1
|
Degano M. Structure, Oligomerization and Activity Modulation in N-Ribohydrolases. Int J Mol Sci 2022; 23:ijms23052576. [PMID: 35269719 PMCID: PMC8910321 DOI: 10.3390/ijms23052576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyzing the hydrolysis of the N-glycosidic bond in nucleosides and other ribosides (N-ribohydrolases, NHs) with diverse substrate specificities are found in all kingdoms of life. While the overall NH fold is highly conserved, limited substitutions and insertions can account for differences in substrate selection, catalytic efficiency, and distinct structural features. The NH structural module is also employed in monomeric proteins devoid of enzymatic activity with different physiological roles. The homo-oligomeric quaternary structure of active NHs parallels the different catalytic strategies used by each isozyme, while providing a buttressing effect to maintain the active site geometry and allow the conformational changes required for catalysis. The unique features of the NH catalytic strategy and structure make these proteins attractive targets for diverse therapeutic goals in different diseases.
Collapse
Affiliation(s)
- Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, via Olgettina 60, 20132 Milano, Italy;
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
2
|
Singh RK, Steyaert J, Versées W. Structural and biochemical characterization of the nucleoside hydrolase from C. elegans reveals the role of two active site cysteine residues in catalysis. Protein Sci 2017; 26:985-996. [PMID: 28218438 DOI: 10.1002/pro.3141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/28/2022]
Abstract
Nucleoside hydrolases (NHs) catalyze the hydrolysis of the N-glycoside bond in ribonucleosides and are found in all three domains of life. Although in parasitic protozoa a role in purine salvage has been well established, their precise function in bacteria and higher eukaryotes is still largely unknown. NHs have been classified into three homology groups based on the conservation of active site residues. While many structures are available of representatives of group I and II, structural information for group III NHs is lacking. Here, we report the first crystal structure of a purine-specific nucleoside hydrolase belonging to homology group III from the nematode Caenorhabditis elegans (CeNH) to 1.65Å resolution. In contrast to dimeric purine-specific NHs from group II, CeNH is a homotetramer. A cysteine residue that characterizes group III NHs (Cys253) structurally aligns with the catalytic histidine and tryptophan residues of group I and group II enzymes, respectively. Moreover, a second cysteine (Cys42) points into the active site of CeNH. Substrate docking shows that both cysteine residues are appropriately positioned to interact with the purine ring. Site-directed mutagenesis and kinetic analysis proposes a catalytic role for both cysteines residues, with Cys253 playing the most prominent role in leaving group activation.
Collapse
Affiliation(s)
- Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Figueroa-Villar JD, Sales EM. The importance of nucleoside hydrolase enzyme (NH) in studies to treatment of Leishmania: A review. Chem Biol Interact 2016; 263:18-27. [PMID: 27939867 DOI: 10.1016/j.cbi.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 11/16/2022]
Abstract
Leishmania is a genus of trypanosomes, which are responsible for leishmaniasis disease, a major trypanosome infection in humans. In recent years, published studies have shown that the search for new drugs for Leishmania treatments has intensified. Through technique modeling it has been possible to develop new compounds, which act as nucleoside hydrolase (NH) inhibitors. The effect of these enzymes is the hydrolysis of certain RNA nucleotides, which include uridine and inosine, necessary for the protozoa to transform certain nucleosides obtained from infected individuals into nucleobases for the preparation of their DNA. The obtention of NH inhibitors is very important to eliminate leishmaniasis disease in infected individuals. The aim of this study is to discuss the research and development of new agents for the treatment of Leishmania, and to stimulate the formulation of new NH inhibitors.
Collapse
Affiliation(s)
- José D Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil.
| | - Edijane M Sales
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Kopečná M, Blaschke H, Kopečný D, Vigouroux A, Končitíková R, Novák O, Kotland O, Strnad M, Moréra S, von Schwartzenberg K. Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides. PLANT PHYSIOLOGY 2013; 163:1568-83. [PMID: 24170203 PMCID: PMC3850210 DOI: 10.1104/pp.113.228775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.
Collapse
|
5
|
Wink PL, Sanchez Quitian ZA, Rosado LA, Rodrigues VDS, Petersen GO, Lorenzini DM, Lipinski-Paes T, Saraiva Macedo Timmers LF, de Souza ON, Basso LA, Santos DS. Biochemical characterization of recombinant nucleoside hydrolase from Mycobacterium tuberculosis H37Rv. Arch Biochem Biophys 2013; 538:80-94. [DOI: 10.1016/j.abb.2013.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/17/2013] [Indexed: 11/25/2022]
|
6
|
Giannese F, Berg M, Van der Veken P, Castagna V, Tornaghi P, Augustyns K, Degano M. Structures of purine nucleosidase from Trypanosoma brucei bound to isozyme-specific trypanocidals and a novel metalorganic inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1553-66. [PMID: 23897478 DOI: 10.1107/s0907444913010792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/20/2013] [Indexed: 11/11/2022]
Abstract
Sleeping sickness is a deadly disease that primarily affects sub-Saharan Africa and is caused by protozoan parasites of the Trypanosoma genus. Trypanosomes are purine auxotrophs and their uptake pathway has long been appreciated as an attractive target for drug design. Recently, one tight-binding competitive inhibitor of the trypanosomal purine-specific nucleoside hydrolase (IAGNH) showed remarkable trypanocidal activity in a murine model of infection. Here, the enzymatic characterization of T. brucei brucei IAGNH is presented, together with its high-resolution structures in the unliganded form and in complexes with different inhibitors, including the trypanocidal compound UAMC-00363. A description of the crucial contacts that account for the high-affinity inhibition of IAGNH by iminoribitol-based compounds is provided and the molecular mechanism underlying the conformational change necessary for enzymatic catalysis is identified. It is demonstrated for the first time that metalorganic complexes can compete for binding at the active site of nucleoside hydrolase enzymes, mimicking the positively charged transition state of the enzymatic reaction. Moreover, we show that divalent metal ions can act as noncompetitive IAGNH inhibitors, stabilizing a nonproductive conformation of the catalytic loop. These results open a path for rational improvement of the potency and the selectivity of existing compounds and suggest new scaffolds that may be used as blueprints for the design of novel antitrypanosomal compounds.
Collapse
Affiliation(s)
- Francesca Giannese
- Biocrystallography Unit, Department of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Minici C, Cacciapuoti G, De Leo E, Porcelli M, Degano M. New determinants in the catalytic mechanism of nucleoside hydrolases from the structures of two isozymes from Sulfolobus solfataricus. Biochemistry 2012; 51:4590-9. [PMID: 22551416 DOI: 10.1021/bi300209g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purine- and pyrimidine-specific nucleoside hydrolases (NHs) from the archaeon Sulfolobus solfataricus participate in the fundamental pathway of nucleotide catabolism and function to maintain adequate levels of free nitrogenous bases for cellular function. The two highly homologous isozymes display distinct specificities toward nucleoside substrates, and both lack the amino acids employed for activation of the leaving group in the hydrolytic reaction by the NHs characterized thus far. We determined the high-resolution crystal structures of the purine- and pyrimidine-specific NHs from S. solfataricus to reveal that both enzymes belong to NH structural homology group I, despite the different substrate specificities. A Na(+) ion is bound at the active site of the pyrimidine-specific NH instead of the prototypical Ca(2+), delineating a role of the metals in the catalytic mechanism of NHs in the substrate binding rather than nucleophile activation. A conserved His residue, which regulates product release in other homologous NHs, provides crucial interactions for leaving group activation in the archaeal isozymes. Modeling of the enzyme-substrate interactions suggests that steric exclusion and catalytic selection underlie the orthogonal base specificity of the two isozymes.
