1
|
Radojković M, Ubbink M. Positive epistasis drives clavulanic acid resistance in double mutant libraries of BlaC β-lactamase. Commun Biol 2024; 7:197. [PMID: 38368480 PMCID: PMC10874438 DOI: 10.1038/s42003-024-05868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
Phenotypic effects of mutations are highly dependent on the genetic backgrounds in which they occur, due to epistatic effects. To test how easily the loss of enzyme activity can be compensated for, we screen mutant libraries of BlaC, a β-lactamase from Mycobacterium tuberculosis, for fitness in the presence of carbenicillin and the inhibitor clavulanic acid. Using a semi-rational approach and deep sequencing, we prepare four double-site saturation libraries and determine the relative fitness effect for 1534/1540 (99.6%) of the unique library members at two temperatures. Each library comprises variants of a residue known to be relevant for clavulanic acid resistance as well as residue 105, which regulates access to the active site. Variants with greatly improved fitness were identified within each library, demonstrating that compensatory mutations for loss of activity can be readily found. In most cases, the fittest variants are a result of positive epistasis, indicating strong synergistic effects between the chosen residue pairs. Our study sheds light on a role of epistasis in the evolution of functional residues and underlines the highly adaptive potential of BlaC.
Collapse
Affiliation(s)
- Marko Radojković
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
2
|
Nafaee ZH, Hunyadi-Gulyás É, Gyurcsik B. Temoneira-1 β-lactamase is not a metalloenzyme, but its native metal ion binding sites allow for purification by immobilized metal ion affinity chromatography. Protein Expr Purif 2023; 201:106169. [DOI: 10.1016/j.pep.2022.106169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
3
|
Assessment of Phenotype Relevant Amino Acid Residues in TEM-β-Lactamases by Mathematical Modelling and Experimental Approval. Microorganisms 2021; 9:microorganisms9081726. [PMID: 34442804 PMCID: PMC8399295 DOI: 10.3390/microorganisms9081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Single substitutions or combinations of them alter the hydrolytic activity towards specific β-lactam-antibiotics and β-lactamase inhibitors of TEM-β-lactamases. The sequences and phenotypic classification of allelic TEM variants, as provided by the NCBI National Database of Antibiotic Resistant Organisms, does not attribute phenotypes to all variants. Some entries are doubtful as the data assessment differs strongly between the studies or no data on the methodology are provided at all. This complicates mathematical and bioinformatic predictions of phenotypes that rely on the database. The present work aimed to prove the role of specific substitutions on the resistance phenotype of TEM variants in, to our knowledge, the most extensive mutagenesis study. In parallel, the predictive power of extrapolation algorithms was assessed. Most well-known substitutions with direct impact on the phenotype could be reproduced, both mathematically and experimentally. Most discrepancies were found for supportive substitutions, where some resulted in antagonistic effects in contrast to previously described synergism. The mathematical modelling proved to predict the strongest phenotype-relevant substitutions accurately but showed difficulties in identifying less prevalent but still phenotype transforming ones. In general, mutations increasing cephalosporin resistance resulted in increased sensitivity to β-lactamase inhibitors and vice versa. Combining substitutions related to cephalosporin and β-lactamase inhibitor resistance in almost all cases increased BLI susceptibility, indicating the rarity of the combined phenotype.
Collapse
|
4
|
Cortina GA, Kasson PM. Predicting allostery and microbial drug resistance with molecular simulations. Curr Opin Struct Biol 2018; 52:80-86. [PMID: 30243041 PMCID: PMC6296865 DOI: 10.1016/j.sbi.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
Abstract
Beta-lactamase enzymes mediate the most common forms of gram-negative antibiotic resistance affecting clinical treatment. They also constitute an excellent model system for the difficult problem of understanding how allosteric mutations can augment catalytic activity of already-competent enzymes. Multiple allosteric mutations have been identified that alter catalytic activity or drug-resistance spectrum in class A beta lactamases, but predicting these in advance continues to be challenging. Here, we review computational techniques based on structure and/or molecular simulation to predict such mutations. Structure-based techniques have been particularly helpful in developing graph algorithms for analyzing critical residues in beta-lactamase function, while classical molecular simulation has recently shown the ability to prospectively predict allosteric mutations increasing beta-lactamase activity and drug resistance. These will ultimately achieve the greatest power when combined with simulation methods that model reactive chemistry to calculate activation free energies directly.
Collapse
Affiliation(s)
- George A Cortina
- Departments of Molecular Physiology and of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Peter M Kasson
- Departments of Molecular Physiology and of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75146, Sweden.
| |
Collapse
|
5
|
Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5:16. [PMID: 29527530 PMCID: PMC5829062 DOI: 10.3389/fmolb.2018.00016] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
The most common mechanism of resistance to β-lactam antibiotics in Gram-negative bacteria is the production of β-lactamases that hydrolyze the drugs. Class A β-lactamases are serine active-site hydrolases that include the common TEM, CTX-M, and KPC enzymes. The TEM enzymes readily hydrolyze penicillins and older cephalosporins. Oxyimino-cephalosporins, such as cefotaxime and ceftazidime, however, are poor substrates for TEM-1 and were introduced, in part, to circumvent β-lactamase-mediated resistance. Nevertheless, the use of these antibiotics has lead to evolution of numerous variants of TEM with mutations that significantly increase the hydrolysis of the newer cephalosporins. The CTX-M enzymes emerged in the late 1980s and hydrolyze penicillins and older cephalosporins and derive their name from the ability to also hydrolyze cefotaxime. The CTX-M enzymes, however, do not efficiently hydrolyze ceftazidime. Variants of CTX-M enzymes, however, have evolved that exhibit increased hydrolysis of ceftazidime. Finally, the KPC enzyme emerged in the 1990s and is characterized by its broad specificity that includes penicillins, most cephalosporins, and carbapenems. The KPC enzyme, however, does not efficiently hydrolyze ceftazidime. As with the TEM and CTX-M enzymes, variants have recently evolved that extend the spectrum of KPC β-lactamase to include ceftazidime. This review discusses the structural and mechanistic basis for the expanded substrate specificity of each of these enzymes that result from natural mutations that confer oxyimino-cephalosporin resistance. For the TEM enzyme, extended-spectrum mutations act by establishing new interactions with the cephalosporin. These mutations increase the conformational heterogeneity of the active site to create sub-states that better accommodate the larger drugs. The mutations expanding the spectrum of CTX-M enzymes also affect the flexibility and conformation of the active site to accommodate ceftazidime. Although structural data are limited, extended-spectrum mutations in KPC may act by mediating new, direct interactions with substrate and/or altering conformations of the active site. In many cases, mutations that expand the substrate profile of these enzymes simultaneously decrease the thermodynamic stability. This leads to the emergence of additional global suppressor mutations that help correct the stability defects leading to increased protein expression and increased antibiotic resistance.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Perilli M, Segatore B, Tavio M, Setacci D, Celenza G, De Santis F, Pellegrini C, Rossolini GM, Amicosante G. In VitroSelection and Characterization of Mutants in TEM-1-ProducingEscherichia coliby Ceftazidime and Ceftibuten. J Chemother 2013; 19:123-6. [PMID: 17434819 DOI: 10.1179/joc.2007.19.2.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The present work was undertaken to study the ability of ceftazidime and ceftibuten to selectin vitro Escherichia coli HB101 harboring bla(TEM-1) beta-lactamase gene. Minimum inhibitory concentrations (MICs) of ceftazidime and ceftibuten were increased by a factor of 32, overcoming in the case of ceftazidime the breakpoint for clinical resistance. Outer membrane protein analysis and PCR for bla(TEM )alleles revealed that ceftazidime and ceftibuten select for different resistance mechanisms. Ceftazidime created mutants that encode an extended-spectrum beta-lactamase (TEM-12) and exhibit decreased expression of OmpF. Ceftibuten was unable to select for extended-spectrum beta-lactamase expressing mutants but reduced the expression of two porins, OmpC and OmpF. The stability of ceftibuten to hydrolysis and the difference in the structure of these beta-lactam antibiotics could be responsible for the selection of different mechanisms of resistance.
