1
|
Benaim G, Paniz-Mondolfi A. Unmasking the Mechanism behind Miltefosine: Revealing the Disruption of Intracellular Ca 2+ Homeostasis as a Rational Therapeutic Target in Leishmaniasis and Chagas Disease. Biomolecules 2024; 14:406. [PMID: 38672424 PMCID: PMC11047903 DOI: 10.3390/biom14040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.
Collapse
Affiliation(s)
- Gustavo Benaim
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1080, Venezuela
- Laboratorio de Biofísica, Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Alberto Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Division of Microbiology, New York, NY 10029, USA;
| |
Collapse
|
2
|
Bertolini MS, Docampo R. MICU1 and MICU2 potentiation of Ca 2+ uptake by the mitochondrial Ca 2+ uniporter of Trypanosoma cruzi and its inhibition by Mg 2. Cell Calcium 2022; 107:102654. [PMID: 36166935 PMCID: PMC10433726 DOI: 10.1016/j.ceca.2022.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
The mitochondrial Ca2+ uptake, which is important to regulate bioenergetics, cell death and cytoplasmic Ca2+ signaling, is mediated via the calcium uniporter complex (MCUC). In animal cells the MCUC is regulated by the mitochondrial calcium uptake 1 and 2 dimer (MICU1/MICU2), which has been proposed to act as gatekeeper preventing mitochondrial Ca2+ overload at low cytosolic Ca2+ levels. In contrast to animal cells, knockout of either MICU1 or MICU2 in Trypanosoma cruzi, the etiologic agent of Chagas disease, did not allow Ca2+ uptake at low extramitochondrial Ca2+ concentrations ([Ca2+]ext) and it was though that in the absence of one MICU the other would replace its role. However, previous attempts to knockout both genes were unsuccessful. Here, we designed a strategy to generate TcMICU1/TcMICU2 double knockout cell lines using CRISPR/Cas9 genome editing. Ablation of both genes was confirmed by PCR and Southern blot analyses. The absence of both proteins did not allow Ca2+ uptake at low [Ca2+]ext, significantly decreased the mitochondrial Ca2+ uptake at different [Ca2+]ext, without dissipation of the mitochondrial membrane potential, and increased the [Ca2+]ext set point needed for Ca2+ uptake, as we have seen with TcMICU1-KO and TcMICU2-KO cells. Mg2+ was found to be a negative regulator of MCUC-mediated mitochondrial Ca2+ uptake at different [Ca2+]ext. Occlusion of the MCUC pore by Mg2+ could partially explain the lack of mitochondrial Ca2+ uptake at low [Ca2+]ext in TcMICU1/TcMICU2-KO cells. In addition, TcMICU1/TcMICU2-KO epimastigotes had a lower growth rate, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes.
Collapse
Affiliation(s)
- Mayara S Bertolini
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
3
|
Jimenez V, Miranda K, Ingrid A. The old and the new about the contractile vacuole of Trypanosoma cruzi. J Eukaryot Microbiol 2022; 69:e12939. [PMID: 35916682 PMCID: PMC11178379 DOI: 10.1111/jeu.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.
Collapse
Affiliation(s)
- Veronica Jimenez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Kildare Miranda
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Augusto Ingrid
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Docampo R, Vercesi AE. Mitochondrial Ca 2+ and Reactive Oxygen Species in Trypanosomatids. Antioxid Redox Signal 2022; 36:969-983. [PMID: 34218689 PMCID: PMC9125514 DOI: 10.1089/ars.2021.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Significance: Millions of people are infected with trypanosomatids and new therapeutic approaches are needed. Trypanosomatids possess one mitochondrion per cell and its study has led to discoveries of general biological interest. These mitochondria, as in their animal counterparts, generate reactive oxygen species (ROS) and have evolved enzymatic and nonenzymatic defenses against them. Mitochondrial calcium ion (Ca2+) overload leads to generation of ROS and its study could lead to relevant information on the biology of trypanosomatids and to novel drug targets. Recent Advances: Mitochondrial Ca2+ is normally involved in maintaining the bioenergetics of trypanosomes, but when Ca2+ overload occurs, it is associated with cell death. Trypanosomes lack key players in the mechanism of cell death described in mammalian cells, although mitochondrial Ca2+ overload results in collapse of their membrane potential, production of ROS, and cytochrome c release. They are also very resistant to mitochondrial permeability transition, and cell death after mitochondrial Ca2+ overload depends on generation of ROS. Critical Issues: In this review, we consider the mechanisms of mitochondrial oxidant generation and removal and the involvement of Ca2+ in trypanosome cell death. Future Directions: More studies are required to determine the reactions involved in generation of ROS by the mitochondria of trypanosomatids, their enzymatic and nonenzymatic defenses against ROS, and the occurrence and composition of a mitochondrial permeability transition pore. Antioxid. Redox Signal. 36, 969-983.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
5
|
dos Santos GRRM, Leite ACR, Lander N, Chiurillo MA, Vercesi AE, Docampo R. Trypanosoma cruzi Letm1 is involved in mitochondrial Ca 2+ transport, and is essential for replication, differentiation, and host cell invasion. FASEB J 2021; 35:e21685. [PMID: 34085343 PMCID: PMC10437107 DOI: 10.1096/fj.202100120rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023]
Abstract
Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) is a mitochondrial inner membrane protein involved in Ca2+ and K+ homeostasis in mammalian cells. Here, we demonstrate that the Letm1 orthologue of Trypanosoma cruzi, the etiologic agent of Chagas disease, is important for mitochondrial Ca2+ uptake and release. The results show that both mitochondrial Ca2+ influx and efflux are reduced in TcLetm1 knockdown (TcLetm1-KD) cells and increased in TcLetm1 overexpressing cells, without alterations in the mitochondrial membrane potential. Remarkably, TcLetm1 knockdown or overexpression increases or does not affect mitochondrial Ca2+ levels in epimastigotes, respectively. TcLetm1-KD epimastigotes have reduced growth, and both overexpression and knockdown of TcLetm1 cause a defect in metacyclogenesis. TcLetm1-KD also affected mitochondrial bioenergetics. Invasion of host cells by TcLetm1-KD trypomastigotes and their intracellular replication is greatly impaired. Taken together, our findings indicate that TcLetm1 is important for Ca2+ homeostasis and cell viability in T cruzi.
Collapse
Affiliation(s)
| | - Ana Catarina Rezende Leite
- Laboratório de Bioenergética, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Noelia Lander
- Center of Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Miguel Angel Chiurillo
- Center of Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Aníbal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Roberto Docampo
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Center of Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Tanwar J, Singh JB, Motiani RK. Molecular machinery regulating mitochondrial calcium levels: The nuts and bolts of mitochondrial calcium dynamics. Mitochondrion 2021; 57:9-22. [PMID: 33316420 PMCID: PMC7610953 DOI: 10.1016/j.mito.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.