Collapse
Affiliation(s)
- Claudia Minici
- Biocrystallography Unit, Department of Immunology, Transplantation, and Infectious Diseases, Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
8
|
Wu R, Gong W, Liu T, Zhang Y, Cao Z. QM/MM Molecular Dynamics Study of Purine-Specific Nucleoside Hydrolase. J Phys Chem B 2012; 116:1984-91. [DOI: 10.1021/jp211403j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruibo Wu
- School of
Pharmaceutical Sciences,
East Campus, Sun Yat-sen University, Guangzhou
510006, China
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Wengjin Gong
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Ting, Liu
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Zexing Cao
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Vandemeulebroucke A, Minici C, Bruno I, Muzzolini L, Tornaghi P, Parkin DW, Versées W, Steyaert J, Degano M. Structure and Mechanism of the 6-Oxopurine Nucleosidase from Trypanosoma brucei brucei,. Biochemistry 2010; 49:8999-9010. [DOI: 10.1021/bi100697d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- An Vandemeulebroucke
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Claudia Minici
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Ilaria Bruno
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Laura Muzzolini
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Paola Tornaghi
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - David W. Parkin
- Department of Chemistry, Adelphi University, Garden City, New York 11530-0701
| | - Wim Versées
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Massimo Degano
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Garau G, Muzzolini L, Tornaghi P, Degano M. Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor. BMC STRUCTURAL BIOLOGY 2010; 10:14. [PMID: 20529317 PMCID: PMC2898832 DOI: 10.1186/1472-6807-10-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 06/08/2010] [Indexed: 01/06/2023]
Abstract
Background Pyrimidine-preferring N-ribohydrolases (CU-NHs) are a class of Ca2+-dependent enzymes that catalyze the hydrolytic cleavage of the N-glycosidic bond in pyrimidine nucleosides. With the exception of few selected organisms, their physiological relevance in prokaryotes and eukaryotes is yet under investigation. Results Here, we report the first crystal structure of a CU-NH bound to a competitive inhibitor, the complex between the Escherichia coli enzyme RihA bound to 3, 4-diaminophenyl-iminoribitol (DAPIR) to a resolution of 2.1 Å. The ligand can bind at the active site in two distinct orientations, and the stabilization of two flexible active site regions is pivotal to establish the interactions required for substrate discrimination and catalysis. Conclusions A comparison with the product-bound RihA structure allows a rationalization of the structural rearrangements required for an enzymatic catalytic cycle, highlighting a substrate-assisted cooperative motion, and suggesting a yet overlooked role of the conserved His82 residue in modulating product release. Differences in the structural features of the active sites in the two homologous CU-NHs RihA and RihB from E. coli provide a rationale for their fine differences in substrate specificity. These new findings hint at a possible role of CU-NHs in the breakdown of modified nucleosides derived from RNA molecules.
Collapse
Affiliation(s)
- Gianpiero Garau
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases - Scientific Institute S. Raffaele, via Olgettina 58, 20132 Milan - Italy
| | | | | | | |
Collapse
|
11
|
Zukerman-Schpector J, Caracelli I, Vega-Teijido M, Garcia ALL, Costenaro ER, Correia CRD. Molecular structure of two C-aryl-iminocyclitols studied by X-ray and ab initiocalculations. Z KRIST-CRYST MATER 2009. [DOI: 10.1524/zkri.220.1.45.58888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract(1), C18H26N2O7,Mr= 382.41,P212121,a= 9.7215(9),b= 10.687(1),c= 18.399(2) Å,V= 1911.6(3) Å3,Z= 4,R1= 0.0395. (2), C12H18ClNO4,Mr= 275.72,P21,a= 10.431(1),b= 6.9223(8),c= 18.043(2) Å,β= 102.085(7)°,V= 1273.9(2) Å3,Z= 4,R1= 0.0578. The five membered ring is in a twist conformation in (1) and in the two independent molecules of (2) in an envelope conformation. In both compounds the hydroxyl moieties are involved in hydrogen bonds. The compounds were studied by HF/6-31G** computations.
Collapse
|
12
|
Versées W, Goeminne A, Berg M, Vandemeulebroucke A, Haemers A, Augustyns K, Steyaert J. Crystal structures of T. vivax nucleoside hydrolase in complex with new potent and specific inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:953-60. [DOI: 10.1016/j.bbapap.2009.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/02/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
13
|
Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization. Arch Biochem Biophys 2008; 483:55-65. [PMID: 19121283 DOI: 10.1016/j.abb.2008.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/23/2022]
Abstract
We report the biochemical and structural characterization of the purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus (SsIAG-NH). SsIAG-NH is a homodimer of 70kDa specific for adenosine, guanosine and inosine. SsIAG-NH is highly thermophilic and is characterized by extreme thermodynamic stability (T(m), 107 degrees C), kinetic stability and remarkable resistance to guanidinium chloride-induced unfolding. A disulfide bond that, on the basis of SDS-PAGE is positioned intersubunits, plays an important role in thermal stability. SsIAG-NH shares 43% sequence identity with the homologous pyrimidine-specific nucleoside hydrolase from S. solfataricus (SsCU-NH). The comparative sequence alignment of SsIAG-NH, SsCU-NH, purine non-specific nucleoside hydrolase from Crithidia fasciculata and purine-specific nucleoside hydrolase from Trypanosoma vivax shows that, only few changes in the base pocket are responsible for different substrate specificity of two S. solfataricus enzymes. The structure of SsIAG-NH predicted by homology modeling allows us to infer the role of specific residues in substrate specificity and thermostability.
