1
|
Phosphorylation-mediated interaction between human E26 transcription factor 1 and specific protein 1 is required for tumor cell migration. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1441-1452. [PMID: 36305724 PMCID: PMC9828152 DOI: 10.3724/abbs.2022148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription factors, human E26 transcription factor 1 (Ets1) and specific protein 1 (Sp1), are known to induce gene expression in tumorigenicity. High Ets1 expression is often associated with colorectal tumorigenesis. In this study, we discover that metastasis and clone formation in SW480 cells mainly depend on the direct interaction between Ets1 and Sp1 instead of high Ets1 expression. The interaction domains are further addressed to be the segment at Sp1(626-708) and the segment at Ets1(244-331). In addition, the phosphorylation inhibition of Ets1 at Tyr283 by either downregulation of Src kinase or Src family inhibitor treatment decreases the interaction between Sp1 and Ets1 and suppresses SW480 migration. Either administration or overexpression of the peptides harboring the interaction segment strongly inhibits the colony formation and migration of SW480 cells. Our findings suggest that the interaction between Ets1 and Sp1 rather than Ets1 alone promotes transformation in SW480 cells and provide new insight into the Ets1 and Sp1 interaction as an antitumour target in SW480 cells.
Collapse
|
2
|
Li JX, He JJ, Elsheikha HM, Ma J, Xu XP, Zhu XQ. ROP18-Mediated Transcriptional Reprogramming of HEK293T Cell Reveals New Roles of ROP18 in the Interplay Between Toxoplasma gondii and the Host Cell. Front Cell Infect Microbiol 2020; 10:586946. [PMID: 33330132 PMCID: PMC7734210 DOI: 10.3389/fcimb.2020.586946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii secretes a number of virulence-related effector proteins, such as the rhoptry protein 18 (ROP18). To further broaden our understanding of the molecular functions of ROP18, we examined the transcriptional response of human embryonic kidney cells (HEK293T) to ROP18 of type I T. gondii RH strain. Using RNA-sequencing, we compared the transcriptome of ROP18-expressing HEK293T cells to control HEK293T cells. Our analysis revealed that ROP18 altered the expression of 750 genes (467 upregulated genes and 283 downregulated genes) in HEK293T cells. Gene ontology (GO) and pathway enrichment analyses showed that differentially expressed genes (DEGs) were significantly enriched in extracellular matrix– and immune–related GO terms and pathways. KEGG pathway enrichment analysis revealed that DEGs were involved in several disease-related pathways, such as nervous system diseases and eye disease. ROP18 significantly increased the alternative splicing pattern “retained intron” and altered the expression of 144 transcription factors (TFs). These results provide new insight into how ROP18 may influence biological processes in the host cells via altering the expression of genes, TFs, and pathways. More in vitro and in vivo studies are required to substantiate these findings.
Collapse
Affiliation(s)
- Jie-Xi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Pei Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Yamashita MSDA, Melo EO. Mucin 2 (MUC2) promoter characterization: an overview. Cell Tissue Res 2018; 374:455-463. [PMID: 30218241 DOI: 10.1007/s00441-018-2916-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Transgenic livestock have been studied with a well-known interest in improving quantitative and qualitative traits. In order to direct heterologous gene expression, it is indispensable to identify and characterize a promoter suitable for directing the expression of the gene of interest (GOI) in a tissue-specific way. The gastrointestinal tract is a desirable target for gene expression in several mammalian models. Throughout the surface of the intestinal epithelium, there is an intricate polymer network, formed by gel-forming mucins (especially MUC2 and MUC5AC, of which MUC2 is the major one), which plays a protective role due to the formation of a physical, chemical and immunological barrier between the organism and the environment. The characterization of the gel-forming mucins is difficult because of their large size and repetitive DNA sequences and domains. The main mucin in the small and large intestine, mucin 2 (MUC2), is expressed specifically in goblet cells. MUC2 plays an important role in intestinal homeostasis and its disruption is associated with several diseases and carcinomas. This mucin is also an important marker for elucidating mechanisms that regulate differentiation of the secretory cell lineage. This review presents the state of the art of MUC2 promoter structure and functional characterization.