Collapse
Affiliation(s)
- Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 10025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaya Bharti Singh
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
7
|
Docampo R, Vercesi AE, Huang G, Lander N, Chiurillo MA, Bertolini M. Mitochondrial Ca 2+ homeostasis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:261-289. [PMID: 34253297 PMCID: PMC10424509 DOI: 10.1016/bs.ircmb.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondrial calcium ion (Ca2+) uptake is important for buffering cytosolic Ca2+ levels, for regulating cell bioenergetics, and for cell death and autophagy. Ca2+ uptake is mediated by a mitochondrial Ca2+ uniporter (MCU) and the discovery of this channel in trypanosomes has been critical for the identification of the molecular nature of the channel in all eukaryotes. However, the trypanosome uniporter, which has been studied in detail in Trypanosoma cruzi, the agent of Chagas disease, and T. brucei, the agent of human and animal African trypanosomiasis, has lineage-specific adaptations which include the lack of some homologues to mammalian subunits, and the presence of unique subunits. Here, we review newly emerging insights into the role of mitochondrial Ca2+ homeostasis in trypanosomes, the composition of the uniporter, its functional characterization, and its role in general physiology.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States.
| | - Anibal E Vercesi
- Departamento de Patologia Clinica, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Mayara Bertolini
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Bertolini MS, Docampo R. Different Sensitivity of Control and MICU1- and MICU2-Ablated Trypanosoma cruzi Mitochondrial Calcium Uniporter Complex to Ruthenium-Based Inhibitors. Int J Mol Sci 2020; 21:ijms21239316. [PMID: 33297372 PMCID: PMC7730205 DOI: 10.3390/ijms21239316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial Ca2+ uptake in trypanosomatids shares biochemical characteristics with that of animals. However, the composition of the mitochondrial Ca2+ uniporter complex (MCUC) in these parasites is quite peculiar, suggesting lineage-specific adaptations. In this work, we compared the inhibitory activity of ruthenium red (RuRed) and Ru360, the most commonly used MCUC inhibitors, with that of the recently described inhibitor Ru265, on Trypanosoma cruzi, the agent of Chagas disease. Ru265 was more potent than Ru360 and RuRed in inhibiting mitochondrial Ca2+ transport in permeabilized cells. When dose-response effects were investigated, an increase in sensitivity for Ru360 and Ru265 was observed in TcMICU1-KO and TcMICU2-KO cells as compared with control cells. In the presence of RuRed, a significant increase in sensitivity was observed only in TcMICU2-KO cells. However, application of Ru265 to intact cells did not affect growth and respiration of epimastigotes, mitochondrial Ca2+ uptake in Rhod-2-labeled intact cells, or attachment to host cells and infection by trypomastigotes, suggesting a low permeability for this compound in trypanosomes.
Collapse
|
9
|
Huang G, Docampo R. The Mitochondrial Calcium Uniporter Interacts with Subunit c of the ATP Synthase of Trypanosomes and Humans. mBio 2020; 11:e00268-20. [PMID: 32184243 PMCID: PMC7078472 DOI: 10.1128/mbio.00268-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ transport mediated by the uniporter complex (MCUC) plays a key role in the regulation of cell bioenergetics in both trypanosomes and mammals. Here we report that Trypanosoma brucei MCU (TbMCU) subunits interact with subunit c of the mitochondrial ATP synthase (ATPc), as determined by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Mutagenesis analysis in combination with MYTH assays suggested that transmembrane helices (TMHs) are determinants of this specific interaction. In situ tagging, followed by immunoprecipitation and immunofluorescence microscopy, revealed that T. brucei ATPc (TbATPc) coimmunoprecipitates with TbMCUC subunits and colocalizes with them to the mitochondria. Blue native PAGE and immunodetection analyses indicated that the TbMCUC is present together with the ATP synthase in a large protein complex with a molecular weight of approximately 900 kDa. Ablation of the TbMCUC subunits by RNA interference (RNAi) significantly increased the AMP/ATP ratio, revealing the downregulation of ATP production in the cells. Interestingly, the direct physical MCU-ATPc interaction is conserved in Trypanosoma cruzi and human cells. Specific interaction between human MCU (HsMCU) and human ATPc (HsATPc) was confirmed in vitro by mutagenesis and MYTH assays and in vivo by coimmunoprecipitation. In summary, our study has identified that MCU complex physically interacts with mitochondrial ATP synthase, possibly forming an MCUC-ATP megacomplex that couples ADP and Pi transport with ATP synthesis, a process that is stimulated by Ca2+ in trypanosomes and human cells.IMPORTANCE The mitochondrial calcium uniporter (MCU) is essential for the regulation of oxidative phosphorylation in mammalian cells, and we have shown that in Trypanosoma brucei, the etiologic agent of sleeping sickness, this channel is essential for its survival and infectivity. Here we reveal that that Trypanosoma brucei MCU subunits interact with subunit c of the mitochondrial ATP synthase (ATPc). Interestingly, the direct physical MCU-ATPc interaction is conserved in T. cruzi and human cells.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Lander N, Chiurillo MA, Docampo R. CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi. Methods Mol Biol 2020; 2116:177-197. [PMID: 32221922 PMCID: PMC10411612 DOI: 10.1007/978-1-0716-0294-2_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chagas disease is a vector-borne tropical disease affecting millions of people worldwide, for which there is no vaccine or satisfactory treatment available. It is caused by the protozoan parasite Trypanosoma cruzi and considered endemic from North to South America. This parasite has unique metabolic and structural characteristics that make it an attractive organism for basic research. The genetic manipulation of T. cruzi has been historically challenging, as compared to other pathogenic protozoans. However, the use of the prokaryotic CRISPR/Cas9 system for genome editing has significantly improved the ability to generate genetically modified T. cruzi cell lines, becoming a powerful tool for the functional study of proteins in different stages of this parasite's life cycle, including infective trypomastigotes and intracellular amastigotes. Using the CRISPR/Cas9 method that we adapted to T. cruzi, it has been possible to perform knockout, complementation and in situ tagging of T. cruzi genes. In our system we cotransfect T. cruzi epimastigotes with an expression vector containing the Cas9 sequence and a single guide RNA, together with a donor DNA template to promote DNA break repair by homologous recombination. As a result, we have obtained homogeneous populations of mutant epimastigotes using a single resistance marker to modify both alleles of the gene. Mitochondrial Ca2+ transport in trypanosomes is critical for shaping the dynamics of cytosolic Ca2+ increases, for the bioenergetics of the cells, and for viability and infectivity. In this chapter we describe the most effective methods to achieve genome editing in T. cruzi using as example the generation of mutant cell lines to study proteins involved in calcium homeostasis. Specifically, we describe the methods we have used for the study of three proteins involved in the calcium signaling cascade of T. cruzi: the inositol 1,4,5-trisphosphate receptor (TcIP3R), the mitochondrial calcium uniporter (TcMCU) and the calcium-sensitive pyruvate dehydrogenase phosphatase (TcPDP), using CRISPR/Cas9 technology as an approach to establish their role in the regulation of energy metabolism.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Dubinin MV, Belosludtsev KN. Taxonomic Features of Specific Ca2+ Transport Mechanisms in Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chiurillo MA, Lander N, Bertolini MS, Vercesi AE, Docampo R. Functional analysis and importance for host cell infection of the Ca 2+-conducting subunits of the mitochondrial calcium uniporter of Trypanosoma cruzi. Mol Biol Cell 2019; 30:1676-1690. [PMID: 31091170 PMCID: PMC6727756 DOI: 10.1091/mbc.e19-03-0152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report here that Trypanosoma cruzi, the etiologic agent of Chagas disease, possesses two unique paralogues of the mitochondrial calcium uniporter complex TcMCU subunit that we named TcMCUc and TcMCUd. The predicted structure of the proteins indicates that, as predicted for the TcMCU and TcMCUb paralogues, they are composed of two helical membrane-spanning domains and contain a WDXXEPXXY motif. Overexpression of each gene led to a significant increase in mitochondrial Ca2+ uptake, while knockout (KO) of either TcMCUc or TcMCUd led to a loss of mitochondrial Ca2+ uptake, without affecting the mitochondrial membrane potential. TcMCUc-KO and TcMCUd-KO epimastigotes exhibited reduced growth rate in low-glucose medium and alterations in their respiratory rate, citrate synthase activity, and AMP/ATP ratio, while trypomastigotes had reduced ability to efficiently infect host cells and replicate intracellularly as amastigotes. By gene complementation of KO cell lines or by a newly developed CRISPR/Cas9-mediated knock-in approach, we also studied the importance of critical amino acid residues of the four paralogues on mitochondrial Ca2+ uptake. In conclusion, the results predict a hetero-oligomeric structure for the T. cruzi MCU complex, with structural and functional differences, as compared with those in the mammalian complex.