Collapse
Affiliation(s)
- M Perilli
- Department of Sciences and Biomedical Technologies, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 2011; 34:1015-36. [PMID: 20412308 DOI: 10.1111/j.1574-6976.2010.00222.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TEM-1 β-lactamase is one of the most well-known antibiotic resistance determinants around. It confers resistance to penicillins and early cephalosporins and has shown an astonishing functional plasticity in response to the introduction of novel drugs derived from these antibiotics. Since its discovery in the 1960s, over 170 variants of TEM-1 - with different amino acid sequences and often resistance phenotypes - have been isolated in hospitals and clinics worldwide. Next to this well-documented 'natural' evolution, the in vitro evolution of TEM-1 has been the focus of attention of many experimental studies. In this review, we compare the natural and laboratory evolution of TEM-1 in order to address the question to what extent the evolution of antibiotic resistance can be repeated, and hence might have been predicted, under laboratory conditions. We also use the comparison to gain an insight into the adaptive relevance of hitherto uncharacterized substitutions present in clinical isolates and to predict substitutions not yet observed in nature. Based on new structural insights, we review what is known about substitutions in TEM-1 that contribute to the extension of its resistance phenotype. Finally, we address the clinical relevance of TEM alleles during the past decade, which has been dominated by the emergence of another β-lactamase, CTX-M.
Collapse
|
8
|
De Wals PY, Doucet N, Pelletier JN. High tolerance to simultaneous active-site mutations in TEM-1 beta-lactamase: Distinct mutational paths provide more generalized beta-lactam recognition. Protein Sci 2009; 18:147-60. [PMID: 19177359 DOI: 10.1002/pro.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The diversity in substrate recognition spectra exhibited by various beta-lactamases can result from one or a few mutations in the active-site area. Using Escherichia coli TEM-1 beta-lactamase as a template that efficiently hydrolyses penicillins, we performed site-saturation mutagenesis simultaneously on two opposite faces of the active-site cavity. Residues 104 and 105 as well as 238, 240, and 244 were targeted to verify their combinatorial effects on substrate specificity and enzyme activity and to probe for cooperativity between these residues. Selection for hydrolysis of an extended-spectrum cephalosporin, cefotaxime (CTX), led to the identification of a variety of novel mutational combinations. In vivo survival assays and in vitro characterization demonstrated a general tendency toward increased CTX and decreased penicillin resistance. Although selection was undertaken with CTX, productive binding (K(M)) was improved for all substrates tested, including benzylpenicillin for which catalytic turnover (k(cat)) was reduced. This indicates broadened substrate specificity, resulting in more generalized (or less specialized) variants. In most variants, the G238S mutation largely accounted for the observed properties, with additional mutations acting in an additive fashion to enhance these properties. However, the most efficient variant did not harbor the mutation G238S but combined two neighboring mutations that acted synergistically, also providing a catalytic generalization. Our exploration of concurrent mutations illustrates the high tolerance of the TEM-1 active site to multiple simultaneous mutations and reveals two distinct mutational paths to substrate spectrum diversification.
Collapse
Affiliation(s)
- Pierre-Yves De Wals
- Département de Biochimie, Université de Montréal, Montréal Québec, Canada H3C 3J7
| | | | | |
Collapse
|
9
|
|
10
|
Chouchani C, Ben-Achour N, M'charek A, Belhadj O. Cefotaxime and ceftazidime-resistant Escherichia coli isolate producing TEM-15 beta-lactamase from a Tunisian hospital. C R Biol 2007; 330:565-70. [PMID: 17637436 DOI: 10.1016/j.crvi.2007.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
A clinical isolate of Escherichia coli LBT04 was found to have a high-level resistance to broad-spectrum beta-lactams. Analysis of this strain by the disk diffusion test revealed synergies between clavulanic acid and ceftazidime, cefotaxime. Clavulanic acid decreased the MICs of ceftazidime, cefotaxime, and ceftriaxone, which suggested that LBT04 produced an extended-spectrum beta-lactamase. These resistances were carried by a 1080-bp chromosomal gene that encoded a beta-lactamase with a pI of 6.3. Cloning and sequencing experiments showed that this beta-lactamase revealed identity with the bla(TEM-1) gene encoding the TEM-1 beta-lactamase, except for a replacement of the Glu residue at position 104 by Lys, and of the Gly residue at position 238 by Ser. These two mutations were encountered in TEM-15 beta-lactamase, but this is the first description of this enzyme in the E. coli species in Tunisian hospitals.
Collapse
Affiliation(s)
- Chedly Chouchani
- Laboratoire de biochimie et de biotechnologie, faculté des sciences de Tunis, 2092 El-Manar II, Tunisia.
| | | | | | | |
Collapse
|
11
|
Bethel CR, Hujer AM, Hujer KM, Thomson JM, Ruszczycky MW, Anderson VE, Pusztai-Carey M, Taracila M, Helfand MS, Bonomo RA. Role of Asp104 in the SHV beta-lactamase. Antimicrob Agents Chemother 2006; 50:4124-31. [PMID: 16982784 PMCID: PMC1694000 DOI: 10.1128/aac.00848-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Among the TEM-type extended-spectrum beta-lactamases (ESBLs), an amino acid change at Ambler position 104 (Glu to Lys) results in increased resistance to ceftazidime and cefotaxime when found with other substitutions (e.g., Gly238Ser and Arg164Ser). To examine the role of Asp104 in SHV beta-lactamases, site saturation mutagenesis was performed. Our goal was to investigate the properties of amino acid residues at this position that affect resistance to penicillins and oxyimino-cephalosporins. Unexpectedly, 58% of amino acid variants at position 104 in SHV expressed in Escherichia coli DH10B resulted in beta-lactamases with lowered resistance to ampicillin. In contrast, increased resistance to cefotaxime was demonstrated only for the Asp104Arg and Asp104Lys beta-lactamases. When all 19 substitutions were introduced into the SHV-2 (Gly238Ser) ESBL, the most significant increases in cefotaxime and ceftazidime resistance were noted for both the doubly substituted Asp104Lys Gly238Ser and the doubly substituted Asp104Arg Gly238Ser beta-lactamases. Correspondingly, the overall catalytic efficiency (kcat/Km) of hydrolysis for cefotaxime was increased from 0.60 +/- 0.07 microM(-1) s(-1) (mean +/- standard deviation) for Gly238Ser to 1.70 +/- 0.01 microM(-1) s(-1) for the Asp104Lys and Gly238Ser beta-lactamase (threefold increase). We also showed that (i) k3 was the rate-limiting step for the hydrolysis of cefotaxime by Asp104Lys, (ii) the Km for cefotaxime of the doubly substituted Asp104Lys Gly238Ser variant approached that of the Gly238Ser beta-lactamase as pH increased, and (iii) Lys at position 104 functions in an energetically additive manner with the Gly238Ser substitution to enhance catalysis of cephalothin. Based on this analysis, we propose that the amino acid at Ambler position 104 in SHV-1 beta-lactamase plays a major role in substrate binding and recognition of oxyimino-cephalosporins and influences the interactions of Tyr105 with penicillins.