Collapse
|
14
|
Iovane E, Giabbai B, Muzzolini L, Matafora V, Fornili A, Minici C, Giannese F, Degano M. Structural Basis for Substrate Specificity in Group I Nucleoside Hydrolases,. Biochemistry 2008; 47:4418-26. [DOI: 10.1021/bi702448s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Iovane
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Barbara Giabbai
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Laura Muzzolini
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Vittoria Matafora
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Arianna Fornili
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Claudia Minici
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Francesca Giannese
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
15
|
Porcelli M, Concilio L, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G. Pyrimidine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus- biochemical characterization and homology modeling. FEBS J 2008; 275:1900-14. [DOI: 10.1111/j.1742-4658.2008.06348.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Kim HS, Lee JH, Lee WS, Bang WG. Genes encoding ribonucleoside hydrolase 1 and 2 from Corynebacterium ammoniagenes. MICROBIOLOGY-SGM 2006; 152:1169-1177. [PMID: 16549679 DOI: 10.1099/mic.0.28703-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two kinds of nucleoside hydrolases (NHs) encoded by rih1 and rih2 were cloned from Corynebacterium ammoniagenes using deoD- and gsk-defective Escherichia coli. Sequence analysis revealed that NH 1 was a protein of 337 aa with a deduced molecular mass of 35,892 Da, whereas NH 2 consisted of 308 aa with a calculated molecular mass of 32 310 Da. Experiments with crude extracts of IPTG-induced E. coli CGSC 6885(pTNU23) and 6885(pTNI12) indicated that the Rih1 enzyme could catalyse the hydrolysis of uridine and cytidine and showed pyrimidine-specific ribonucleoside hydrolase activity. Rih2 was able to hydrolyse both purine and pyrimidine ribonucleosides with the following order of activity -- inosine>adenosine>uridine>guanosine>xanthosine>cytidine -- and was classified in the non-specific NHs family. rih1 and rih2 deletion mutants displayed a decrease in cell growth on minimal medium supplemented with pyrimidine and purine/pyrimidine nucleosides, respectively, compared with the wild-type strain. Growth of each mutant was substantially complemented by introducing rih1 and rih2, respectively. Furthermore, disruption of both rih1 and rih2 led to the inability of the mutant to utilize purine and pyrimidine nucleosides as sole carbon source on minimal medium. These results indicated that rih1 and rih2 play major roles in the salvage pathways of nucleosides in this micro-organism.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- R&D Center for Bioproducts, CJ Corp., Seoul 157-724, Korea
| | - Jin-Ho Lee
- R&D Center for Bioproducts, CJ Corp., Seoul 157-724, Korea
| | - Won-Sik Lee
- R&D Center for Bioproducts, CJ Corp., Seoul 157-724, Korea
| | - Won-Gi Bang
- Department of Biotechnology and Genetic Engineering, College of Life and Environmental Sciences, Korea University, Anam-dong, Seoul 136-701, Korea
| |
Collapse
|
17
|
Szuwart M, Starzyńska E, Pietrowska-Borek M, Guranowski A. Calcium-stimulated guanosine--inosine nucleosidase from yellow lupin (Lupinus luteus). PHYTOCHEMISTRY 2006; 67:1476-85. [PMID: 16820181 DOI: 10.1016/j.phytochem.2006.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 05/10/2023]
Abstract
Guanosine-inosine-preferring nucleoside N-ribohydrolase has been purified to homogeneity from yellow lupin (Lupinus luteus) seeds by ammonium sulfate fractionation, ion-exchange chromatography and gel filtration. The enzyme functions as a monomeric, 80kDa polypeptide, most effectively between pH 4.7 and 5.5. Of various mono- and divalent cations tested, Ca(2+) appeared to stimulate enzyme activity. The nucleosidase was activated 6-fold by 2mM exogenous CaCl(2) or Ca(NO(3))(2), with K(a)=0.5mM (estimated for CaCl(2)). The K(m) values estimated for guanosine and inosine were 2.7+/-0.3 microM. Guanosine was hydrolyzed 12% faster than inosine while adenosine and xanthosine were poor substrates. 2'-Deoxyguanosine, 2'-deoxyinosine, 2'-methylguanosine, pyrimidine nucleosides and 5'-GMP were not hydrolyzed. However, the enzyme efficiently liberated the corresponding bases from synthetic nucleosides, such as 1-methylguanosine, 7-methylguanosine, 1-N(2)-ethenoguanosine and 1-N(2)-isopropenoguanosine, but hydrolyzed poorly the ribosides of 6-methylaminopurine and 2,6-diaminopurine. MnCl(2) or ZnCl(2) inhibited the hydrolysis of guanosine with I(50) approximately 60 microM. Whereas 2'-deoxyguanosine, 2'-methylguanosine, adenosine, as well as guanine were competitive inhibitors of this reaction (K(i) values were 1.5, 3.6, 21 and 9.7 microM, respectively), hypoxanthine was a weaker inhibitor (K(i)=64 microM). Adenine, ribose, 2-deoxyribose, 5'-GMP and pyrimidine nucleosides did not inhibit the enzyme. The guanosine-inosine hydrolase activity occurred in all parts of lupin seedlings and in cotyledons it increased up to 5-fold during seed germination, reaching maximum in the third/fourth day. The lupin nucleosidase has been compared with other nucleosidases.
Collapse
Affiliation(s)
- Maciej Szuwart
- Department of Biochemistry and Biotechnology, Agricultural University, 35 Wołyńska Street, 60-637 Poznań, Poland
| | | | | | | |
Collapse
|
18
|
Muzzolini L, Versées W, Tornaghi P, Van Holsbeke E, Steyaert J, Degano M. New insights into the mechanism of nucleoside hydrolases from the crystal structure of the Escherichia coli YbeK protein bound to the reaction product. Biochemistry 2006; 45:773-82. [PMID: 16411753 DOI: 10.1021/bi0511991] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleoside hydrolases (NHs) are enzymes that catalyze the excision of the N-glycosidic bond in nucleosides to allow recycling of the nitrogenous bases. The fine details of the catalytic mechanism and the structural features imposing the substrate specificity of the various members of the NH family are still debated. Here we present the functional characterization of the Escherichia coli YbeK (RihA) protein as a pyrimidine nucleoside-preferring NH and its first crystal structure to 1.8 A resolution. The enzyme active site is occupied by either the alpha or beta anomer of ribose and provides the first structural description of the binding of the NH reaction product. While the amino acid residues involved in ribosyl binding are strictly conserved in pyrimidine-specific NHs, the residues involved in specific interactions with the nitrogenous bases differ considerably. Further comparison of the active site architecture of YbeK with the related NHs establishes structural determinants involved in triggering the conformational transition between the open and closed structures and suggests a mechanism for product release.
Collapse
Affiliation(s)
- Laura Muzzolini
- Biocrystallography Unit, DIBIT Scientific Institute S. Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Hunt C, Gillani N, Farone A, Rezaei M, Kline PC. Kinetic isotope effects of nucleoside hydrolase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:140-9. [PMID: 16027052 DOI: 10.1016/j.bbapap.2005.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/01/2005] [Accepted: 06/02/2005] [Indexed: 11/25/2022]
Abstract
rihC is one of a group of three ribonucleoside hydrolases found in Escherichia coli (E. coli). The enzyme catalyzes the hydrolysis of selected nucleosides to ribose and the corresponding base. A family of Vmax/Km kinetic isotope effects using uridine labeled with stable isotopes, such as 2H, 13C, and 15N, were determined by liquid chromatography/mass spectrometry (LC/MS). The kinetic isotope effects were 1.012+/-0.006, 1.027+/-0.005, 1.134+/-0.007, 1.122+/-0.008, and 1.002+/-0.004 for [1'-13C], [1-15N], [1'-2H], [2'-2H], and [5'-2H2] uridine, respectively. A transition state based upon a bond-energy bond-order vibrational analysis (BEBOVIB) of the observed kinetic isotope effects is proposed. The main features of this transition state are activation of the heterocyclic base by protonation of/or hydrogen bonding to O2, an extensively broken C-N glycosidic bond, formation of an oxocarbenium ion in the ribose ring, C3'-exo ribose ring conformation, and almost no bond formation to the attacking nucleophile. The proposed transition state for the prokaryotic E. coli nucleoside hydrolase is compared to that of a similar enzyme isolated from Crithidia fasciculata (C. fasciculata).