Collapse
Affiliation(s)
| | - Eduardo O Melo
- EMBRAPA Genetic Resources and Biotechnology, PqEB Av W5 Norte, Brasilia, DF, 70770-917, Brazil
| |
Collapse
|
4
|
Arderiu G, Espinosa S, Peña E, Aledo R, Badimon L. PAR2-SMAD3 in microvascular endothelial cells is indispensable for vascular stability via tissue factor signaling. J Mol Cell Biol 2015; 8:255-70. [PMID: 26658897 DOI: 10.1093/jmcb/mjv065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
Tissue factor (TF) signaling regulates gene expression and protein synthesis leading to the modulation of cell function. Recently, we have demonstrated in microvascular endothelial cells (mECs) that TF signaling induces activation of ETS1 transcription factor. Because combinatorial control is a characteristic property of ETS family members, involving the interaction between ETS1 and other transcription factors, here we investigate whether additional transcription factors are involved in TF-induced angiogenesis. We show by in vitro and in vivo experiments that in addition to ETS1, SMAD3 contributes to tube-like stabilization induced by TF in mECs. Whereas the ability of TF-overexpressing cells to induce gene expression through ETS1 is dependent on AKT signaling, SMAD3 induces ETS1 by an alternative AKT-independent pathway. Moreover, while TF-AKT-ETS1 pathway to induce CCL2 is PAR2-independent, PAR2 is required for TF-SMAD3-induced CCL2 expression. PAR2-dependent activation of SMAD3 is mediated by PKC phosphorylation. In addition, disruption of SMAD3 expression in mECs reduces ERK1/2 phosphorylation and decreases target gene promoter activity. In conclusion, in mECs TF-induced angiogenesis seems to be the result of two signaling pathways: TF-induced microvessel formation is regulated through β1 integrin-AKT-ETS1; and TF-induced microvessel stabilization is regulated via PAR2-SMAD3 that is indispensable for the maintenance of vascular integrity.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Sonia Espinosa
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Rosa Aledo
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| |
Collapse
|
5
|
Abstract
Transcription factor E1AF is widely known to play critical roles in tumor metastasis via directly binding to the promoters of genes involved in tumor migration and invasion. Here, we report for the first time E1AF as a novel binding partner for ubiquitously expressed Sp1 transcription factor. E1AF forms a complex with Sp1, contributes to Sp1 phosphorylation and transcriptional activity, and functions as a mediator between epidermal growth factor and Sp1 phosphorylation and activity. Sp1 functions as a carrier bringing E1AF to the promoter region, thus activating transcription of glioma-related gene for beta1,4-galactosyltransferase V (GalT V; EC 2.4.1.38). Biologically, E1AF functions as a positive invasion regulator in glioma in cooperation with Sp1 partly via up-regulation of GalT V. This report describes a new mechanism of glioma invasion involving a cooperative effort between E1AF and Sp1 transcription factors.
Collapse
|
6
|
Barré L, Venkatesan N, Magdalou J, Netter P, Fournel-Gigleux S, Ouzzine M. Evidence of calcium‐dependent pathway in the regulation of human β1,3‐glucuronosyltransferase‐1 (GlcAT‐I) gene expression: a key enzyme in proteoglycan synthesis. FASEB J 2006; 20:1692-4. [PMID: 16807373 DOI: 10.1096/fj.05-5073fje] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The importance of heparan- and chondroitin-sulfate proteoglycans in physiological and pathological processes led to the investigation of the regulation of beta1,3-glucuronosyltransferase I (GlcAT-I), responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide, a key step prior to polymerization of chondroitin- and heparan-sulfate chains. We have cloned and functionally characterized GlcAT-I 5'-flanking regulatory region. Mutation analysis and electrophoretic mobility shift assays demonstrated the importance of Sp1 motif located at -65/-56 position in promoter activity. Furthermore, we found that elevation of intracellular calcium concentration by the calcium ionophore ionomycin stimulated GlcAT-I gene expression as well as glycosaminoglycan chain synthesis in HeLa cells. Bisanthracycline, an anti-Sp1 compound, inhibited GlcAT-I basal promoter activity and suppressed ionomycin induction, suggesting the importance of Sp1 in calcium induction of GlcAT-I gene expression. Nuclear protein extracts from ionomycin-induced cells exhibited an increased DNA binding of Sp1 factor to the consensus sequence at position -65/-56. Signaling pathway analysis and MEK inhibition studies revealed the important role of p42/p44 MAPK in the stimulation of GlcAT-I promoter activity by ionomycin. The present study identifies, for the first time, GlcAT-I as a target of calcium-dependent signaling pathway and evidences the critical role of Sp1 transcription factor in the activation of GlcAT-I expression.