Collapse
Affiliation(s)
- Christopher R Bethel
- Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mathonet P, Deherve J, Soumillion P, Fastrez J. Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops. Protein Sci 2006; 15:2323-34. [PMID: 16963643 PMCID: PMC2242396 DOI: 10.1110/ps.062303606] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Engineering of alternative binding sites on the surface of an enzyme while preserving the enzymatic activity would offer new opportunities for controlling the activity by binding of non-natural ligands. Loops and turns are the natural substructures in which binding sites might be engineered with this purpose. We have genetically inserted random peptide sequences into three relatively rigid and contiguous loops of the TEM-1 beta-lactamase and assessed the tolerance to insertion by the percentage of active mutants. Our results indicate that tolerance to insertion could not be correlated to tolerance to mutagenesis. A turn between two beta-strands bordering the active site was observed to be tolerant to random mutagenesis but not to insertions. Two rigid loops comprising rather well-conserved amino acid residues tolerated insertions, although with some constraints. Insertions between the N-terminal helix and the first beta-strand generated active libraries if cysteine residues were included at both ends of the insert, suggesting the requirement for a stabilizing disulfide bridge. Random sequences were relatively well accommodated within the loop connecting the final beta-strand to the C-terminal helix, particularly if the wild-type residue was retained at one of the loops' end. This suggests two strategies for increasing the percentage of active mutants in insertion libraries. The amino acid distribution in the engineered loops was analyzed and found to be less biased against hydrophobic residues than in natural medium-sized loops. The combination of these activity-selected libraries generated a huge library containing active hybrid enzymes with all three loops modified.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université catholique de Louvain, B1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
13
|
Shimizu-Ibuka A, Matsuzawa H, Sakai H. An Engineered Disulfide Bond between Residues 69 and 238 in Extended-Spectrum β-Lactamase Toho-1 Reduces Its Activity toward Third-Generation Cephalosporins‡. Biochemistry 2004; 43:15737-45. [PMID: 15595829 DOI: 10.1021/bi048488u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous crystallographic structural analysis of extended-spectrum beta-lactamase Toho-1 predicted that the high flexibility of beta-strand B3, the region that contains a conserved KTG motif and forms one wall of the substrate-binding site, could be one of the key features contributing to Toho-1 activity toward third-generation cephalosporins. To investigate whether this possible flexibility really affects the substrate profile of this enzyme, two Toho-1 mutants have been produced, G238C and G238C/G239in, in which the glycine residue at position 238 was replaced with a cysteine and an additional glycine residue was inserted. Our intent was to introduce a disulfide bond between the cysteine residues at positions 69 and 238, and thus to lock the position of beta-strand B3. The results of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) titration indicated formation of a new disulfide bridge in the G238C mutant, although disulfide bond formation was not confirmed in the G238C/G239in mutant. Kinetic analysis showed that the activity of the G238C mutant decreased drastically against third-generation cephalosporins, while its catalytic efficiency against penicillins and first-generation cephalosporins was almost identical to that of the wild-type enzyme. This result was consistent with the prediction that flexibility in beta-strand B3 was critical for activity against third-generation cephalosporins in Toho-1. Furthermore, we have determined the crystal structure of the G238C mutant enzyme to analyze the structural changes in detail. The structural model clearly shows the introduction of a new disulfide bridge and that there is no appreciable difference between the overall structures of the wild-type enzyme and the G238C mutant, although the introduced disulfide bond slightly influenced the positions of Ser237 on beta-strand B3 and Asn170 on the Omega loop. The results of our kinetic and structural analyses suggest that the flexibility of beta-strand B3, as well as the positions of Ser237 and the Omega loop, is critical for the substrate specificity expansion of Toho-1.
Collapse
Affiliation(s)
- Akiko Shimizu-Ibuka
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | |
Collapse
|
14
|
Queenan AM, Foleno B, Gownley C, Wira E, Bush K. Effects of inoculum and beta-lactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J Clin Microbiol 2004; 42:269-75. [PMID: 14715764 PMCID: PMC321709 DOI: 10.1128/jcm.42.1.269-275.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli and Klebsiella pneumoniae isolates with extended-spectrum beta-lactamases (ESBLs) or AmpC cephalosporinases generally respond as predicted to NCCLS tests for ESBL production. However, inoculum size may affect MICs. The effect of inoculum level in clinical isolates expressing beta-lactamases were studied at inocula within 0.5 log unit of the standard inoculum, using broth microdilution methodology with ceftazidime, cefotaxime, cefepime, cefpodoxime, and aztreonam. Strains with TEM-1 or no beta-lactamases gave consistent MIC results with inocula of 10(5) and 10(6) CFU/ml. When the bacteria were screened for ESBL production and the lower inoculum was used, several strains with ESBLs, including CTX-M-10, TEM-3, TEM-10, TEM-12, TEM-6, SHV-18, and K1, gave false-negative results for one or more antimicrobial agents (MICs below the NCCLS screening concentration for detecting suspected ESBLs). When the higher inoculum was used, MICs of at least one antimicrobial agent increased at least fourfold in strains producing TEM-3, TEM-10, TEM-28, TEM-43, SHV-5, SHV-18, and K1. All antimicrobial agents showed an inoculum effect with at least one ESBL producer. Confirmatory clavulanate effects were seen for both inocula for all ESBL-producing strains with all antimicrobial agents tested, except for the CTX-M-10-producing E. coli with ceftazidime and the SHV-18-producing K. pneumoniae with cefotaxime. In kinetic studies, cefpodoxime and cefepime were hydrolyzed by ESBLs in a manner similar to that of cefotaxime. When total beta-lactamase activity and hydrolysis parameters were evaluated, however, no single factor was predictive of inoculum effects. These results indicate that the NCCLS screening and confirmation tests are generally predictive of ESBL production, but false-negative results can arise when a lower inoculum is used in testing.
Collapse
Affiliation(s)
- Anne Marie Queenan
- Johnson & Johnson Pharmaceutical Research and Development, LLC, Raritan, New Jersey 08869, USA.
| | | | | | | | | |
Collapse
|
15
|
Nukaga M, Mayama K, Hujer AM, Bonomo RA, Knox JR. Ultrahigh resolution structure of a class A beta-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. J Mol Biol 2003; 328:289-301. [PMID: 12684014 DOI: 10.1016/s0022-2836(03)00210-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial beta-lactamases hydrolyze beta-lactam antibiotics such as penicillins and cephalosporins. The TEM-type class A beta-lactamase SHV-2 is a natural variant that exhibits activity against third-generation cephalosporins normally resistant to hydrolysis by class A enzymes. SHV-2 contains a single Gly238Ser change relative to the wild-type enzyme SHV-1. Crystallographic refinement of a model including hydrogen atoms gave R and R(free) of 12.4% and 15.0% for data to 0.91 A resolution. The hydrogen atom on the O(gamma) atom of the reactive Ser70 is clearly seen for the first time, bridging to the water molecule activated by Glu166. Though hydrogen atoms on the nearby Lys73 are not seen, this observation of the Ser70 hydrogen atom and the hydrogen bonding pattern around Lys73 indicate that Lys73 is protonated. These findings support a role for the Glu166-water couple, rather than Lys73, as the general base in the deprotonation of Ser70 in the acylation process of class A beta-lactamases. Overlay of SHV-2 with SHV-1 shows a significant 1-3 A displacement in the 238-242 beta-strand-turn segment, making the beta-lactam binding site more open to newer cephalosporins with large C7 substituents and thereby expanding the substrate spectrum of the variant enzyme. The OH group of the buried Ser238 side-chain hydrogen bonds to the main-chain CO of Asn170 on the Omega loop, that is unaltered in position relative to SHV-1. This structural role for Ser238 in protein-protein binding makes less likely its hydrogen bonding to oximino cephalosporins such as cefotaxime or ceftazidime.