Collapse
Affiliation(s)
- Cindy Hunt
- Department of Chemistry, Middle Tennessee State University, Box 68, Murfreesboro, TN 37132, USA
| | | | | | | | | |
Collapse
|
20
|
Mazumder-Shivakumar D, Bruice TC. Computational Study of IAG-Nucleoside Hydrolase: Determination of the Preferred Ground State Conformation and the Role of Active Site Residues. Biochemistry 2005; 44:7805-17. [PMID: 15909995 DOI: 10.1021/bi047394h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of action of inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH) has been investigated by long-term molecular dynamics (MD) simulation in TIP3P water using stochastic boundary conditions. Special attention has been given to the role of leaving group pocket residues and conformation of the bound substrate at the active site of IAG-NH. We also describe the positioning of the residues of an important flexible loop at the active site, which was previously unobservable by X-ray crystallography due to high B-factors. Five MD simulations have been performed with the Enzyme x Substrate complexes: Enzyme x anti-Adenosine with Asp40-COOH [E(40H) x Ade(a)], Enzyme x anti-Adenosine with Asp40-COO- [E(40) x Ade(a)], Enzyme x syn-Adenosine with Asp40-COOH [E(40H) x Ade(s)], Enzyme x syn-Adenosine with Asp40-COO- [E(40) x Ade(s)], and Enzyme x anti-Inosine with Asp40-COO- [E(40) x Ino(a)]. Overall, the structures generated from the MD simulation of E(40H) x Ade(s) preserve the catalytically important hydrogen bonds as well as electrostatic and hydrophobic interactions to provide a plausible catalytic structure. When deprotonated Asp40 (Asp4-COO-) is present, the active site is open to water solvent which interferes with the base stacking between Trp83 and nucleobase. A calculation using Poisson-Boltzmann equation module supports that Asp40 indeed has an elevated pK(app). Solvent accessible surface area (SASA) calculations on all the five MD structures shows that systems with protonated Asp40, namely, E(40H) x Ade(a) and E(40H) x Ade(s), have zero SASA. It is found that a water molecule is hydrogen-bonded to the N7 of the nucleobase and is probably the essential general acid to protonate the departing nucleobase anion. The N7-bonded water is in turn hydrogen-bonded to waters in a channel, held in place by the residues of the flexible loop, Tyr257, His247, and Cys245. Using normal-mode analysis with elastic network model, we find that the flexible loop explores a conformational space much larger than in the MD trajectory, leading to a "gating"-like motion with respect to the active site.
Collapse
|
21
|
Loverix S, Geerlings P, McNaughton M, Augustyns K, Vandemeulebroucke A, Steyaert J, Versées W. Substrate-assisted Leaving Group Activation in Enzyme-catalyzed N-Glycosidic Bond Cleavage. J Biol Chem 2005; 280:14799-802. [DOI: 10.1074/jbc.m413231200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Hansen MR, Dandanell G. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium. Biochim Biophys Acta Gen Subj 2005; 1723:55-62. [PMID: 15784179 DOI: 10.1016/j.bbagen.2005.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/14/2005] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
Salmonella enterica serovar Typhimurium normally salvage nucleobases and nucleosides by the action of nucleoside phosphorylases and phosphoribosyltransferases. In contrast to Escherichia coli, which catabolizes xanthosine by xanthosine phosphorylase (xapA), Salmonella cannot grow on xanthosine as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 kDa that can hydrolyze xanthosine, inosine, adenosine and uridine with similar catalytic efficiency (k(cat)/Km=1 to 4 x 10(4) M(-1)s(-1)). Cytidine and guanosine is hydrolyzed with approximately 10-fold lower efficiency (k(cat)/Km=0.7 to 1.2 x 10(3) M(-1)s(-1)) while RihC is unable to hydrolyze the deoxyribonucleosides thymidine and deoxyinosine. The Km for all nucleosides except adenosine is in the mM range. The pH optimum is different for inosine and xanthosine and the hydrolytic capacity (k(cat)/Km) is 5-fold higher for xanthosine than for inosine at pH 6.0 while they are similar at pH 7.2, indicating that RihC most likely prefers the neutral form of xanthosine.
Collapse
Affiliation(s)
- Michael Riis Hansen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83 H, 1307 Copenhagen K, Denmark
| | | |
Collapse
|
23
|
Giabbai B, Degano M. Crystal Structure to 1.7 Å of the Escherichia coli Pyrimidine Nucleoside Hydrolase YeiK, a Novel Candidate for Cancer Gene Therapy. Structure 2004; 12:739-49. [PMID: 15130467 DOI: 10.1016/j.str.2004.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 02/18/2004] [Accepted: 03/10/2004] [Indexed: 11/18/2022]
Abstract
Enzymes with nucleoside hydrolase (NH) activity are crucial for salvaging nucleic acid components in purine auxotrophic protozoan parasites, but are also present in prokaryotes and higher eukaryotes. Here we analyze the distribution of genes encoding for putative NH proteins and characterize the yeiK gene product from Escherichia coli as a pyrimidine-specific NH. The crystal structure of YeiK to 1.7 A defines the structural basis for its substrate specificity and identifies residues involved in the catalytic mechanism that differ from both nonspecific and purine-specific NHs. Large differences in the tetrameric quaternary structure compared to nonspecific protozoan NHs are brought forth by minor differences in the interacting surfaces. The first structural and functional characterization of a nonparasitic, pyrimidine nucleoside-specific NH suggests a possible role for these enzymes in the metabolism of tRNA nucleosides. The high catalytic efficiency of YeiK toward 5-fluorouridine could be exploited for suicide gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Barbara Giabbai
- Biocrystallography Unit, DIBIT, San Raffaele Scientific Institute, via Olgettina 58, I-20132 Milan, Italy
| | | |
Collapse
|
24
|
Evans GB. The Synthesis of N-Ribosyl Transferase Inhibitors Based on a Transition State Blueprint. Aust J Chem 2004. [DOI: 10.1071/ch04112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A quarter of a century ago transition state analysis and transition state analogue design promised the prospect of extraordinarily potent enzyme inhibitors. The present overview describes the transition state analysis of a variety of N-ribosyl transferases, the design and synthesis of extremely powerful transition state analogue inhibitors of these nucleoside processing enzymes, and their current therapeutic uses and potentials.
Collapse
|
25
|
Abstract
Nucleoside hydrolases cleave the N-glycosidic bond of ribonucleosides. Because of their vital role in the protozoan purine salvage pathway, nucleoside hydrolases from parasitic protozoa in particular have been studied extensively by X-ray crystallography, kinetic methods and site-directed mutagenesis. An elaborate network of conserved interactions between the metalloenzyme and the ribose enables steric and electrostatic stabilisation of the oxocarbenium-ion-like transition state. Activation of the leaving group by protonation before the formation of the transition state is a recurring catalytic strategy of enzymes that cleave N-glycosidic bonds. However, the mechanisms underlying leaving group activation are still the subject of debate for the nucleoside hydrolases.