Collapse
Affiliation(s)
- Miguel A Chiurillo
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil
| | - Noelia Lander
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil
| | - Mayara S Bertolini
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil
| | - Roberto Docampo
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil.,Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
13
|
MICU1 and MICU2 Play an Essential Role in Mitochondrial Ca 2+ Uptake, Growth, and Infectivity of the Human Pathogen Trypanosoma cruzi. mBio 2019; 10:mBio.00348-19. [PMID: 31064825 PMCID: PMC6509184 DOI: 10.1128/mbio.00348-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial Ca2+ uptake in trypanosomatids, which belong to the eukaryotic supergroup Excavata, shares biochemical characteristics with that of animals, which, together with fungi, belong to the supergroup Opisthokonta. However, the composition of the mitochondrial calcium uniporter (MCU) complex in trypanosomatids is quite peculiar, suggesting lineage-specific adaptations. In this work, we used Trypanosoma cruzi to study the role of orthologs for mitochondrial calcium uptake 1 (MICU1) and MICU2 in mitochondrial Ca2+ uptake. T. cruzi MICU1 (TcMICU1) and TcMICU2 have mitochondrial targeting signals, two canonical EF-hand calcium-binding domains, and localize to the mitochondria. Using the CRISPR/Cas9 system (i.e., clustered regularly interspaced short palindromic repeats with Cas9), we generated TcMICU1 and TcMICU2 knockout (-KO) cell lines. Ablation of either TcMICU1 or TcMICU2 showed a significantly reduced mitochondrial Ca2+ uptake in permeabilized epimastigotes without dissipation of the mitochondrial membrane potential or effects on the AMP/ATP ratio or citrate synthase activity. However, none of these proteins had a gatekeeper function at low cytosolic Ca2+ concentrations ([Ca2+]cyt), as occurs with their mammalian orthologs. TcMICU1-KO and TcMICU2-KO epimastigotes had a lower growth rate and impaired oxidative metabolism, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes. The findings of this work, which is the first to study the role of MICU1 and MICU2 in organisms evolutionarily distant from animals, suggest that, although these components were probably present in the last eukaryotic common ancestor (LECA), they developed different roles during evolution of different eukaryotic supergroups. The work also provides new insights into the adaptations of trypanosomatids to their particular life styles.IMPORTANCE Trypanosoma cruzi is the etiologic agent of Chagas disease and belongs to the early-branching eukaryotic supergroup Excavata. Its mitochondrial calcium uniporter (MCU) subunit shares similarity with the animal ortholog that was important to discover its encoding gene. In animal cells, the MICU1 and MICU2 proteins act as Ca2+ sensors and gatekeepers of the MCU, preventing Ca2+ uptake under resting conditions and favoring it at high cytosolic Ca2+ concentrations ([Ca2+]cyt). Using the CRISPR/Cas9 technique, we generated TcMICU1 and TcMICU2 knockout cell lines and showed that MICU1 and -2 do not act as gatekeepers at low [Ca2+]cyt but are essential for normal growth, host cell invasion, and intracellular replication, revealing lineage-specific adaptations.
Collapse
|
14
|
Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 2018; 129:1-24. [PMID: 30172747 DOI: 10.1016/j.freeradbiomed.2018.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helena C F de Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago R Figueira
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Estela N B Busanello
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Lander N, Chiurillo MA, Bertolini MS, Storey M, Vercesi AE, Docampo R. Calcium-sensitive pyruvate dehydrogenase phosphatase is required for energy metabolism, growth, differentiation, and infectivity of Trypanosoma cruzi. J Biol Chem 2018; 293:17402-17417. [PMID: 30232153 DOI: 10.1074/jbc.ra118.004498] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
In vertebrate cells, mitochondrial Ca2+ uptake by the mitochondrial calcium uniporter (MCU) leads to Ca2+-mediated stimulation of an intramitochondrial pyruvate dehydrogenase phosphatase (PDP). This enzyme dephosphorylates serine residues in the E1α subunit of pyruvate dehydrogenase (PDH), thereby activating PDH and resulting in increased ATP production. Although a phosphorylation/dephosphorylation cycle for the E1α subunit of PDH from nonvertebrate organisms has been described, the Ca2+-mediated PDP activation has not been studied. In this work, we investigated the Ca2+ sensitivity of two recombinant PDPs from the protozoan human parasites Trypanosoma cruzi (TcPDP) and T. brucei (TbPDP) and generated a TcPDP-KO cell line to establish TcPDP's role in cell bioenergetics and survival. Moreover, the mitochondrial localization of the TcPDP was studied by CRISPR/Cas9-mediated endogenous tagging. Our results indicate that TcPDP and TbPDP both are Ca2+-sensitive phosphatases. Of note, TcPDP-KO epimastigotes exhibited increased levels of phosphorylated TcPDH, slower growth and lower oxygen consumption rates than control cells, an increased AMP/ATP ratio and autophagy under starvation conditions, and reduced differentiation into infective metacyclic forms. Furthermore, TcPDP-KO trypomastigotes were impaired in infecting cultured host cells. We conclude that TcPDP is a Ca2+-stimulated mitochondrial phosphatase that dephosphorylates TcPDH and is required for normal growth, differentiation, infectivity, and energy metabolism in T. cruzi Our results support the view that one of the main roles of the MCU is linked to the regulation of intramitochondrial dehydrogenases.
Collapse
Affiliation(s)
- Noelia Lander
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, 13083, Brazil and
| | - Miguel A Chiurillo
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, 13083, Brazil and
| | - Mayara S Bertolini
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, 13083, Brazil and
| | - Melissa Storey
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| | - Anibal E Vercesi
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, 13083, Brazil and
| | - Roberto Docampo
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, 13083, Brazil and .,Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
16
|
Huang G, Docampo R. The Mitochondrial Ca 2+ Uniporter Complex (MCUC) of Trypanosoma brucei Is a Hetero-oligomer That Contains Novel Subunits Essential for Ca 2+ Uptake. mBio 2018; 9:e01700-18. [PMID: 30228243 PMCID: PMC6143741 DOI: 10.1128/mbio.01700-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/04/2022] Open
Abstract
The mitochondrial calcium uniporter complex (MCUC) is a highly selective channel that conducts calcium ions across the organelle inner membrane. We previously characterized Trypanosoma brucei's MCU (TbMCU) as an essential component of the MCUC required for parasite viability and infectivity. In this study, we characterize its paralog T. brucei MCUb (TbMCUb) and report the identification of two novel components of the complex that we named TbMCUc and TbMCUd. These new MCUC proteins are unique and conserved only in trypanosomatids. In situ tagging and immunofluorescence microscopy revealed that they colocalize with TbMCU and TbMCUb to the mitochondria of T. brucei Blue Native PAGE and immunodetection analyses indicated that the MCUC proteins exist in a large protein complex with a molecular weight of approximately 380 kDa. RNA interference (RNAi) or overexpression of the TbMCUc and TbMCUd genes significantly reduced or enhanced mitochondrial Ca2+ uptake in T. brucei, respectively, without affecting the mitochondrial membrane potential, indicating that they are essential components of the MCUC of this parasite. The specific interactions of TbMCU with TbMCUb, TbMCUc, or TbMCUd were confirmed by coimmunoprecipitation and split-ubiquitin membrane-based yeast two-hybrid (MYTH) assays. Furthermore, combining mutagenesis analysis with MYTH assays revealed that transmembrane helices (TMHs) were determinant of the interactions between TbMCUC subunits. In summary, our study has identified two novel essential components of the MCUC of T. brucei and defined their direct physical interactions with the other subunits that result in a hetero-oligomeric MCUC.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and nagana in animals. The finding of a mitochondrial calcium uniporter (MCU) conserved in this parasite was essential for the discovery of the gene encoding the pore subunit. Mitochondrial Ca2+ transport mediated by the MUC complex is critical in Trypanosoma brucei for shaping the dynamics of cytosolic Ca2+ increases, for the bioenergetics of the cells, and for viability and infectivity. We found that one component of the complex (MCUb) does not act as a dominant negative effector of the channel as in vertebrate cells and that the TbMCUC possesses two unique subunits (MCUc and MCUd) present only in trypanosomatids and required for Ca2+ transport. The study of the interactions between these four subunits (MCU, MCUb, MCUc, and MCUd) by a variety of techniques that include coimmunoprecipitation, split-ubiquitin membrane-based yeast two-hybrid assays, and site-directed mutagenesis suggests that they interact through their transmembrane helices to form hetero-oligomers.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Ramakrishnan S, Docampo R. Membrane Proteins in Trypanosomatids Involved in Ca 2+ Homeostasis and Signaling. Genes (Basel) 2018; 9:E304. [PMID: 29921754 PMCID: PMC6027440 DOI: 10.3390/genes9060304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Calcium ion (Ca2+) serves as a second messenger for a variety of cell functions in trypanosomes. Several proteins in the plasma membrane, acidocalcisomes, endoplasmic reticulum, and mitochondria are involved in its homeostasis and in cell signaling roles. The plasma membrane has a Ca2+ channel for its uptake and a plasma membrane-type Ca2+-ATPase (PMCA) for its efflux. A similar PMCA is also located in acidocalcisomes, acidic organelles that are the primary Ca2+ store and that possess an inositol 1,4,5-trisphosphate receptor (IP₃R) for Ca2+ efflux. Their mitochondria possess a mitochondrial calcium uniporter complex (MCUC) for Ca2+ uptake and a Ca2+/H⁺ exchanger for Ca2+ release. The endoplasmic reticulum has a sarcoplasmic-endoplasmic reticulum-type Ca2+-ATPase (SERCA) for Ca2+ uptake but no Ca2+ release mechanism has been identified. Additionally, the trypanosomatid genomes contain other membrane proteins that could potentially bind calcium and await further characterization.