Collapse
Affiliation(s)
- Michiyoshi Nukaga
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | | | |
Collapse
|
16
|
Hujer AM, Hujer KM, Helfand MS, Anderson VE, Bonomo RA. Amino acid substitutions at Ambler position Gly238 in the SHV-1 beta-lactamase: exploring sequence requirements for resistance to penicillins and cephalosporins. Antimicrob Agents Chemother 2002; 46:3971-7. [PMID: 12435703 PMCID: PMC132793 DOI: 10.1128/aac.46.12.3971-3977.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site saturation mutagenesis of the 238 position in the SHV beta-lactamase was performed to identify the complete sequence requirements needed for the extended spectrum beta-lactamase (ESBL) phenotype. MICs (in micrograms per milliliter) in an isogenic background, Escherichia coli DH10B, demonstrated that the Gly238Ala mutation conferred the most resistance to penicillins and cephalosporins. The absolute increase in resistance was greatest against cefotaxime for the Gly238Ala mutant (0.06 to 8 micro g/ml). Except for the strain possessing the Gly238Pro beta-lactamase, ceftazidime MICs were also elevated. None of the mutant SHV beta-lactamases were expressed in as great an amount as the wild-type beta-lactamase. Kinetic analysis of the Gly238Ala mutant revealed that penicillin and cephalosporin substrates have a lower K(m) for the enzyme because of this mutation. Ampicillin and piperacillin MICs were inversely proportional to the side chain volume of the amino acid in cases larger than Ser, suggesting that steric considerations may be a primary requirement for penicillin resistance. Secondary structural effects explain increased resistance to oxyiminocephalosporins. Based upon this study, we anticipate that additional mutations of Gly238 in the SHV beta-lactamase will continue to be discovered with an ESBL (ceftazidime or cefotaxime resistant) phenotype.
Collapse
Affiliation(s)
- Andrea M Hujer
- Research Service. Infectious Diseases Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
17
|
Majiduddin FK, Materon IC, Palzkill TG. Molecular analysis of beta-lactamase structure and function. Int J Med Microbiol 2002; 292:127-37. [PMID: 12195735 DOI: 10.1078/1438-4221-00198] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extensive and sometimes irresponsible use of beta-lactam antibiotics in clinical and agricultural settings has contributed to the emergence and widespread dissemination of antibiotic-resistant bacteria. Bacteria have evolved three strategies to escape the activity of beta-lactam antibiotics: 1) alteration of the target site (e.g. penicillin-binding protein (PBPs), 2) reduction of drug permeation across the bacterial membrane (e.g. efflux pumps) and 3) production of beta-lactamase enzymes. The beta-lactamase enzymes inactivate beta-lactam antibiotics by hydrolyzing the peptide bond of the characteristic four-membered beta-lactam ring rendering the antibiotic ineffective. The inactivation of the antibiotic provides resistance to the bacterium. Currently, there are over 300 beta-lactamase enzymes described for which numerous kinetic, structural, computational and mutagenesis studies have been performed. In this review, we discuss the recent work performed on the four different classes (A, B, C, and D) of beta-lactamases. These investigative advances further expand our knowledge about these complex enzymes, and hopefully, will provide us with additional tools to develop new inhibitors and antibiotics based on structural and rational designs.
Collapse
Affiliation(s)
- Fahd K Majiduddin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
18
|
Rasheed JK, Anderson GJ, Queenan AM, Biddle JW, Oliver A, Jacoby GA, Bush K, Tenover FC. TEM-71, a novel plasmid-encoded, extended-spectrum beta-lactamase produced by a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 2002; 46:2000-3. [PMID: 12019125 PMCID: PMC127224 DOI: 10.1128/aac.46.6.2000-2003.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TEM-71, a novel extended-spectrum beta-lactamase from a Klebsiella pneumoniae clinical isolate, had an isoelectric point of 6.0 and a substrate profile showing preferential hydrolysis of cefotaxime over ceftazidime. It differed from TEM-1 by two substitutions, Gly238Ser and Glu240Lys, and was under the control of the strong P4 promoter.
Collapse
Affiliation(s)
- J Kamile Rasheed
- Division of Healthcare Quality Promotion, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kwak JH, Kim MY, Choi EC. A novel plasmid-mediated beta-lactamase that hydrolyzes broad-spectrum cephalosporins in a clinical isolate of Klebsiella pneumoniae. Arch Pharm Res 2001; 24:590-6. [PMID: 11794541 DOI: 10.1007/bf02975171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new extended-spectrum beta-lactamase with an isoelectric point (pI) of 6.2 was detected in Klebsiella pneumoniae F161 that was isolated from a patient with infection. This strain was highly resistant to the third or fourth generation cephalosporins such as ceftazidime, ceftriaxone, cefoperazone, and cefpirome. Analysis of this strain by the double disk diffusion test showed synergies between amoxicillin-clavulanate (AMX-CA) and cefotaxime, and AMX-CA and aztreonam, which suggested that this strain produced a extended-spectrum beta-lactamase (ESBL). Genetic analysis revealed that the resistance was due to the presence of a 9.4-kb plasmid, designated as pKP161, encoding for new beta-lactamase gene (bla). Sequence analysis showed that a new bla gene of pKP161 differed from bla(TEM-1) by three mutations leading to the following amino acid substitutions: Val84 --> Ile, Ala184 --> Val, and Gly238 --> Ser. These mutations have not been reported previously in the TEM type beta-lactamases produced by clinical strains. The novel beta-lactamase was overexpressed in E. coli and purified by ion exchange chromatography on Q-Sepharose and CM-Sepharose, and then further purified by gel filtration on Sehadex G-200. The catalytic activity of the purified beta-lactamase was confirmed by the nitrocefin disk.
Collapse
Affiliation(s)
- J H Kwak
- School of Bioscience and Food Technology, Handong University, Pohang, Korea.
| | | | | |
Collapse
|
20
|
Gniadkowski M. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect 2001; 7:597-608. [PMID: 11737084 DOI: 10.1046/j.1198-743x.2001.00330.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rapid and irrepressible increase in antimicrobial resistance of pathogenic bacteria that has been observed over the last two decades is widely accepted to be one of the major problems of human medicine today. Several aspects of this situation are especially worrying. There are resistance mechanisms that eliminate the use of last-choice antibiotics in the treatment of various kinds of infection. Many resistance mechanisms that emerge and spread in bacterial populations are those of wide activity spectra, which compromise all or a majority of drugs belonging to a given therapeutic group. Some mechanisms of great clinical importance require specific detection procedures, as they may not confer clear resistance in vitro on the basis of the interpretive criteria used in standard susceptibility testing. Finally, multiple mechanisms affecting the same and/or different groups of antimicrobials coexist and are even co-selected in more and more strains of pathogenic bacteria. The variety of beta-lactamases with wide spectra of substrate specificity illustrates very well all the phenomena mentioned above. Being able to hydrolyze the majority of beta-lactams that are currently in use, together they constitute the most important resistance mechanism of Gram-negative rods. Three major groups of these enzymes are usually distinguished, class C cephalosporinases (AmpC), extended-spectrum beta-lactamases (ESBLs) and different types of beta-lactamases with carbapenemase activity, of which the so-called class B metallo-beta-lactamases (MBLs) are of the greatest concern. This review is focused on various aspects of the evolution and epidemiology of ESBLs; it does not cover the problems of ESBL detection and clinical relevance of infections caused by ESBL-producing organisms.