Collapse
Affiliation(s)
- Wim Versées
- Department of Ultrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | | |
Collapse
|
26
|
Severino EA, Costenaro ER, Garcia ALL, Correia CRD. Probing the stereoselectivity of the Heck arylation of endocyclic enecarbamates with diazonium salts. Concise syntheses of (2S,5R)-phenylproline methyl ester and Schramm's C-azanucleoside. Org Lett 2003; 5:305-8. [PMID: 12556178 DOI: 10.1021/ol027268a] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] The diastereoselectivity of the Heck arylation of several chiral, nonracemic, five-membered endocyclic enecarbamates with aryldiazonium tetrafluoroborates was evaluated. The cis selectivity observed for some enecarbamates bearing coordinating groups was explored in the concise synthesis of the (2S,5R)-(+)-phenylproline methyl ester, a scaffold for the nonpeptide cholecystokinin antagonist (+)-RP 66803, and in the synthesis of Schramm's potent antiprotozoan C-azanucleoside.
Collapse
Affiliation(s)
- Elias A Severino
- Instituto de Química, Universidade Estadual de Campinas, C P 6154, 13084-971, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
27
|
Ribeiro JMC, Valenzuela JG. The salivary purine nucleosidase of the mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:13-22. [PMID: 12459196 DOI: 10.1016/s0965-1748(02)00078-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA clone originating from adult female Aedes aegypti mosquitoes was found with substantial similarity to nucleosidases of the EC 3.2.2.1 enzyme class. Although this type of enzyme is unusual in animals, abundant enzyme activity was found in salivary homogenates of this mosquito, but not in salivary homogenates of the mosquitoes Anopheles gambiae and Culex quinquefasciatus, or the sand fly Lutzomyia longipalpis. Aedes salivary homogenate hydrolyses inosine and guanosine to hypoxanthine and xanthine plus the ribose moiety, but does not hydrolyse the pyrimidines uridine and cytidine, thus characterizing the presence of a purine nucleosidase activity. The enzyme is present in oil-induced saliva, indicating that it is secreted. Male Ae. aegypti salivary gland homogenates (SGH) have very low purine nucleosidase activity, suggesting that the enzyme plays a role in mosquito blood feeding. A novel isocratic HPLC method to separate nucleosides and their bases is described.
Collapse
Affiliation(s)
- José M C Ribeiro
- Section of Medical Entomology, Laboratory of Parasitic Diseases, Building 4, Room 126, 4 Center Drive, MSC 0425, NIH, MD 20892-0425, Bethesda, USA.
| | | |
Collapse
|
28
|
Versées W, Decanniere K, Van Holsbeke E, Devroede N, Steyaert J. Enzyme-substrate interactions in the purine-specific nucleoside hydrolase from Trypanosoma vivax. J Biol Chem 2002; 277:15938-46. [PMID: 11854281 DOI: 10.1074/jbc.m111735200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae and are considered as targets for drug design. We previously reported the first x-ray structure of an inosine-adenosine-guanosine preferring nucleoside hydrolase (IAG-NH) from Trypanosoma vivax (). Here we report the 2.0-A crystal structure of the slow D10A mutant in complex with the inhibitor 3-deaza-adenosine and the 1.6-A crystal structure of the same enzyme in complex with a genuine substrate inosine. The enzyme-substrate complex shows the substrate bound to the enzyme in a different conformation from 3-deaza-adenosine and provides a snapshot along the reaction coordinate of the enzyme-catalyzed reaction. The chemical groups on the substrate important for binding and catalysis are mapped. The 2'-OH, 3'-OH, and 5'-OH contribute 4.6, 7.5, and 5.4 kcal/mol to k(cat)/K(m), respectively. Specific interactions with the exocyclic groups on the purine ring are not required for catalysis. Site-directed mutagenesis indicates that the purine specificity of the IAG-NHs is imposed by a parallel aromatic stacking interaction involving Trp(83) and Trp(260). The pH profiles of k(cat) and k(cat)/K(m) indicate the existence of one or more proton donors, possibly involved in leaving group activation. However, mutagenesis of the active site residues around the nucleoside base and an alanine scan of a flexible loop near the active site fail to identify this general acid. The parallel aromatic stacking seems to provide the most likely alternative mechanism for leaving group activation.
Collapse
Affiliation(s)
- Wim Versées
- Department of Ultrastructure, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium
| | | | | | | | | |
Collapse
|
29
|
Mitterbauer R, Karl T, Adam G. Saccharomyces cerevisiae URH1 (encoding uridine-cytidine N-ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase. Appl Environ Microbiol 2002; 68:1336-43. [PMID: 11872485 PMCID: PMC123776 DOI: 10.1128/aem.68.3.1336-1343.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside hydrolases catalyze the cleavage of N-glycosidic bonds in nucleosides, yielding ribose and the respective bases. While nucleoside hydrolase activity has not been detected in mammalian cells, many protozoan parasites rely on nucleoside hydrolase activity for salvage of purines and/or pyrimidines from their hosts. In contrast, uridine phosphorylase is the key enzyme of pyrimidine salvage in mammalian hosts and many other organisms. We show here that the open reading frame (ORF) YDR400w of Saccharomyces cerevisiae carries the gene encoding uridine hydrolase (URH1). Disruption of this gene in a conditionally pyrimidine-auxotrophic S. cerevisiae strain, which is also deficient in uridine kinase (urk1), leads to the inability of the mutant to utilize uridine as the sole source of pyrimidines. Protein extracts of strains overexpressing YDR400w show increased hydrolase activity only with uridine and cytidine, but no activity with inosine, adenosine, guanosine, and thymidine as substrates, demonstrating that ORF YDR400w encodes a uridine-cytidine N-ribohydrolase. Expression of a homologous cDNA from a protozoan parasite (Crithidia fasciculata) in a ura3 urk1 urh1 mutant is sufficient to restore growth on uridine. Growth can also be restored by expression of a human uridine phosphorylase cDNA. Yeast strains expressing protozoan N-ribohydrolases or host phosphorylases could therefore become useful tools in drug screens for specific inhibitors.