Collapse
Affiliation(s)
- Srinivasan Ramakrishnan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Lander N, Chiurillo MA, Bertolini MS, Docampo R, Vercesi AE. The mitochondrial calcium uniporter complex in trypanosomes. Cell Biol Int 2018; 42:656-663. [PMID: 29286188 PMCID: PMC5980684 DOI: 10.1002/cbin.10928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/17/2017] [Indexed: 12/21/2022]
Abstract
The presence of a conserved mechanism for mitochondrial calcium uptake in trypanosomatids was crucial for the molecular identification of the mitochondrial calcium uniporter (MCU), a long-sought channel present in most eukaryotic organisms. Since then, research efforts to elucidate the role of MCU and its regulatory elements in different biological models have multiplied. MCU is the pore-forming subunit of a multimeric complex (the MCU complex or MCUC) and its predicted structure in trypanosomes is simpler than in mammalian cells, lacking two of its subunits and probably possessing other unidentified components. MCU protein has been characterized in Trypanosoma brucei and Trypanosoma cruzi, the causative agents of African and American trypanosomiasis, respectively. Contrary to its mammalian homolog, TbMCU was found to be essential for cell growth and survival, while its paralog MCUb is an essential protein in T. cruzi. These findings could be further exploited for chemotherapeutic purposes. The emergence of new molecular tools for the genetic manipulation of trypanosomatids has been determinant for the functional characterization of the MCUC components in these organisms. However, further research has to be done to determine the role of each component in intracellular calcium signaling and cell bioenergetics. In this mini-review we summarize the original results on mitochondrial calcium uptake in trypanosomes, how did they contribute to the molecular identification of the MCU, and the functional characterization of the MCUC subunits that has so far been studied in these peculiar eukaryotes.
Collapse
Affiliation(s)
- Noelia Lander
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Miguel A. Chiurillo
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Mayara S. Bertolini
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Roberto Docampo
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Aníbal E. Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
20
|
Pinto-Martinez A, Hernández-Rodríguez V, Rodríguez-Durán J, Hejchman E, Benaim G. Anti-Trypanosoma cruzi action of a new benzofuran derivative based on amiodarone structure. Exp Parasitol 2018; 189:8-15. [PMID: 29684665 DOI: 10.1016/j.exppara.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/16/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
Chagas disease is a neglected tropical affection caused by the protozoan parasite Trypanosoma cruzi. There is no current effective treatment since the only two available drugs have a limited efficacy and produce side effects. Thus, investigation efforts have been directed to the identification of new drug leads. In this context, Ca2+ regulating mechanisms have been postulated as targets for antiparasitic compounds, since they present paramount differences when compared to host cells. Amiodarone is an antiarrhythmic with demonstrated trypanocidal activity acting through the disruption of the parasite intracellular Ca2+ homeostasis. We now report the effect of a benzofuran derivative based on the structure of amiodarone on T. cruzi. This derivative was able to inhibit the growth of epimastigotes in culture and of amastigotes inside infected cells, the clinically relevant phase. We also show that this compound, similarly to amiodarone, disrupts Ca2+ homeostasis in T. cruzi epimastigotes, via two organelles involved in the intracellular Ca2+ regulation and the bioenergetics of the parasite. We demonstrate that the benzofuran derivative was able to totally collapse the membrane potential of the unique giant mitochondrion of the parasite and simultaneously produced the alkalinization of the acidocalcisomes. Both effects are evidenced by a large increase in the intracellular Ca2+ concentration of T. cruzi.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Hejchman
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela; Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
21
|
Crispim M, Damasceno FS, Hernández A, Barisón MJ, Pretto Sauter I, Souza Pavani R, Santos Moura A, Pral EMF, Cortez M, Elias MC, Silber AM. The glutamine synthetase of Trypanosoma cruzi is required for its resistance to ammonium accumulation and evasion of the parasitophorous vacuole during host-cell infection. PLoS Negl Trop Dis 2018; 12:e0006170. [PMID: 29320490 PMCID: PMC5779702 DOI: 10.1371/journal.pntd.0006170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/23/2018] [Accepted: 12/16/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.
Collapse
Affiliation(s)
- Marcell Crispim
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Agustín Hernández
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - María Julia Barisón
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ismael Pretto Sauter
- Immunobiology of Leishmania-Macrophage Interaction Laboratory, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Raphael Souza Pavani
- Special Laboratory of Cell Cycle, Center of Toxins, Immunology and Cell Signalling, Butantan Institute, São Paulo, SP, Brazil
| | - Alexandre Santos Moura
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Elizabeth Mieko Furusho Pral
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Immunobiology of Leishmania-Macrophage Interaction Laboratory, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Maria Carolina Elias
- Special Laboratory of Cell Cycle, Center of Toxins, Immunology and Cell Signalling, Butantan Institute, São Paulo, SP, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
22
|
Vercesi AE, Oliveira HCF. Contribution to mitochondrial research in Brazil: 10th anniversary of the mitomeeting. Cell Biol Int 2017; 42:626-629. [PMID: 29064598 DOI: 10.1002/cbin.10898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 11/12/2022]
Abstract
This commentary introduces the subject, the context and the history of the Brazilian annually held meeting on Mitochondrial Research by the occasion of its 10th anniversary. Mitomeetings gather people interested in all aspects of mitochondrial biology in diverse species, including protists, animals, plants, and fungi.