Collapse
Affiliation(s)
- M Gniadkowski
- Sera & Vaccines Central Research Laboratory, ul. Chelmska 30/34, 00-725 Warsaw, Poland.
| |
Collapse
|
21
|
Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14:933-51, table of contents. [PMID: 11585791 PMCID: PMC89009 DOI: 10.1128/cmr.14.4.933-951.2001] [Citation(s) in RCA: 1574] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Beta-lactamases continue to be the leading cause of resistance to beta-lactam antibiotics among gram-negative bacteria. In recent years there has been an increased incidence and prevalence of extended-spectrum beta-lactamases (ESBLs), enzymes that hydrolyze and cause resistance to oxyimino-cephalosporins and aztreonam. The majority of ESBLs are derived from the widespread broad-spectrum beta-lactamases TEM-1 and SHV-1. There are also new families of ESBLs, including the CTX-M and OXA-type enzymes as well as novel, unrelated beta-lactamases. Several different methods for the detection of ESBLs in clinical isolates have been suggested. While each of the tests has merit, none of the tests is able to detect all of the ESBLs encountered. ESBLs have become widespread throughout the world and are now found in a significant percentage of Escherichia coli and Klebsiella pneumoniae strains in certain countries. They have also been found in other Enterobacteriaceae strains and Pseudomonas aeruginosa. Strains expressing these beta-lactamases will present a host of therapeutic challenges as we head into the 21st century.
Collapse
Affiliation(s)
- P A Bradford
- Wyeth-Ayerst Research, Pearl River, New York 10965, USA.
| |
Collapse
|
22
|
Sideraki V, Huang W, Palzkill T, Gilbert HF. A secondary drug resistance mutation of TEM-1 -lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A 2001; 98:283-8. [PMID: 11114163 PMCID: PMC14582 DOI: 10.1073/pnas.98.1.283] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Gram-negative bacteria, TEM-1 beta-lactamase provides the major mechanism of plasmid-mediated beta-lactam resistance. Natural variants of TEM-1 with increased antibiotic resistance have appeared in response to the use of extended-spectrum beta-lactam antibiotics (e.g., ceftazidime) and beta-lactamase inhibitors (e.g., clavulanic acid). Some of the variant enzymes are more efficient at catalyzing beta-lactam hydrolysis, whereas others are more resistant to inhibitors. M182T is a substitution observed in both types of variant TEM-1 beta-lactamases. This mutation is found only in combination with other amino acid substitutions, suggesting that it may correct defects introduced by other mutations that alter the specificity. An engineered core mutation, L76N, which diminishes the periplasmic beta-lactamase activity by 100-fold, was used as a model to understand the mechanism of suppression of the M182T mutation. Biochemical studies of the L76N enzyme alone and in combination with the M182T mutation indicate that the M182T substitution acts at the level of folding but does not affect the thermodynamic stability of TEM-1 beta-lactamase. Thus, the M182T substitution is an example of a naturally occurring mutation that has evolved to alter the folding pathway of a protein and confer a selective advantage during the evolution of drug resistance.
Collapse
Affiliation(s)
- V Sideraki
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Randegger CC, Keller A, Irla M, Wada A, Hächler H. Contribution of natural amino acid substitutions in SHV extended-spectrum beta-lactamases to resistance against various beta-lactams. Antimicrob Agents Chemother 2000; 44:2759-63. [PMID: 10991857 PMCID: PMC90148 DOI: 10.1128/aac.44.10.2759-2763.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SHV extended-spectrum beta-lactamases (ESBLs) arise through single amino acid substitutions in the parental enzyme, SHV-1. In order to evaluate the effect of genetic dissimilarities around the structural gene on MICs, we had previously devised an isogenic system of strains. Here, we present an extended version of the system that now allows assessment of all major types of SHV beta-lactamases as well as of two types of promoters of various strengths. Moreover, we devised a novel vector, pCCR9, to eliminate interference of the selection marker. A substitution within the signal sequence, I8F found in SHV-7, slightly increased MICs, suggesting more efficient transfer of enzyme precursor into the periplasmic space. We also noted that combination of G238S and E240K yielded higher resistance than G238S alone. However, the influence of the additional E240K change was more pronounced with ceftazidime and aztreonam than with cefotaxime and ceftriaxone. The SHV enzymes characterized by the single change, D179N, such as SHV-8, turned out to be the weakest SHV ESBLs. Only resistance to ceftazidime was moderately increased compared to SHV-1.
Collapse
Affiliation(s)
- C C Randegger
- Institute of Medical Microbiology, University of Zürich, CH-8028 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Perilli M, Segatore B, de Massis MR, Riccio ML, Bianchi C, Zollo A, Rossolini GM, Amicosante G. TEM-72, a new extended-spectrum beta-lactamase detected in Proteus mirabilis and Morganella morganii in Italy. Antimicrob Agents Chemother 2000; 44:2537-9. [PMID: 10952610 PMCID: PMC90100 DOI: 10.1128/aac.44.9.2537-2539.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new natural TEM-2 derivative, named TEM-72, was identified in a Proteus mirabilis strain and in a Morganella morganii strain isolated in Italy in 1999. Compared to TEM-1, TEM-72 contains the following amino acid substitutions: Q39K, M182T, G238S, and E240K. Kinetic analysis showed that TEM-72 exhibits an extended-spectrum activity, including activity against oxyimino-cephalosporins and aztreonam. Expression of bla(TEM-72) in Escherichia coli was capable of decreasing the host susceptibility to the above drugs.
Collapse
Affiliation(s)
- M Perilli
- Dipartimento di Scienze e Tecnologie Biomediche, Cattedra di Enzimologia, Università di L'Aquila, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blazquez J, Morosini MI, Negri MC, Baquero F. Selection of naturally occurring extended-spectrum TEM beta-lactamase variants by fluctuating beta-lactam pressure. Antimicrob Agents Chemother 2000; 44:2182-4. [PMID: 10898697 PMCID: PMC90035 DOI: 10.1128/aac.44.8.2182-2184.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1999] [Accepted: 04/21/2000] [Indexed: 11/20/2022] Open
Abstract
Despite the large number of in vitro mutations that increase resistance to extended-spectrum cephalosporins in TEM-type beta-lactamases, only a small number occur in naturally occurring enzymes. In nature, and particularly in the hospital, bacteria that contain beta-lactamases encounter simultaneous or consecutive selective pressure with different beta-lactam molecules. All variants obtained by submitting an Escherichia coli strain that contains a bla(TEM-1) gene to fluctuating challenge with both ceftazidime and amoxicillin contained only mutations previously detected in naturally occurring beta-lactamases. Nevertheless, some variants obtained by ceftazidime challenge alone contained mutations never detected in naturally occurring TEM beta-lactamases, suggesting that extended-spectrum TEM variants in hospital isolates result from fluctuating selective pressure with several beta-lactams rather than selection with a single antibiotic.
