acid in the mammalian spinal cord and brainstem, and it is involved in motor reflex, nociception, and neuronal development. Triphenyltin (TPT) is an organometallic compound causing environmental hazard to many wild creatures. Our previous findings show that TPT ultimately induces a drain and/or exhaustion of glutamate in excitatory presynaptic nerve terminals, resulted in blockage of neurotransmission as well as methylmercury. Therefore, we have investigated the neurotoxic mechanism how TPT modulates inhibitory glycinergic transmission in the synaptic bouton preparation of rat isolated spinal neurons using a patch clamp technique. TPT at environmentally relevant concentrations (3-300 nM) significantly increased the number of frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (sIPSC and mIPSC) without affecting the current amplitude and decay time. The TPT effects were also observed in external Ca2+-free solution containing tetrodotoxin (TTX) but removed in Ca2+-free solution with both TTX and BAPTA-AM (Ca2+ chelator). On the other hand, the amplitude of glycinergic evoked inhibitory postsynaptic currents (eIPSCs) increased with decreasing failure rate (Rf) and paired pulse ratio (PPR) in the presence of 300 nM TPT. At a high concentration (1 µM), TPT completely blocked eIPSCs after a transient facilitation. Overall, these results suggest that TPT directly acts transmitter-releasing machinery in glycinergic nerve terminals. Effects of TPT on the nerve terminals releasing fast transmitters were greater in the order of glycinergic > glutamatergic > GABAergic ones. Thus, TPT is supposed to cause a strong synaptic modulations on glycinergic neurotransmission in wild creatures.
Collapse
Affiliation(s)
- Kazuki Noma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hironari Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuo Oyama
- Laboratory of Bioassessment, Faculty of Bioscience and Bioindustry, Tokushima University, Minami-Josanjima 2-1, Tokushima 770-8501, Japan
| | - Norio Akaike
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| |
Collapse
|
3
|
Akaike N, Ishibashi H, Hara H, Oyama Y, Ueha T. Effect of KB-2796, a new diphenylpiperazine Ca2+ antagonist, on voltage-dependent Ca2+ currents and oxidative metabolism in dissociated mammalian CNS neurons. Brain Res 1993; 619:263-70. [PMID: 8397053 DOI: 10.1016/0006-8993(93)91620-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of KB-2796, 1-[bis(4-fluorophenyl)methyl]-4-(2,3,4- trimethoxybenzyl)piperazine-2HCl, on the low- and high-voltage activated Ca2+ currents (LVA and HVA ICa, respectively) and on oxidative metabolism were studied in neurons freshly dissociated from rat brain. KB-2796 reduced the peak amplitude of LVA ICa in a concentration-dependent manner with a threshold concentration of 10(-7) M when the LVA ICa was elicited every 30 s in the external solution with 10 mM Ca2+. The concentration for half-maximum inhibition (IC50) was 1.9 x 10(-6) M. At 10(-5) M or more of KB-2796, a complete suppression of the LVA ICa was observed in the majority of neurons tested. There was no apparent effect on the current-voltage (I-V) relationship and the current kinetics. KB-2796 delayed the reactivation and enhanced the inactivation of the Ca2+ channel for LVA ICa voltage- and time-dependently, suggesting that KB-2796 preferentially binds to the inactivated Ca2+ channel. KB-2796 at a concentration of 3.0 x 10(-6) M also decreased the peak amplitude of the HVA ICa without shifting the I-V relationship. In addition, KB-2796 reduced the oxidative metabolism (the formation of reactive oxygen species) of the neuron in a concentration-dependent manner with a threshold concentration of 3 x 10(-6) M. It is suggested that the inhibitory action of KB-2796 on the neuronal Ca2+ influx and the oxidative metabolism, in combination with a cerebral vasodilatory action, may reduce ischemic brain damage.
Collapse
Affiliation(s)
- N Akaike
- Department of Neurophysiology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|