Collapse
Affiliation(s)
- Anibal E Vercesi
- Faculty of Medical Sciences, State University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Helena C F Oliveira
- Biology Institute, State University of Campinas, 13083-970, Campinas, SP, Brazil
| |
Collapse
|
23
|
Different Roles of Mitochondrial Calcium Uniporter Complex Subunits in Growth and Infectivity of Trypanosoma cruzi. mBio 2017; 8:mBio.00574-17. [PMID: 28487431 PMCID: PMC5424207 DOI: 10.1128/mbio.00574-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi is the agent of Chagas disease, and the finding that this parasite possesses a mitochondrial calcium uniporter (TcMCU) with characteristics similar to that of mammalian mitochondria was fundamental for the discovery of the molecular nature of MCU in eukaryotes. We report here that ablation of TcMCU, or its paralog TcMCUb, by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 led to a marked decrease in mitochondrial Ca2+ uptake without affecting the membrane potential of these cells, whereas overexpression of each gene caused a significant increase in the ability of mitochondria to accumulate Ca2+ While TcMCU-knockout (KO) epimastigotes were viable and able to differentiate into trypomastigotes, infect host cells, and replicate normally, ablation of TcMCUb resulted in epimastigotes having an important growth defect, lower rates of respiration and metacyclogenesis, more pronounced autophagy changes under starvation, and significantly reduced infectivity. Overexpression of TcMCUb, in contrast to what was proposed for its mammalian ortholog, did not result in a dominant negative effect on TcMCU.IMPORTANCE The finding of a mitochondrial calcium uniporter (MCU) in Trypanosoma cruzi was essential for the discovery of the molecular nature of this transporter in mammals. In this work, we used the CRISPR/Cas9 technique that we recently developed for T. cruzi to knock out two components of the uniporter: MCU, the pore subunit, and MCUb, which was proposed as a negative regulator of MCU in human cells. In contrast to what occurs in human cells, MCU is not essential, while MCUb is essential for growth, differentiation, and infectivity; has a bioenergetic role; and does not act as a dominant negative subunit of MCU.
Collapse
|
24
|
Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. CRISPR/Cas9-mediated endogenous C-terminal Tagging of Trypanosoma cruzi Genes Reveals the Acidocalcisome Localization of the Inositol 1,4,5-Trisphosphate Receptor. J Biol Chem 2016; 291:25505-25515. [PMID: 27793988 DOI: 10.1074/jbc.m116.749655] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/29/2016] [Indexed: 11/06/2022] Open
Abstract
Methods for genetic manipulation of Trypanosoma cruzi, the etiologic agent of Chagas disease, have been highly inefficient, and no endogenous tagging of genes has been reported to date. We report here the use of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system for endogenously tagging genes in this parasite. The utility of the method was established by tagging genes encoding proteins of known localization such as TcFCaBP (flagellar calcium binding protein) and TcVP1 (vacuolar proton pyrophosphatase), and two proteins of undefined or disputed localization, the TcMCU (mitochondrial calcium uniporter) and TcIP3R (inositol 1,4,5-trisphosphate receptor). We confirmed the flagellar and acidocalcisome localization of TcFCaBP and TcVP1 by co-localization with antibodies to the flagellum and acidocalcisomes, respectively. As expected, TcMCU was co-localized with the voltage-dependent anion channel to the mitochondria. However, in contrast to previous reports and our own results using overexpressed TcIP3R, endogenously tagged TcIP3R showed co-localization with antibodies against VP1 to acidocalcisomes. These results are also in agreement with our previous reports on the localization of this channel to acidocalcisomes of Trypanosoma brucei and suggest that caution should be exercised when overexpression of tagged genes is done to localize proteins in T. cruzi.
Collapse
Affiliation(s)
- Noelia Lander
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil and
| | - Miguel A Chiurillo
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil and
| | - Melissa Storey
- the Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Anibal E Vercesi
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil and
| | - Roberto Docampo
- From the Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo 13083, Brazil and .,the Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
25
|
Abstract
The mitochondrial calcium uniporter is an evolutionarily conserved calcium channel, and its biophysical properties and relevance to cell death, bioenergetics and signalling have been investigated for decades. However, the genes encoding this channel have only recently been discovered, opening up a new 'molecular era' in the study of its biology. We now know that the uniporter is not a single protein but rather a macromolecular complex consisting of pore-forming and regulatory subunits. We review recent studies that harnessed the power of molecular biology and genetics to characterize the mechanism of action of the uniporter, its evolution and its contribution to physiology and human disease.
Collapse
|
26
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
27
|
Docampo R, Huang G. Calcium signaling in trypanosomatid parasites. Cell Calcium 2014; 57:194-202. [PMID: 25468729 DOI: 10.1016/j.ceca.2014.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
Calcium ion (Ca(2+)) is an important second messenger in trypanosomatids and essential for their survival although prolonged high intracellular Ca(2+) levels lead to cell death. As other eukaryotic cells, trypanosomes use two sources of Ca(2+) for generating signals: Ca(2+) release from intracellular stores and Ca(2+) entry across the plasma membrane. Ca(2+) release from intracellular stores is controlled by the inositol 1,4,5-trisphosphate receptor (IP3R) that is located in acidocalcisomes, acidic organelles that are the primary Ca(2+) reservoir in these cells. A plasma membrane Ca(2+)-ATPase controls the cytosolic Ca(2+) levels and a number of pumps and exchangers are responsible for Ca(2+) uptake and release from intracellular compartments. The trypanosomatid genomes contain a wide variety of signaling and regulatory proteins that bind Ca(2+) as well as many Ca(2+)-binding proteins that await further characterization. The mitochondrial Ca(2+) transporters of trypanosomatids have an important role in the regulation of cell bioenergetics and flagellar Ca(2+) appears to have roles in sensing the environment. In trypanosomatids in which an intracellular life cycle is present, Ca(2+) signaling is important for host cell invasion.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas, SP 13083, Brazil.
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30620, USA
| |
Collapse
|
28
|
Huang G, Vercesi AE, Docampo R. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat Commun 2014; 4:2865. [PMID: 24305511 PMCID: PMC3868461 DOI: 10.1038/ncomms3865] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Abstract
Mechanisms of regulation of mitochondrial metabolism in trypanosomes are not completely understood. Here we present evidence that the Trypanosoma brucei mitochondrial calcium uniporter (TbMCU) is essential for regulation of mitochondrial bioenergetics, autophagy, and cell death, even in the bloodstream forms that are devoid of a functional respiratory chain and oxidative phosphorylation. Localization studies reveal its co-localization with MitoTracker staining. TbMCU overexpression increases mitochondrial Ca2+ accumulation in intact and permeabilized trypanosomes, generates excessive mitochondrial reactive oxygen species (ROS), and sensitizes them to apoptotic stimuli. Ablation of TbMCU in RNAi or conditional knockout trypanosomes reduces mitochondrial Ca2+ uptake without affecting their membrane potential, increases the AMP/ATP ratio, stimulates autophagosome formation, and produces marked defects in growth in vitro and infectivity in mice, revealing its essentiality in these parasites. The requirement of TbMCU for proline and pyruvate metabolism in procyclic and bloodstream forms, respectively, reveals its role in regulation of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
29
|
Docampo R, Vercesi AE, Huang G. Mitochondrial calcium transport in trypanosomes. Mol Biochem Parasitol 2014; 196:108-16. [PMID: 25218432 DOI: 10.1016/j.molbiopara.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
The biochemical peculiarities of trypanosomes were fundamental for the recent molecular identification of the long-sought channel involved in mitochondrial Ca(2+) uptake, the mitochondrial Ca(2+) uniporter or MCU. This discovery led to the finding of numerous regulators of the channel, which form a high molecular weight complex with MCU. Some of these regulators have been bioinformatically identified in trypanosomes, which are the first eukaryotic organisms described for which MCU is essential. In trypanosomes MCU is important for buffering cytosolic Ca(2+) changes and for activation of the bioenergetics of the cells. Future work on this pathway in trypanosomes promises further insight into the biology of these fascinating eukaryotes, as well as the potential for novel target discovery.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, State University of Campinas, Campinas 13083, SP, Brazil
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Fernandes MP, Leite ACR, Araújo FFB, Saad STO, Baratti MO, Correia MTS, Coelho LCBB, Gadelha FR, Vercesi AE. The Cratylia mollis
Seed Lectin Induces Membrane Permeability Transition in Isolated Rat Liver Mitochondria and a Cyclosporine A-Insensitive Permeability Transition in Trypanosoma cruzi
Mitochondria. J Eukaryot Microbiol 2014; 61:381-8. [DOI: 10.1111/jeu.12118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Mariana P. Fernandes
- Departamento de Patologia Clínica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - Ana C. R. Leite
- Departamento de Fisiologia e Biofísica; Instituto de Biologia, Universidade Estadual de Campinas; Campinas Brazil
| | - Flavia F. B. Araújo
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Sara T. O. Saad
- Departamento de Clínica Médica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - M. O. Baratti
- Departamento de Clínica Médica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - M. T. S. Correia
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Luana C. B. B. Coelho
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Fernanda R. Gadelha
- Departamento de Bioquímica; Instituto de Biologia; Universidade Estadual de Campinas; Campinas Brazil
| | - Anibal E. Vercesi
- Departamento de Patologia Clínica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| |
Collapse
|
31
|
Abstract
The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.