Collapse
Affiliation(s)
- Rudolf Mitterbauer
- Center of Applied Genetics, University of Agricultural Sciences, Muthgasse 18/5/66, A-1190 Vienna, Austria
| | | | | |
Collapse
|
30
|
Cui L, Rajasekariah GR, Martin SK. A nonspecific nucleoside hydrolase from Leishmania donovani: implications for purine salvage by the parasite. Gene 2001; 280:153-62. [PMID: 11738828 DOI: 10.1016/s0378-1119(01)00768-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to their mammalian hosts, protozoan parasites do not synthesize purines de novo, but depend on preformed nucleotides that they purportedly obtain by salvage pathways. Nucleoside hydrolases may play a crucial role in that salvage process. By screening Leishmania donovani libraries with polyclonal antibodies against promastigote soluble exo-antigens, we have identified a cDNA encoding a protein with significant homology to nonspecific and uridine-inosine-preferring nucleoside hydrolases. Sequence comparison demonstrated that all the residues involved in Ca(2+)-binding and substrate recognition in the active site are conserved among the characterized protozoan nucleoside hydrolases. Genomic analysis suggests that it is a single copy gene in L. donovani, and its homologues are present in members representing other Leishmania species complexes. Both Northern blot and immunoblot analyses indicate that it is constitutively expressed in L. donovani promastigotes. The recombinant enzyme overexpressed in and purified from bacteria showed significant activity with all naturally occurring purine and pyrimidine nucleosides, and efficient utilization of p-nitrophenyl-beta-D-ribofuranoside as a substrate. Altogether, the sequence comparison and substrate specificity data identify this L. donovani nucleoside hydrolase as a nonspecific nucleoside hydrolase. Further, the nucleoside hydrolase was localized to specific foci in L. donovani promastigotes by immunofluorescent assays. Although the conservation of the nucleoside hydrolases among protozoan parasites offers promise for the design of broad-spectrum anti-parasitic drugs, the existence of multiple and distinct nucleoside hydrolases in a single species demands special consideration.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Protozoan/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Enzymologic
- Leishmania donovani/enzymology
- Leishmania donovani/genetics
- Molecular Sequence Data
- N-Glycosyl Hydrolases/genetics
- N-Glycosyl Hydrolases/metabolism
- Purines/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- L Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| | | | | |
Collapse
|
31
|
Versées W, Decanniere K, Pellé R, Depoorter J, Brosens E, Parkin DW, Steyaert J. Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax. J Mol Biol 2001; 307:1363-79. [PMID: 11292348 DOI: 10.1006/jmbi.2001.4548] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purine salvage pathway of parasitic protozoa is currently considered as a target for drug development because these organisms cannot synthesize purines de novo. Insight into the structure and mechanism of the involved enzymes can aid in the development of potent inhibitors, leading to new curative drugs. Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae, and they are especially attractive because they have no equivalent in mammalian cells. We cloned, expressed and purified a nucleoside hydrolase from Trypanosoma vivax. The substrate activity profile establishes the enzyme to be a member of the inosine-adenosine-guanosine-preferring nucleoside hydrolases (IAG-NH). We solved the crystal structure of the enzyme at 1.6 A resolution using MAD techniques. The complex of the enzyme with the substrate analogue 3-deaza-adenosine is presented. These are the first structures of an IAG-NH reported in the literature. The T. vivax IAG-NH is a homodimer, with each subunit consisting of ten beta-strands, 12 alpha-helices and three small 3(10)-helices. Six of the eight strands of the central beta-sheet form a motif resembling the Rossmann fold. Superposition of the active sites of this IAG-NH and the inosine-uridine-preferring nucleoside hydrolase (IU-NH) of Crithidia fasciculata shows the molecular basis of the different substrate specificity distinguishing these two classes of nucleoside hydrolases. An "aromatic stacking network" in the active site of the IAG-NH, absent from the IU-NH, imposes the purine specificity. Asp10 is the proposed general base in the reaction mechanism, abstracting a proton from a nucleophilic water molecule. Asp40 (replaced by Asn39 in the IU-NH) is positioned appropriately to act as a general acid and to protonate the purine leaving group. The second general acid, needed for full enzymatic activity, is probably part of a flexible loop located in the vicinity of the active site.
Collapse
Affiliation(s)
- W Versées
- Dienst Ultrastructuur, Vlaams Interuniversitair instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, Sint-Genesius-Rode, B-1640, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Petersen C, Møller LB. The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. J Biol Chem 2001; 276:884-94. [PMID: 11027694 DOI: 10.1074/jbc.m008300200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyrimidine-requiring cdd mutants of Escherichia coli deficient in cytidine deaminase utilize cytidine as a pyrimidine source by an alternative pathway. This has been presumed to involve phosphorylation of cytidine to CMP by cytidine/uridine kinase and subsequent hydrolysis of CMP to cytosine and ribose 5-phosphate by a putative CMP hydrolase. Here we show that cytidine, in cdd strains, is converted directly to cytosine and ribose by a ribonucleoside hydrolase encoded by the previously uncharacterized gene ybeK, which we have renamed rihA. The RihA enzyme is homologous to the products of two unlinked genes, yeiK and yaaF, which have been renamed rihB and rihC, respectively. The RihB enzyme was shown to be a pyrimidine-specific ribonucleoside hydrolase like RihA, whereas RihC hydrolyzed both pyrimidine and purine ribonucleosides. The physiological function of the ribonucleoside hydrolases in wild-type E. coli strains is enigmatic, as their activities are paralleled by the phosphorolytic activities of the nucleoside phosphorylases, and a triple mutant lacking all three hydrolytic activities grew normally. Furthermore, enzyme assays and lacZ gene fusion analysis indicated that rihB was essentially silent unless activated by mutation, whereas rihA and rihC were poorly expressed in glucose medium due to catabolite repression.
Collapse
Affiliation(s)
- C Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK1307 Copenhagen K, Denmark.
| | | |
Collapse
|
33
|
Synthesis of Transition State Analogue Inhibitors for Purine Nucleoside Phosphorylase and N-Riboside Hydrolases. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00194-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Furneaux RH, Schramm VL, Tyler PC. Transition state analogue inhibitors of protozoan nucleoside hydrolases. Bioorg Med Chem 1999; 7:2599-606. [PMID: 10632070 DOI: 10.1016/s0968-0896(99)00210-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protozoan parasites are unable to synthesize purines de novo and must rely on purine salvage pathways for their requirements. Nucleoside hydrolases, which are not found in mammals, function as key enzymes in purine salvage in protozoa. Inhibition of these enzymes may disrupt purine supply and specific inhibitors are potential therapeutic agents for the control of protozoan infections. A series of 1,4-dideoxy-1,4-imino-D-ribitols bearing C-bonded aromatic substituents at C-1 have been synthesized, following carbanion additions to the imine 2, and tested as potential nucleoside hydrolase inhibitors. Nucleoside analogues 8, 11, 14, 17, 20, 24-26, 28 exhibit Ki values in the range 0.2-22 microM against two representative isozymes of protozoan nucleoside hydrolases.
Collapse
Affiliation(s)
- R H Furneaux
- Carbohydrate Chemistry, Industrial Research Limited, Lower Hutt, New Zealand
| | | | | |
Collapse
|
35
|
Shi W, Schramm VL, Almo SC. Nucleoside hydrolase from Leishmania major. Cloning, expression, catalytic properties, transition state inhibitors, and the 2.5-å crystal structure. J Biol Chem 1999; 274:21114-20. [PMID: 10409664 DOI: 10.1074/jbc.274.30.21114] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protozoan parasites lack the pathway of the de novo synthesis of purines and depend on host-derived nucleosides and nucleotides to salvage purines for DNA and RNA synthesis. Nucleoside hydrolase is a central enzyme in the purine salvage pathway and represents a prime target for the development of anti-parasitic drugs. The full-length cDNA for nucleoside hydrolase from Leishmania major was cloned and sequence analysis revealed that the L. major nucleoside hydrolase shares 78% sequence identity with the nonspecific nucleoside hydrolase from Crithidia fasciculata. The L. major enzyme was overexpressed in Escherichia coli and purified to over 95% homogeneity. The L. major nucleoside hydrolase was identified as a nonspecific nucleoside hydrolase since it demonstrates the characteristics: 1) efficient utilization of p-nitrophenyl beta-D-ribofuranoside as a substrate; 2) recognition of both inosine and uridine nucleosides as favored substrates; and 3) significant activity with all of the naturally occurring purine and pyrimidine nucleosides. The crystal structure of the L. major nucleoside hydrolase revealed a bound Ca(2+) ion in the active site with five oxygen ligands from Asp-10, Asp-15 (bidentate), Thr-126 (carbonyl), and Asp-241. The structure is similar to the C. fasciculata IU-nucleoside hydrolase apoenzyme. Despite the similarities, the catalytic specificities differ substantially. Relative values of k(cat) for the L. major enzyme with inosine, adenosine, guanosine, uridine, and cytidine as substrates are 100, 0.5, 0.5, 27 and 0.3; while those for the enzyme from C. fasciculata are 100, 15, 14, 510, and 36 for the same substrates. Iminoribitol analogues of the transition state are nanomolar inhibitors. The results provide new information for purine and pyrimidine salvage pathways in Leishmania.