Collapse
Affiliation(s)
- J Blazquez
- Servicio de Microbiología, Hospital Ramón y Cajal, Madrid 28034, Spain.
| | | | | | | |
Collapse
|
26
|
Kang SG, Park HU, Lee HS, Kim HT, Lee KJ. New beta -lactamase inhibitory protein (BLIP-I) from Streptomyces exfoliatus SMF19 and its roles on the morphological differentiation. J Biol Chem 2000; 275:16851-6. [PMID: 10747883 DOI: 10.1074/jbc.m000227200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new beta-lactamase inhibitory protein (BLIP-I) from Streptomyces exfoliatus SMF19 was purified and characterized. The molecular mass of BLIP-I was estimated to be 17.5 kDa by gel filtration fast protein liquid chromatography. The N-terminal sequence was NH(2)-Asn-Ser-Gly-Phe-Ser-Ala-Glu-Lys-Tyr-Glu-Gln-Ile-Gln-Phe-Gly. BLIP-I inhibited Bacto(R) Penase (Difco), and plasmid encoded TEM-1 beta-lactamase, whereas it did not inhibit Enterobacter cloacae beta-lactamases. The K(i) value of BLIP-I against TEM-1 beta-lactamase was determined to be 0.047 nm. The gene (bliA) encoding BLIP-I protein was identified by screening a genomic library using an oligonucleotide probe with a sequence based on the N-terminal sequence of BLIP-I. Analysis of the nucleotide sequence revealed that the gene was 558 base pairs in length and encoded a mature protein of 157 amino acid residues preceded by a 29-amino acid signal sequence. Pairwise comparison of the deduced amino acid sequence showed 38% identity with BLIP of Streptomyces clavuligerus. Furthermore, the 49th amino acid residue of BLIP-I was identical to Asp-49 of BLIP that was characterized to be an important residue for the inhibitory activity of BLIP. A modified BLIP-I in which Asp-49 was replaced by alanine (D49A) was obtained by site-directed mutagenesis. The inhibitory activities of recombinant (r) BLIP-I and its D49A mutant derivative, expressed in Escherichia coli, were compared. The K(i) value of rBLIP-I against TEM-1 beta-lactamase was similar to that of wild-type BLIP-I, but the D49A mutation increased the K(i) of rBLIP-I inhibition approximately 200-fold. A disruption mutant of the bliA gene in S. exfoliatus SMF19 was obtained by replacing the wild-type bliA gene with a copy inactivated by inserting a hygromycin resistance gene. The disruption mutant showed a bald phenotype, indicating that the bliA gene plays a role in morphological differentiation.
Collapse
Affiliation(s)
- S G Kang
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
27
|
Neuwirth C, Labia R, Siebor E, Pechinot A, Madec S, Chaibi EB, Kazmierczak A. Characterization of TEM-56, a novel beta-lactamase produced by a Klebsiella pneumoniae clinical isolate. Antimicrob Agents Chemother 2000; 44:453-5. [PMID: 10639384 PMCID: PMC89705 DOI: 10.1128/aac.44.2.453-455.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TEM-56 produced by a Klebsiella pneumoniae clinical isolate is a novel beta-lactamase of isoelectric point 6.4 that confers a moderate resistance level to expanded-spectrum cephalosporins. The amino acid sequence deduced from the corresponding bla gene showed two amino acid replacements with respect to the TEM-2 sequence: Glu-104 to Lys and His-153 to Arg. This enzyme showed catalytic properties close to those of TEM-18. Thus, TEM-56 appears as a new TEM mutant, an intermediary between TEM-18 and the extended-spectrum beta-lactamase TEM-21.
Collapse
Affiliation(s)
- C Neuwirth
- Laboratoire de Bact¿eriologie, H¿opital Universitaire du Bocage, B.P. 1542, 21034 Dijon Cedex, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Kuzin AP, Nukaga M, Nukaga Y, Hujer AM, Bonomo RA, Knox JR. Structure of the SHV-1 beta-lactamase. Biochemistry 1999; 38:5720-7. [PMID: 10231522 DOI: 10.1021/bi990136d] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The X-ray crystallographic structure of the SHV-1 beta-lactamase has been established. The enzyme crystallizes from poly(ethylene glycol) at pH 7 in space group P212121 with cell dimensions a = 49.6 A, b = 55.6 A, and c = 87.0 A. The structure was solved by the molecular replacement method, and the model has been refined to an R-factor of 0.18 for all data in the range 8.0-1.98 A resolution. Deviations of model bonds and angles from ideal values are 0.018 A and 1.8 degrees, respectively. Overlay of all 263 alpha-carbon atoms in the SHV-1 and TEM-1 beta-lactamases results in an rms deviation of 1.4 A. Largest deviations occur in the H10 helix (residues 218-224) and in the loops between strands in the beta-sheet. All atoms in residues 70, 73, 130, 132, 166, and 234 in the catalytic site of SHV-1 deviate only 0.23 A (rms) from atoms in TEM-1. However, the width of the substrate binding cavity in SHV-1, as measured from the 104-105 and 130-132 loops on one side to the 235-238 beta-strand on the other side, is 0.7-1.2 A wider than in TEM-1. A structural analysis of the highly different affinity of SHV-1 and TEM-1 for the beta-lactamase inhibitory protein BLIP focuses on interactions involving Asp/Glu104.
Collapse
Affiliation(s)
- A P Kuzin
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
29
|
Rudgers GW, Palzkill T. Identification of residues in beta-lactamase critical for binding beta-lactamase inhibitory protein. J Biol Chem 1999; 274:6963-71. [PMID: 10066750 DOI: 10.1074/jbc.274.11.6963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Lactamase inhibitory protein (BLIP) is a potent inhibitor of several beta-lactamases including TEM-1 beta-lactamase (Ki = 0.1 nM). The co-crystal structure of TEM-1 beta-lactamase and BLIP has been solved, revealing the contact residues involved in the interface between the enzyme and inhibitor. To determine which residues in TEM-1 beta-lactamase are critical for binding BLIP, the method of monovalent phage display was employed. Random mutants of TEM-1 beta-lactamase in the 99-114 loop-helix and 235-240 B3 beta-strand regions were displayed as fusion proteins on the surface of the M13 bacteriophage. Functional mutants were selected based on the ability to bind BLIP. After three rounds of enrichment, the sequences of a collection of functional beta-lactamase mutants revealed a consensus sequence for the binding of BLIP. Seven loop-helix residues including Asp-101, Leu-102, Val-103, Ser-106, Pro-107, Thr-109, and His-112 and three B3 beta-strand residues including Ser-235, Gly-236, and Gly-238 were found to be critical for tight binding of BLIP. In addition, the selected beta-lactamase mutants A113L/T114R and E240K were found to increase binding of BLIP by over 6- and 11-fold, respectively. Combining these substitutions resulted in 550-fold tighter binding between the enzyme and BLIP with a Ki of 0.40 pM. These results reveal that the binding between TEM-1 beta-lactamase and BLIP can be improved and that there are a large number of sequences consistent with tight binding between BLIP and beta-lactamase.