Collapse
|
32
|
Kamer KJ, Sancak Y, Mootha VK. The uniporter: from newly identified parts to function. Biochem Biophys Res Commun 2014; 449:370-2. [PMID: 24814702 DOI: 10.1016/j.bbrc.2014.04.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kimberli J Kamer
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yasemin Sancak
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
Voisset C, García-Rodríguez N, Birkmire A, Blondel M, Wellinger RE. Using yeast to model calcium-related diseases: example of the Hailey-Hailey disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2315-21. [PMID: 24583118 DOI: 10.1016/j.bbamcr.2014.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/25/2014] [Accepted: 02/16/2014] [Indexed: 02/05/2023]
Abstract
Cross-complementation studies offer the possibility to overcome limitations imposed by the inherent complexity of multicellular organisms in the study of human diseases, by taking advantage of simpler model organisms like the budding yeast Saccharomyces cerevisiae. This review deals with, (1) the use of S. cerevisiae as a model organism to study human diseases, (2) yeast-based screening systems for the detection of disease modifiers, (3) Hailey-Hailey as an example of a calcium-related disease, and (4) the presentation of a yeast-based model to search for chemical modifiers of Hailey-Hailey disease. The preliminary experimental data presented and discussed here show that it is possible to use yeast as a model system for Hailey-Hailey disease and suggest that in all likelihood, yeast has the potential to reveal candidate drugs for the treatment of this disorder. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR 1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Néstor García-Rodríguez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Avd. Americo Vespucio SN, 41092 Sevilla, Spain
| | - April Birkmire
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Avd. Americo Vespucio SN, 41092 Sevilla, Spain
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR 1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France.
| | - Ralf Erik Wellinger
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Avd. Americo Vespucio SN, 41092 Sevilla, Spain
| |
Collapse
|
34
|
Abstract
Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.
Collapse
|
35
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Trypanosomes and the solution to a 50-year mitochondrial calcium mystery. Trends Parasitol 2011; 28:31-7. [PMID: 22088944 DOI: 10.1016/j.pt.2011.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 12/29/2022]
Abstract
The ability of mitochondria to take up Ca(2+) was discovered 50 years ago. This calcium uptake, through a mitochondrial calcium uniporter (MCU), is important not only for the regulation of cellular ATP concentration but also for more complex pathways such as shaping Ca(2+) signals and the activation of programmed cell death. The molecular nature of the uniporter remained unknown for decades. By a comparative study of mitochondrial protein profiles of organisms lacking or possessing MCU, such as yeast in the former case and vertebrates and trypanosomes in the latter, two groups recently found the protein that possesses all the characteristics of the MCU. These results add another success story to the already substantial contributions of trypanosomes to mammalian biochemistry.
Collapse
|
37
|
Evidence for an ATP-sensitive K+ channel in mitoplasts isolated from Trypanosoma cruzi and Crithidia fasciculata. Int J Parasitol 2010; 39:955-61. [PMID: 19504755 DOI: 10.1016/j.ijpara.2009.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian mitochondria, as well as rat, plant and Caenorhabditis elegans mitochondria, possess an ATP-sensitive K+ channel (mitoK(ATP)) that has been pharmacologically characterised. Opening of mitoK(ATP) and the subsequent K+ entry into the matrix was shown to have three effects on mitochondria physiology: (i) an increase in matrix volume (swelling), (ii) an acceleration of respiration, and (iii) an increase in reactive oxygen species (ROS) production. These effects on mitochondria bioenergetics have been shown to be part of distinct intracellular signalling pathways, to protect against cell death and to modulate gene transcription. To date, such a channel or its activity has not been described in trypanosomatids. In the present study, we show pharmacological evidence for the presence of a mitoK(ATP) in trypanosomatids. Cells were incubated in a hypotonic medium followed by mild detergent exposure to isolate mitoplasts from Trypanosoma cruzi and Crithidia fasciculata. Mitoplasts swelled when incubated in KCl medium due to respiration-driven K+ entry into the matrix. Swelling was sensitive to the presence of ATP when the mitoplast suspension was incubated in K+ -containing, but not in K+ -free, medium. The ATP inhibition of swelling was reversed by the mitoK(ATP) agonist diazoxide and the diazoxide-induced swelling was inhibited by the mitoK(ATP) blockers 5-hydroxydecanoate (5HD) or glibenclamide. Similar to mammalian and rat mitochondria, trypanosomatid mitoK(ATP) activity was modulated by the general protein kinase C (PKC) agonist phorbol 12-myristate 13-acetate (PMA) and antagonist chelerythrine. As expected, the potassium ionophore valinomycin could also reverse the ATP-inhibited state but this reversal was not sensitive to 5HD or glibenclamide. Dose response curves for ATP, diazoxide and 5HD are presented. These results provide strong evidence for the presence of an ATP-sensitive K+ in trypanosomatid mitochondria.
Collapse
|
38
|
MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 2010; 467:291-6. [PMID: 20693986 PMCID: PMC2977980 DOI: 10.1038/nature09358] [Citation(s) in RCA: 690] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/19/2010] [Indexed: 02/07/2023]
Abstract
Mitochondrial calcium uptake plays a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients, and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here, we utilize an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics, and organelle proteomics. RNA interference against 13 top candidates highlighted one gene that we now call mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the organelle’s inner membrane and has two canonical EF hands that are essential for its activity, suggesting a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high capacity mitochondrial calcium entry. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.
Collapse
|
39
|
Fernandes MP, Inada NM, Chiaratti MR, Araújo FFB, Meirelles FV, Correia MTS, Coelho LCBB, Alves MJM, Gadelha FR, Vercesi AE. Mechanism of Trypanosoma cruzi death induced by Cratylia mollis seed lectin. J Bioenerg Biomembr 2010; 42:69-78. [PMID: 20155390 DOI: 10.1007/s10863-010-9268-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca(2+) containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 microg/ml) induced plasma membrane permeabilization followed by Ca(2+) influx and mitochondrial Ca(2+) accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4 stimulated (five-fold) mitochondrial reactive oxygen species (ROS) production, significantly decreased the electrical mitochondrial membrane potential (Delta Psi(m)) and impaired ADP phosphorylation. The rate of uncoupled respiration in epimastigotes was not affected by Cramoll 1,4 plus Ca(2+) treatment, but oligomycin-induced resting respiration was 65% higher in treated cells than in controls. Experiments using T. cruzi mitochondrial fractions showed that, in contrast to digitonin, the lectin significantly decreased Delta Psi(m) by a mechanism sensitive to EGTA. In agreement with the results showing plasma membrane permeabilization and impairment of oxidative phosphorylation by the lectin, fluorescence microscopy experiments using propidium iodide revealed that Cramoll 1,4 induced epimastigotes death by necrosis.