Collapse
Affiliation(s)
- W Shi
- Albert Einstein College of Medicine, Department of Biochemistry, Bronx, New York 10461, USA
| | | | | |
Collapse
|
36
|
Deras ML, Chittur SV, Davisson VJ. N2-hydroxyguanosine 5'-monophosphate is a time-dependent inhibitor of Escherichia coli guanosine monophosphate synthetase. Biochemistry 1999; 38:303-10. [PMID: 9890911 DOI: 10.1021/bi981980r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to several other glutamine amidotransferases including asparagine synthetase, cytidine 5'-triphosphate (CTP) synthetase, carbamoyl phosphate synthetase, and phosphoribosyl pyrophosphate (PRPP) amidotransferase, guanosine monophosphate synthetase (GMPS) will not utilize hydroxylamine as an alternative nitrogen source. Instead, the enzyme is inhibited by an unknown mechanism. One untested hypothesis was that hydroxylamine serves as a substrate and intercepts a xanthosine 5'-monophosphate- (XMP-) adenylate intermediate in the enzyme active site. The nucleotide product of this substitution reaction would be N2-hydroxyguanosine 5'-monophosphate (N2-OH-GMP, 2). Here we describe the chemoenzymatic preparation of 2, via the nucleotide 2-fluoroinosine 5'-monophosphate (F-IMP, 5), and characterization of both these compounds as inhibitors of Escherichia coli GMPS. F-IMP was conceived as an electronic mimic of a reactive intermediate in the GMPS reaction but was found to bind weakly to the enzyme (IC50 > 2 mM). In contrast, N2-OH-GMP shows time-dependent inhibition and is competitive with respect to XMP (Ki = 92 nM), representing the first example of a compound that displays these kinetic properties with GMPS. The mechanism of inhibition is proposed to occur via formation of a ternary E.ATP.2 complex, followed by a rate-determining isomerization to a higher affinity complex that has a t1/2 =7.5 min. The contrast in inhibitory activity for 2-substituted purines with GMPS formulates a basis for future inhibitor design. In addition, these results complement recent structural studies of GMPS and implicate the formation of the XMP-adenylate intermediate inducing a probable conformational change that stimulates the hydrolysis of glutamine.
Collapse
Affiliation(s)
- M L Deras
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA
| | | | | |
Collapse
|
37
|
Abstract
All chemical transformations pass through an unstable structure called the transition state, which is poised between the chemical structures of the substrates and products. The transition states for chemical reactions are proposed to have lifetimes near 10(-13) sec, the time for a single bond vibration. No physical or spectroscopic method is available to directly observe the structure of the transition state for enzymatic reactions. Yet transition state structure is central to understanding catalysis, because enzymes function by lowering activation energy. An accepted view of enzymatic catalysis is tight binding to the unstable transition state structure. Transition state mimics bind tightly to enzymes by capturing a fraction of the binding energy for the transition state species. The identification of numerous transition state inhibitors supports the transition state stabilization hypothesis for enzymatic catalysis. Advances in methods for measuring and interpreting kinetic isotope effects and advances in computational chemistry have provided an experimental route to understand transition state structure. Systematic analysis of intrinsic kinetic isotope effects provides geometric and electronic structure for enzyme-bound transition states. This information has been used to compare transition states for chemical and enzymatic reactions; determine whether enzymatic activators alter transition state structure; design transition state inhibitors; and provide the basis for predicting the affinity of enzymatic inhibitors. Enzymatic transition states provide an understanding of catalysis and permit the design of transition state inhibitors. This article reviews transition state theory for enzymatic reactions. Selected examples of enzymatic transition states are compared to the respective transition state inhibitors.
Collapse
Affiliation(s)
- V L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA.
| |
Collapse
|
38
|
Pellé R, Schramm VL, Parkin DW. Molecular cloning and expression of a purine-specific N-ribohydrolase from Trypanosoma brucei brucei. Sequence, expression, and molecular analysis. J Biol Chem 1998; 273:2118-26. [PMID: 9442052 DOI: 10.1074/jbc.273.4.2118] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-Ribohydrolases, including the inosine-adenosine-guanosine-preferring (IAG) nucleoside hydrolase, have been proposed to be involved in the nucleoside salvage pathway of protozoan parasites and may constitute rational therapeutic targets for the treatment of these diseases. Reported is the complete sequence of the Trypanosoma brucei brucei iagnh gene, which encodes IAG-nucleoside hydrolase. The 1.4-kilobase iagnh cDNA contains an open reading frame of 981 base pairs, corresponding to 327 amino acids. The iagnh gene is present as one copy/haploid genome and is located on the size-polymorphic pair of chromosome III or IV in the genome of T. b. brucei. In Southern blot analysis, the iagnh probe hybridized strongly with Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense, Trypanosoma evansi, Trypanosoma congolense, and Trypanosoma vivax and, to a lesser extent, with Trypanosoma cruzi genomic DNA. The iagnh gene is expressed in blood-stream forms and procyclic (insect) life-cycle stages of T. b. brucei. There are no close amino acid homologues of IAG-nucleoside hydrolase outside bacterial, yeast, or parasitic organisms. Low amino acid sequence similarity is seen with the inosine-uridine-preferring nucleoside hydrolase isozyme from Crithidia fasciculata. The T. b. brucei iagnh open reading frame was cloned into Escherichia coli BL21 (DE3), and a soluble recombinant IAG-nucleoside hydrolase was expressed and purified to > 97% homogeneity. The molecular weights of the recombinant IAG-nucleoside hydrolase, based on the amino acid sequence and observed mass, were 35,735 and 35,737, respectively. The kinetic parameters of the recombinant IAG-nucleoside hydrolase are experimentally identical to the native IAG-nucleoside hydrolase.
Collapse
Affiliation(s)
- R Pellé
- International Livestock Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
39
|
Abstract
N-ribohydrolases and transferases act on nucleosides, nucleotides and oligonucleotides to effect base removal. Advances in mechanistic and structural analysis have established that enzymes of N-riboside scission act by combinations of leaving-group and ribosyl activation. Alternative O-riboside substrates have been developed for mechanistic diagnosis. Transition-state structures have been determined, and powerful inhibitors have been designed from structural and transition-state information.