Collapse
Affiliation(s)
- G W Rudgers
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
30
|
Petrosino J, Rudgers G, Gilbert H, Palzkill T. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of beta-lactamases. J Biol Chem 1999; 274:2394-400. [PMID: 9891008 DOI: 10.1074/jbc.274.4.2394] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Lactamases are bacterial enzymes that hydrolyze beta-lactam antibiotics to render them inactive. The beta-lactamase inhibitor protein (BLIP) of Streptomyces clavuligerus, is a potent inhibitor of several beta-lactamases, including the TEM-1 enzyme (Ki = 0.6 nM). Evidence from the TEM-1/BLIP co-crystal suggests that two BLIP residues, Asp-49 and Phe-142, mimic interactions made by penicillin G when bound in the active site of TEM-1. To determine the importance of these two residues, a heterologous expression system for BLIP was established in Escherichia coli. Site-directed mutagenesis was used to change Asp-49 and Phe-142 to alanine, and inhibition constants (Ki) for both mutants were determined. Each mutation increases the Ki for BLIP inhibition of TEM-1 beta-lactamase approximately 100-fold. To address how these two positions effect the specificity of beta-lactamase binding, Ki values were determined for the interaction of wild-type BLIP, as well as the D49A and F142A mutants, with two extended spectrum beta-lactamases (the G238S and the E104K TEM variants). Positions 104 and 238 are located in the BLIP/beta-lactamase interface. Interestingly, the three BLIP proteins inhibited the G238S beta-lactamase mutant to the same degree that they inhibited TEM-1. However, wild-type BLIP has a higher Ki for the E104K beta-lactamase mutant, suggesting that interactions between BLIP and beta-lactamase residue Glu-104 are important for wild-type levels of BLIP inhibition.
Collapse
Affiliation(s)
- J Petrosino
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
31
|
Zaccolo M, Gherardi E. The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J Mol Biol 1999; 285:775-83. [PMID: 9878443 DOI: 10.1006/jmbi.1998.2262] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For a number of years a major limitation in genetic analysis of protein function has been the inability to introduce multiple substitutions at distant sites that would enable the selection of clusters of mutations required for improved or novel biological functions. In order to achieve this, we have recently developed a novel mutagenesis procedure in which the triphosphate derivatives of a pyrimidine (6-(2-deoxy-beta-d-ribofuranosyl)-3, 4-dihydro-8H-pyrimido-[4,5-c][1,2]oxazin-7-one; dP) and a purine (8-oxo-2'-deoxyguanosine; 8-oxodG) nucleoside analogue are employed in DNA synthesis reactions in vitro. The procedure allows control of the mutational load and can yield frequencies of amino acid residue substitutions at least one order of magnitude greater than those previously achieved. Here we report the results of an experiment in which we have hypermutated the bacterial enzyme TEM-1 beta-lactamase and selected small pools (<1.5x10(5)) of clones for enzymatic activity against the beta-lactam antibiotic cefotaxime. The experiment resulted in the isolation of a number of TEM-1 mutants with greatly improved activity against cefotaxime. Among these, clone 3D.5 (E104K:M182T:G238S) exhibited a minimum inhibitory concentration for cefotaxime 20,000-fold higher than wild-type TEM-1 and a catalytic efficiency (kcat/Km) 2383 times higher than the wild-type enzyme. Thus, small pools of hypermutated sequences enabled the selection of one of the most active extended beta-lactamases described so far. These results argue against the accepted view that multiple rounds of low-rate mutagenesis and stepwise selection are essential for in vitro protein evolution and extend the scope of directed molecular evolution to proteins for which no genetic selection is available.
Collapse
Affiliation(s)
- M Zaccolo
- Growth Factors Group, MRC Centre, Hills Road, Cambridge, C132 2QH, UK
| | | |
Collapse
|
32
|
Cantu C, Palzkill T. The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics. J Biol Chem 1998; 273:26603-9. [PMID: 9756899 DOI: 10.1074/jbc.273.41.26603] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Lactamases inactivate beta-lactam antibiotics by catalyzing the hydrolysis of the amide bond in the beta-lactam ring. The plasmid-encoded class A TEM-1 beta-lactamase is a commonly encountered beta-lactamase. It is able to inactivate penicillins and cephalosporins but not extended-spectrum antibiotics. However, TEM-1-derived natural variants containing the G238S amino acid substitution display increased hydrolysis of extended-spectrum antibiotics. Two models have been proposed to explain the role of the G238S substitution in hydrolysis of extended-spectrum antibiotics. The first proposes a direct hydrogen bond of the Ser238 side chain to the oxime group of extended-spectrum antibiotics. The second proposes that steric conflict with surrounding residues, due to increased side chain volume, leads to a more accessible active site pocket. To assess the validity of each model, TEM-1 mutants with amino acids substitutions of Ala, Ser, Cys, Thr, Asn, and Val have been constructed. Kinetic analysis of these enzymes with penicillins and cephalosporins suggests that a hydrogen bond is necessary but not sufficient to achieve the hydrolytic activity of the G238S enzyme for the extended-spectrum antibiotics cefotaxime and ceftazidime. In addition, it appears that the new hydrogen bond interaction is to a site on the enzyme rather than directly to the extended-spectrum antibiotic. The data indicate that, for the G238S substitution, a combination of an optimal side chain volume and hydrogen bonding potential results in the most versatile and advantageous antibiotic hydrolytic spectrum for bacterial resistance to extended-spectrum antibiotics.
Collapse
Affiliation(s)
- C Cantu
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
33
|
Therrien C, Sanschagrin F, Palzkill T, Levesque RC. Roles of amino acids 161 to 179 in the PSE-4 omega loop in substrate specificity and in resistance to ceftazidime. Antimicrob Agents Chemother 1998; 42:2576-83. [PMID: 9756758 PMCID: PMC105900 DOI: 10.1128/aac.42.10.2576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PSE-4 enzyme is a prototype carbenicillin-hydrolyzing enzyme exhibiting high activity against penicillins and early cephalosporins. To understand the mechanism that modulates substrate profiles and to verify the ability of PSE-4 to extend its substrate specificity toward expanded-spectrum cephalosporins, we used random replacement mutagenesis to generate six random libraries from amino acids 162 to 179 in the Omega loop. This region is known from studies with TEM-1 to be implicated in substrate specificity. It was found that the mechanism modulating ceftazidime hydrolysis in PSE-4 was different from that in TEM-1. The specificity of class 2c carbenicillin-hydrolyzing enzymes could not be assigned to the Omega loop of PSE-4. Analysis of the percentage of functional enzymes revealed that the hydrolysis of ampicillin was more affected than hydrolysis of carbenicillin by amino acid substitutions at positions 162 to 164 and 165 to 167.
Collapse
Affiliation(s)
- C Therrien
- Microbiologie Moléculaire et Génie des Protéines, Sciences de la Vie et de la Santé, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
34
|
Abstract
The evolution and spread of bacteria resistant to beta-lactam antibiotics has progressed at an alarming rate. Bacteria may acquire resistance to a given drug by mutation of pre-existing genes or by the acquisition of new genes from other bacteria. One ongoing example of these mechanisms is the evolution of new variants of the TEM and SHV beta-lactamases with altered substrate specificity.