Collapse
Affiliation(s)
- M P Fernandes
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Characterization of Ca2+uptake in a subcellular membrane fraction ofHerpetomonassp. promastigotes. Parasitology 2009; 136:657-63. [DOI: 10.1017/s0031182009005903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SUMMARYATP-dependent Ca2+uptake was studied in a subcellular fraction fromHerpetomonassp. prepared by mechanical disruption and using45Ca2+as a tracer. The uptake was stimulated by Ca2+with a K0·5of 0·1 μmand a Hill number (nH)=2·8±0·4. The Ca2+-dependent ATP hydrolysis was optimal at pH 7·0 and had a Ca2+dependence identical to uptake. The uptake was highly stimulated by oxalate whereas calmodulin had no activating effect. ATP stimulated Ca2+uptake with a biphasic pattern that resembled the curves described for the purified preparations of rabbit sarcoplasmic reticulum. The ATP stimulation is described as the sum of two Michaelis-Menten curves with Km1=0·25±0·19 μmand Km2=29·6±6·8 μm. GTP or UTP could also promote Ca2+uptake, but with less efficiency than ATP. Vanadate inhibited the uptake with low apparent affinity. Thapsigargin and cyclopiazonic acid were almost ineffective. The Ca2+uptake was insensitive to H+ionophores and to bafilomycin suggesting no participation of acidocalcisomes. The results are comparable to those obtained using cells permeabilized with digitonin and using arsenaze III as Ca2+indicator. The Ca2+uptake activity described here seems to belong to the endoplasmic reticulum ofHerpetomonassp. and is suitable for further studies on the mechanisms of calcium homeostasis in parasites.
Collapse
|
41
|
Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi. Biochem J 2009; 418:595-604. [DOI: 10.1042/bj20081981] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The epimastigote stage of Trypanosoma cruzi undergoes PCD (programmed cell death) when exposed to FHS (fresh human serum). Although it has been known for over 30 years that complement is responsible for FHS-induced death, the link between complement activation and triggering of PCD has not been established. We have previously shown that the mitochondrion participates in the orchestration of PCD in this model. Several changes in mitochondrial function were described, and in particular it was shown that mitochondrion-derived O2•− (superoxide radical) is necessary for PCD. In the present study, we establish mitochondrial Ca2+ overload as the link between complement deposition and the observed changes in mitochondrial physiology and the triggering of PCD. We show that complement activation ends with the assembly of the MAC (membrane attack complex), which allows influx of Ca2+ and release of respiratory substrates to the medium. Direct consequences of these events are accumulation of Ca2+ in the mitochondrion and decrease in cell respiration. Mitochondrial Ca2+ causes partial dissipation of the inner membrane potential and consequent mitochondrial uncoupling. Moreover, we provide evidence that mitochondrial Ca2+ overload is responsible for the increased O2•− production, and that if cytosolic Ca2+ rise is not accompanied by the accumulation of the cation in the mitochondrion and consequent production of O2•−, epimastigotes die by necrosis instead of PCD. Thus our results suggest a model in which MAC assembly on the parasite surface allows Ca2+ entry and its accumulation in the mitochondrion, leading to O2•− production, which in turn constitutes a PCD signal.
Collapse
|
42
|
Amiodarone destabilizes intracellular Ca2+ homeostasis and biosynthesis of sterols in Leishmania mexicana. Antimicrob Agents Chemother 2009; 53:1403-10. [PMID: 19164149 DOI: 10.1128/aac.01215-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis represents a serious public health problem worldwide. The first line of treatment is based on glucantime and pentostan, which generate toxic effects in treated patients. We have recently shown that amiodarone, frequently used as an antiarrhythmic, possesses activity against Trypanosoma cruzi through the disruption of mitochondrial Ca(2+) homeostasis and the inhibition of parasite ergosterol biosynthesis, specifically at the level of oxidosqualene cyclase activity (G. Benaim, J. Sanders, Y. Garcia-Marchan, C. Colina, R. Lira, A. Caldera, G. Payares, C. Sanoja, J. Burgos, A. Leon-Rossell, J. Concepcion, A. Schijman, M. Levin, E. Oldfield, and J. Urbina, J. Med. Chem. 49:892-899, 2006). Here we show that at therapeutic concentrations, amiodarone has a profound effect on the viability of Leishmania mexicana promastigotes. Additionally, its effect on the viability of the parasite was greater against intracellular amastigotes than against promastigotes, and it did not affect the host cell. Using fluorimetric and confocal microscopy techniques, we also demonstrated that the mechanism of action of amiodarone was related to the disruption of intracellular Ca(2+) homeostasis through a direct action not only on the mitochondria but also on the acidocalcisomes. On the other hand, analysis of the free sterols in promastigotes incubated with amiodarone showed that this drug also affected the biosynthesis of 5-dehydroepisterol, which results in squalene accumulation, thus suggesting that amiodarone inhibits the squalene epoxidase activity of the parasite. Taken together, the results obtained in the present work point to a more general effect of amiodarone in trypanosomatids, opening potential therapeutic possibilities for this infectious disease.
Collapse
|
43
|
Rodrigues JCF, Bernardes CF, Visbal G, Urbina JA, Vercesi AE, de Souza W. Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist 2007; 158:447-56. [PMID: 17719843 DOI: 10.1016/j.protis.2007.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/07/2007] [Indexed: 11/15/2022]
Abstract
We describe here the effects of Delta(24(25)) sterol methenyl transferase inhibitors (SMTI) on promastigote and axenic amastigote forms of Leishmania amazonensis. When these cells were exposed to 20-piperidin-2-yl-5alpha-pregnan-3beta-20-diol (22,26-azasterol; AZA), hydrazone-imidazol-2-yl-5alpha-pregnan-3beta-ol (IMI), 20-hydrazone-pyridin-2-yl-5alpha-pregnan-3beta-ol (PYR) or 24(R,S),25-epiiminolanosterol (EIL), a concentration- and time-dependent inhibition of growth was observed, with IC(50) values in the sub-micromolar range. Ultrastructural alterations in treated cells were mainly observed in the mitochondrion, which displayed an intense swelling and a reduction of the electron density of the matrix with remarkable changes in the inner mitochondrial membranes. Mitochondrial transmembrane electric potential (DeltaPsi) was measured using spectrophotometric methods in control and treated promastigotes permeabilized with digitonin. After energization with the substrates for complexes I, II or IV of the respiratory chain, it was possible to detect marked changes of DeltaPsi in promastigotes treated with 1 microM of the SMTI for 48 or 72 h when compared with normal cells, indicating that these compounds led to the loss of the energy-transducing properties of the mitochondrial inner membrane, probably related to the alteration of its lipid composition. The present study confirms these findings, showing that in Leishmania amazonensis the mitochondrial complex appears to be the first organelle affected after treatment with different SMTI.
Collapse
Affiliation(s)
- Juliany C F Rodrigues
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, Ilha do Fundão, 21949-900 Rio de Janeiro-RJ, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Miranda K, Rodrigues CO, Hentchel J, Vercesi A, Plattner H, de Souza W, Docampo R. Acidocalcisomes of Phytomonas françai possess distinct morphological characteristics and contain iron. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:647-655. [PMID: 15525437 DOI: 10.1017/s1431927604040887] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2003] [Indexed: 05/24/2023]
Abstract
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites, and recently found in other unicellular eukaryotes. The aim of this study was to identify the presence of acidocalcisomes in the plant trypanosomatid Phytomonas françai. Electron-dense organelles of P. françai were shown to contain large amounts of oxygen, sodium, magnesium, phosphorus, potassium, calcium, iron, and zinc as determined by X-ray microanalysis, either in situ or when purified using iodixanol gradient centrifugation or by elemental mapping. The presence of iron is not common in other acidocalcisomes. In situ, but not when purified, these organelles showed an elongated shape differing from previously described acidocalcisomes. However, these organelles also possessed a vacuolar H+-pyrophosphatase (V-H+-PPase) as determined by biochemical methods and by immunofluorescence microscopy using antibodies against the enzyme. Together, these results suggest that the electron-dense organelles of P. françai are homologous to the acidocalcisomes described in other trypanosomatids, although with distinct morphology and elemental content.