Collapse
Affiliation(s)
- V L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
40
|
Parkin DW, Limberg G, Tyler PC, Furneaux RH, Chen XY, Schramm VL. Isozyme-specific transition state inhibitors for the trypanosomal nucleoside hydrolases. Biochemistry 1997; 36:3528-34. [PMID: 9132003 DOI: 10.1021/bi962319v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protozoan parasites lack de novo purine biosynthesis and require purine salvage from the host. Nucleoside hydrolases are involved in nucleoside salvage and are not found in mammals, making them protozoan-specific targets for inhibitor design. Several protozoan nucleoside hydrolase isozymes with distinct substrate specificities have been characterized. Novel substituted iminoribitols have been synthesized to resemble the transition state structure of the nonspecific inosine-uridine nucleoside hydrolase from Crithidia fasciculata (IU-nucleoside hydrolase). These inhibitors have been characterized for this enzyme and for a purine-specific nucleoside hydrolase (IAG-nucleoside hydrolase) from Trypanosoma brucei brucei. Inhibitors which provide nanomolar inhibition constants for IU-nucleoside hydrolase exhibit micromolar inhibition constants for the IAG-enzyme. For example, p-bromophenyliminoribitol inhibits the IU- and IAG-enzymes with dissociation constants of 28 nM and 190 microM, respectively. Substrate specificity, the action of transition state inhibitors and the pH-dependence of the kinetic constants establish that the catalytic mechanisms and transition state structures are fundamentally different for the IU- and IAG-isozymes. The finding is remarkable since these isozymes share significant homology at the catalytic sites and both use inosine as a preferred substrate. The specificity of the transition state analogues indicates that logically-designed transition state inhibitors are isozyme-specific, with (Km/Ki IU-nucleoside hydrolase)/(Km/Ki IAG-nucleoside hydrolase) values up to 39,000. The mechanism of the differential inhibition is based on the relative leaving group activation and ribosyl-oxocarbenium-forming abilities of these enzymes. In addition to providing isozyme-specific inhibitors, the novel molecules described here have diagnostic value for the nature of the transition states for N-ribohydrolase enzymes.
Collapse
Affiliation(s)
- D W Parkin
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
|
43
|
Degano M, Gopaul DN, Scapin G, Schramm VL, Sacchettini JC. Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata. Biochemistry 1996; 35:5971-81. [PMID: 8634238 DOI: 10.1021/bi952999m] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protozoan parasites rely on the host for purines since they lack a de novo synthetic pathway. Crithidia fasciculata salvages exogenous inosine primarily through hydrolysis of the N-ribosidic bond using several nucleoside hydrolases. The most abundant nucleoside hydrolase is relatively nonspecific but prefers inosine and uridine as substrates. Here we report the three-dimensional structure of the inosine-uridine nucleoside hydrolase (IU-NH) from C. fasciculata determined by X-ray crystallography at a nominal resolution of 2.5 A. The enzyme has an open (alpha, beta) structure which differs from the classical dinucleotide binding fold. IU-nucleoside hydrolase is composed of a mixed eight-stranded beta sheet surrounded by six alpha helices and a small C-terminal lobe composed of four alpha helices. Two short antiparallel beta strands are involved in intermolecular contacts. The catalytic pocket is located at the C-terminal end of beta strands beta 1 and beta 4. Four aspartate residues are located at the bottom of the cavity in a geometry which suggests interaction with the ribose moiety of the nucleoside. These groups could provide the catalytically important interactions to the ribosyl hydroxyls and the stabilizing anion for the oxycarbonium-like transition state. Histidine 241, located on the side of the active site cavity, is the proposed proton donor which facilitates purine base departure [Gopaul, D. N., Meyer, S. L., Degano, M., Sacchettini, J. C., & Schramm, V. L. (1996) Biochemistry 35, 5963-5970]. The substrate binding site is unlike that from purine nucleoside phosphorylase, phosphoribosyltransferases, or uracil DNA glycosylase and thus represents a novel architecture for general acid-base catalysis. This detailed knowledge of the architecture of the active site, together with the previous transition state analysis [Horenstein, B. A., Parkin, D. W., Estupiñán, B., & Schramm, V. L. (1991) Biochemistry 30, 10788-10795], allows analysis of the interactions leading to catalysis and an explanation for the tight-binding inhibitors of the enzyme [Schramm, V. L., Horenstein, B. A., & Kline, P. C. (1994) J. Biol. Chem. 269, 18259-18262].
Collapse
Affiliation(s)
- M Degano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
44
|
Gopaul DN, Meyer SL, Degano M, Sacchettini JC, Schramm VL. Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry 1996; 35:5963-70. [PMID: 8634237 DOI: 10.1021/bi952998u] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protozoa depend on purine salvage for nucleic acid synthesis. An abundant salvage enzyme in Crithidia fasciculata is the inosine-uridine nucleoside hydrolase (IU-nucleoside hydrolase). The enzyme was cloned by polymerase chain reaction techniques using primers corresponding to the amino acid sequences of tryptic fragments and to the miniexon of C. fasciculata. The full-length cDNA was expressed in Escherichia coli and the protein purified to > 99% homogeneity. The open reading frame encodes a protein of 315 amino acids. Enzyme purified from C. fasciculata was missing the N-terminal Met and gave a major mass peak of 34 194 amu by mass spectrometry. Predicted mass from the DNA sequence for the Met-processed enzyme was 34 196. A pET3d-IUNH construct expressed in E. coli introduced MetAla instead of MetPro at the N-terminus. Enzyme purified from this construct also had a processed N-terminus and gave predicted and observed masses of 34 168 and 34 170 amu, respectively. The amino acid sequence for IU-nucleoside hydrolase has no close relatives among the known proteins. A cDNA clone of unknown function from Leishmania major shows near identity in the N-terminal deduced amino acid sequence. Open reading frames near 1 and 47 min on the E. coli chromosome and from two yeast genomes encode for proteins of similar size with substantial amino acid identity. Mutation of His241Ala caused a 2100-fold loss in k(cat) for inosine but a 2.8-fold increase in k(cat) with p-nitrophenyl beta-D-ribofuranoside, establishing the location of the catalytic site and implicating His241 as a proton donor for leaving group activation. IU-nucleoside hydrolase from C. fasciculata and the protein expressed in E. coli were crystallized and diffract to 2.5 and 2.1 A resolution, respectively. Both belong to the P2(1)2(1)2 orthorhombic space group with unit cell parameters a = 63.5 A, b = 131.9 A, c = 90.1 A, and alpha = beta = gamma = 90 degrees. Two subunits of the tetrameric enzyme are present in the asymmetric unit. The following paper reports the X-ray crystal structure for this enzyme.
Collapse
Affiliation(s)
- D N Gopaul
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
45
|
Mazzella LJ, Parkin DW, Tyler PC, Furneaux RH, Schramm VL. Mechanistic Diagnoses of N-Ribohydrolases and Purine Nucleoside Phosphorylase. J Am Chem Soc 1996. [DOI: 10.1021/ja953537z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. John Mazzella
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - David W. Parkin
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - Peter C. Tyler
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - Richard H. Furneaux
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry Albert Einstein College of Medicine Bronx, New York 10461, Industrial Research Limited P.O. Box 31-310, Lower Hutt, New Zealand
| |
Collapse
|