Collapse
Affiliation(s)
- J Petrosino
- Dept of Microbiology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
35
|
Poyart C, Mugnier P, Quesne G, Berche P, Trieu-Cuot P. A novel extended-spectrum TEM-type beta-lactamase (TEM-52) associated with decreased susceptibility to moxalactam in Klebsiella pneumoniae. Antimicrob Agents Chemother 1998; 42:108-13. [PMID: 9449269 PMCID: PMC105464 DOI: 10.1128/aac.42.1.108] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Klebsiella pneumoniae NEM865 was isolated from the culture of a stool sample from a patient previously treated with ceftazidime (CAZ). Analysis of this strain by the disk diffusion test revealed synergies between amoxicillin-clavulanate (AMX-CA) and CAZ, AMX-CA and cefotaxime (CTX), AMX-CA and aztreonam (ATM), and more surprisingly, AMX-CA and moxalactam (MOX). Clavulanic acid (CA) decreased the MICs of CAZ, CTX, and MOX, which suggested that NEM865 produced a novel extended-spectrum beta-lactamase. Genetic, restriction endonuclease, and Southern blot analyses revealed that the resistance phenotype was due to the presence in NEM865 of a 13.5-kb mobilizable plasmid, designated pNEC865, harboring a Tn3-like element. Sequence analysis revealed that the blaT gene of pNEC865 differed from blaTEM-1 by three mutations leading to the following amino acid substitutions: Glu104-->Lys, Met182-->Thr, and Gly238-->Ser (Ambler numbering). The association of these three mutations has thus far never been described, and the blaT gene carried by pNEC865 was therefore designated blaTEM-52. The enzymatic parameters of TEM-52 and TEM-3 were found to be very similar except for those for MOX, for which the affinity of TEM-52 (Ki, 0.16 microM) was 10-fold higher than that of TEM-3 (Ki, 1.9 microM). Allelic replacement analysis revealed that the combination of Lys104, Thr182, and Ser238 was responsible for the increase in the MICs of MOX for the TEM-52 producers.
Collapse
Affiliation(s)
- C Poyart
- Laboratoire de Microbiologie, Faculté de Médecine Necker-Enfants Malades, Paris, France.
| | | | | | | | | |
Collapse
|
36
|
Bonomo RA, Knox JR, Rudin SD, Shlaes DM. Construction and characterization of an OHIO-1 beta-lactamase bearing Met69Ile and Gly238Ser mutations. Antimicrob Agents Chemother 1997; 41:1940-3. [PMID: 9303389 PMCID: PMC164040 DOI: 10.1128/aac.41.9.1940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Amino acid changes that influence activity and resistance to beta-lactams and beta-lactamase inhibitors were explored by constructing the Gly238Ser and Met69Ile-Gly238Ser mutants of the OHIO-1 beta-lactamase, a class A enzyme of the SHV family. The Km values of cefotaxime and ceftazidime for OHIO-1 and Met69Ile beta-lactamases were > or = 500 microM. The Km of cefotaxime for the Gly238Ser beta-lactamase was 26 microM, and that of ceftazidime was 105 microM. The Km of cefotaxime for the Met69Ile-Gly238Ser beta-lactamase was 292 microM, and that of ceftazidime was 392 microM. For the beta-lactamase inhibitors clavulanate and sulbactam, the apparent Ki values for the Met69Ile-Gly238Ser enzyme were 0.03 and 0.15 microM, respectively. Relative Vmax values indicate that the Met69Ile-Gly238Ser mutant of the OHIO-1 beta-lactamase possesses cephalosporinase activity similar to that of the Gly238Ser mutant but diminished penicillinase activity. In an Escherichia coli DH5alpha strain that possesses a Met69Ile beta-lactamase of the OHIO-1 family, the added Gly238Ser mutation resulted in a phenotype with qualities that confer resistance to expanded-spectrum cephalosporins and, to a lesser extent, beta-lactamase inhibitors.
Collapse
Affiliation(s)
- R A Bonomo
- Research Service, U.S. Department of Veterans Affairs Medical Center, and Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
37
|
Cantu C, Huang W, Palzkill T. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem 1996; 271:22538-45. [PMID: 8798421 DOI: 10.1074/jbc.271.37.22538] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recently, natural variants of TEM-1 beta-lactamase with amino acid substitutions at residues 237-240 have been identified that have increased hydrolytic activity for extended-spectrum antibiotics such as ceftazidime. To identify the sequence requirements in this region for a given antibiotic, a random library was constructed that contained all possible amino acid combinations for the 3-residue region 237-240 (ABL numbering system) of TEM-1 beta-lactamase. An antibiotic disc diffusion method was used to select mutants with wild-type level activity or greater for the extended-spectrum cephalosporin ceftazidime and the monobactam aztreonam. Mutants that were selected for optimal ceftazidime hydrolysis contained a conserved Ala at position 237, a Ser for Gly substitution at position 238, and a Lys for Glu at position 240. Mutants selected for aztreonam hydrolysis exhibited a Gly for Ala substitution at position 237, a Ser for Gly substitution at position 238, and a Lys/Arg for Glu at position 240. The role of the A237G substitution in differentiating between ceftazidime and aztreonam was further investigated by kinetic analysis of the A237G, E240K, G238S:E240K, and A237G:G238S:E240K enzymes. The A237G single mutant and the G238S:E240K double mutant exhibited increases in catalytic efficiency for both ceftazidime and aztreonam. However, the triple mutant A237G:G238S:E240K, displayed a 12-fold decrease in catalytic efficiency for ceftazidime but a 3-fold increase for aztreonam relative to the G238S:E240K double mutant. Thus, the A237G substitution increases ceftazidime hydrolysis when present alone but antagonizes ceftazidime hydrolysis when it is combined with the G238S:E240K substitutions. In contrast, the A237G substitution acts additively with the G238S:E240K substitutions to increase aztreonam hydrolysis.
Collapse
Affiliation(s)
- C Cantu
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
38
|
Maveyraud L, Saves I, Burlet-Schiltz O, Swarén P, Masson JM, Delaire M, Mourey L, Promé JC, Samama JP. Structural basis of extended spectrum TEM beta-lactamases. Crystallographic, kinetic, and mass spectrometric investigations of enzyme mutants. J Biol Chem 1996; 271:10482-9. [PMID: 8631844 DOI: 10.1074/jbc.271.18.10482] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The E166Y and the E166Y/R164S TEM-1 beta-lactamase mutant enzymes display extended spectrum substrate specificities. Electrospray mass spectrometry demonstrates that, with penicillin G as substrate, the rate-limiting step in catalysis is the hydrolysis of the E166Y acyl-enzyme complex. Comparison of the 1.8-A resolution x-ray structures of the wild-type and of the E166Y mutant enzymes shows that the binding of cephalosporin substrates is improved, in the mutant enzyme, by the enlargement of the substrate binding site. This enlargement is due to the rigid body displacement of 60 residues driven by the movement of the omega-loop. These structural observations strongly suggest that the link between the position of the omega-loop and that of helix H5, plays a central role in the structural events leading to extended spectrum TEM-related enzymes. The increased omega-loop flexibility caused by the R164S mutation, which is found in several natural mutant TEM enzymes, may lead to similar structural effects. Comparisons of the kinetic data of the E166Y, E166Y/R164S, and R164S mutant enzymes supports this hypothesis.
Collapse
Affiliation(s)
- L Maveyraud
- Groupe de Cristallographie Biologique, Laboratoire de Pharmacologie et de Toxicologie Fondamentales, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Petrosino JF, Palzkill T. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol 1996; 178:1821-8. [PMID: 8606154 PMCID: PMC177875 DOI: 10.1128/jb.178.7.1821-1828.1996] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants.
Collapse
Affiliation(s)
- J F Petrosino
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|