Collapse
Affiliation(s)
- Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Brigadeiro Trompovski, s/n., bloco G, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Moysés DN, Barrabin H. Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:96-103. [PMID: 15178471 DOI: 10.1016/j.bbabio.2004.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 11/24/2022]
Abstract
Phytomonas sp. are flagellated trypanosomatid plant parasites that cause diseases of economic importance in plantations of coffee, oil palm, cassava and coconuts. Here we investigated Ca(2+) uptake by the vanadate-insensitive compartments using permeabilized Phytomonas serpens promastigotes. This uptake occurs at a rate of 1.13+/-0.23 nmol Ca(2+) mg x protein(-1) min(-1). It is completely abolished by the H(+) ionophore FCCP and by valinomycin and nigericin. It is also inhibited by 2 microM ruthenium red, which, at this low concentration, is known to inhibit the mitochondrial calcium uniport. Furthermore, salicylhydroxamic acid (SHAM) and propylgallate, specific inhibitors of the alternative oxidase in plant and parasite mitochondria, are also effective as inhibitors of the Ca(2+) transport. These compounds abolish the membrane potential that is monitored with safranine O. Rotenone, an inhibitor of NADH-CoQ oxidoreductase, can also dissipate 100% of the membrane potential. It is suggested that the mitochondria of P. serpens can be energized via oxidation of NADH in a pathway involving the NADH-CoQ oxidoreductase and the alternative oxidase to regenerate the ubiquinone. The electrochemical H(+) gradient can be used to promote Ca(2+) uptake by the mitochondria.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Bioquímica Médica, ICB-CCS, Universidade Federal do Rio de Janeiro-UFRJ, Ilha do Fundão, 21941-590-Rio de Janeiro, Brazil
| | | |
Collapse
|
46
|
Tudella VG, Curti C, Soriani FM, Santos AC, Uyemura SA. In situ evidence of an alternative oxidase and an uncoupling protein in the respiratory chain of Aspergillus fumigatus. Int J Biochem Cell Biol 2004; 36:162-72. [PMID: 14592541 DOI: 10.1016/s1357-2725(03)00194-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aspergillus fumigatus is an unusual pathogen in immunocompetent individuals; its incidence has increased in the last decades in patients immunocompromised, like those with chronic granulomatosis disease and AIDS. The aim of this study was to identify differences between the respiratory chain of host and the fungus planning to use the later as a pharmacological target. We evaluated respiration, membrane potential and oxidative phosphorylation of mitochondria of the spheroplasts of A. fumigatus in situ, after permeabilization with digitonin. Firstly, a functional respiratory chain (complex I-V) was demonstrated: adenosine 5'-diphosphate (ADP) induced an oligomycin-sensitive transition from resting to phophorylating respiration in the presence of the oxidizable substrates malate, glutamate, alpha-ketoglutarate, pyruvate, dihydroorotate, succinate, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and exogenous NADH. In addition, the ability of the fungus to oxidize exogenous NADH, as well as the insensitivity of its respiration to rotenone, in association with the sensitivity to flavone, indicate the presence of an alternative NADH-ubiquinone oxidoreductase; the partial sensitivity of respiration to antimycin A and cyanide, in association with the sensitivity to benzohydroxamic acid, indicates the presence of an alternative oxidase. The fatty acid-uncoupled respiration was partly reversed by bovine serum albumin (BSA) and guanosine 5'-triphosphate (GTP) and was insensitive to either carboxyatractyloside or ADP. These results, together with evidences obtained using antibodies raised against uncoupling protein (UCP) from potato, indicate in addition, the presence of an uncoupling protein in the respiratory chain of A. fumigatus.
Collapse
Affiliation(s)
- Valéria G Tudella
- Departament of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | | | | | | | | |
Collapse
|
47
|
Abstract
The calcium ion (Ca(2+)) is used as a major signaling molecule in a diverse range of eukaryotic cells including several human parasitic protozoa, such as Trypanosoma cruzi, Trypanosoma brucei, Leishmania spp, Plasmodium spp, Toxoplasma gondii, Cryptosporidium parvum, Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Ca(2+) is critical for invasion of intracellular parasites, and its cytosolic concentration is regulated by the concerted operation of several transporters present in the plasma membrane, endoplasmic reticulum, mitochondria and acidocalcisomes. Recent findings have shed light on the function of these transporters, the roles that they play in cellular metabolism and their potential use for targeting them for new therapies.
Collapse
Affiliation(s)
- Silvia N J Moreno
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | |
Collapse
|
48
|
Netto LES, Kowaltowski AJ, Castilho RF, Vercesi AE. Thiol enzymes protecting mitochondria against oxidative damage. Methods Enzymol 2002; 348:260-70. [PMID: 11885279 DOI: 10.1016/s0076-6879(02)48644-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luis E S Netto
- Departamento de Microbiologia, Instituto de Biologia, Universidade de São Paulo, São Paulo, SP-05508-900 Brazil
| | | | | | | |
Collapse
|
49
|
Rodrigues CO, Catisti R, Uyemura SA, Vercesi AE, Lira R, Rodriguez C, Urbina JA, Docampo R. The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin-permeabilization. J Eukaryot Microbiol 2001; 48:588-94. [PMID: 11596924 DOI: 10.1111/j.1550-7408.2001.tb00195.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Respiration, oxidative phosphorylation. and the corresponding changes in membrane potential (deltapsi) of Trypanosoma cruzi epimastigotes grown either in liver infusion-tryptose (LIT) or brain heart infusion (BHI) culture medium were assayed in situ using digitonin to render their plasma membrane permeable to succinate, ADP, safranine O, and other small molecules. When the cells were permeabilized with 64 microM digitonin, a concentration previously used with epimastigotes, the ability of the cells grown in LIT medium to sustain oxidative phosphorylation was demonstrated by the detection of an oligomycin-sensitive decrease in mitochondrial membrane potential induced by ADP. In contrast, the cells grown in BHI medium were not able to sustain a stable membrane potential and did not respond to ADP addition. Analyses of oxygen consumption by these permeabilized cells indicated that the rate of basal respiration, which was similar in both cell types, was significantly decreased by 64 microM digitonin. Addition of ADP to the permeabilized cells grown in LIT medium promoted an oligomycin-sensitive transition from resting to phosphorylating respiration in contrast to the cells grown in BHI medium, whose respiration decreased steadily and did not respond either to ADP or CCCP. Titration of the cells grown in BHI medium with different digitonin concentrations indicated that their mitochondria have higher sensitivity to digitonin than those grown in LIT medium. Analysis of the sterol composition of epimastigotes grown in the two different media showed a higher percentage of cholesterol in total and mitochondrial extracts of epimastigotes grown in BHI medium as compared to those grown in LIT medium, suggesting the involvement of this sterol in their increased sensitivity to digitonin-permeabilization.
Collapse
Affiliation(s)
- C O Rodrigues
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana 61802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sodré CL, Moreira BL, Nobrega FB, Gadelha FR, Meyer-Fernandes JR, Dutra PM, Vercesi AE, Lopes AH, Scofano HM, Barrabin H. Characterization of the intracellular Ca(2+) pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes. Arch Biochem Biophys 2000; 380:85-91. [PMID: 10900136 DOI: 10.1006/abbi.2000.1899] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present pro- and opisthomastigotes forms in their life cycles. In this study, we investigated the Ca(2+) transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca(2+), and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca(2+) transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca(2+) release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca(2+) uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca(2+) transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 microM), FCCP (1 microM), or bafilomycin A(1) (5 microM) had no effect on the vanadate-sensitive Ca(2+) transport. These data suggest the absence of a Ca(2+) transport mediated by a Ca(2+)/H(+) antiport. No evidence of a third Ca(2+) compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP(3) were not able to affect the vanadate-sensitive Ca(2+) transport. Ruthenium red was able to inhibit the Ca(2+) uniport of mitochondria, inducing a slow mitochondrial Ca(2+) efflux, compatible with the presence of a Ca(2+)/H(+) antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca(2+)/Na(+) antiport in mitochondria.
Collapse
Affiliation(s)
- C L Sodré
- Departamento de Bioquímica Médica, UFRJ, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|