Collapse
Affiliation(s)
- Lydia Barré
- UMR CNRS 7561-Université Henri Poincaré Nancy 1, Faculté de Médecine, BP 184, Vandoeuvre-lès-Nancy 54505, France
| | | | | | | | | | | |
Collapse
|
7
|
Nakayama T, Yoshizaki A, Naito S, Wen CY, Alipov G, Yakata Y, Sekine I. Expression of Ets-1 proto-oncoprotein in gastrointestinal stromal tumors, leiomyomas and schwannomas. World J Gastroenterol 2006; 12:1743-6. [PMID: 16586544 PMCID: PMC4124350 DOI: 10.3748/wjg.v12.i11.1743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Gastrointestinal stromal tumors (GISTs) are rare. GISTs differ from other mesenchymal tumors of the gastrointestinal tract (e.g. leiomyomas and schwannomas). The purpose of this study was to investigate the role of Ets-1 in the growth and differentiation of GISTs.
METHODS: Twenty-eight GISTs, nine leiomyomas and six schwannomas were examined by immunohistochemical staining method for Ets-1 in this study. Specimens were selected from surgical pathology archival tissues at Nagasaki University Hospital.
RESULTS: Ets-1 protein was expressed in the cytoplasm of cells in all of these tumors. Immunohistochemical staining revealed that 27 GISTs (96.4 %), six leiomyomas (66.7 %), and five schwannomas (83.3 %) were positive for Ets-1. Ets-1 expression was statistically different between GISTs and leiomyomas (P < 0.005). However, there was no correlation between Ets-1 expression and clinical risk categories.
CONCLUSION: Ets-1 plays an important role in the growth and differentiation of GISTs, leiomyomas and schwannomas.
Collapse
Affiliation(s)
- Toshiyuki Nakayama
- Department of Molecular Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2006; 1765:189-222. [PMID: 16487661 DOI: 10.1016/j.bbcan.2006.01.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/30/2005] [Accepted: 01/03/2006] [Indexed: 12/31/2022]
Abstract
Mucins are large multifunctional glycoproteins whose primary functions are to protect and lubricate the surfaces of epithelial tissues lining ducts and lumens within the human body. Several lines of evidence also support the involvement of mucins in more complex biological processes such as epithelial cell renewal and differentiation, cell signaling, and cell adhesion. Recent studies have uncovered the role of select mucins in the pathogenesis of cancer, underscoring the importance of a detailed knowledge about mucin biology. Under normal physiological conditions, the production of mucins is optimally maintained by a host of elaborate and coordinated regulatory mechanisms, thereby affording a well-defined pattern of tissue-, time-, and developmental state-specific distribution. However, mucin homeostasis may be disrupted by the action of environmental and/or intrinsic factors that affect cellular integrity. This results in an altered cell behavior that often culminates into a variety of pathological conditions. Deregulated mucin production has indeed been associated with numerous types of cancers and inflammatory disorders. It is, therefore, crucial to comprehend the underlying basis of molecular mechanisms controlling mucin production in order to design and implement adequate therapeutic strategies for combating these diseases. Herein, we discuss some physiologically relevant regulatory aspects of mucin production, with a particular emphasis on aberrations that pertain to pathological situations. Our views of the achievements, the conceptual and technical limitations, as well as the future challenges associated with studies of mucin regulation are exposed.
Collapse
Affiliation(s)
- Mahefatiana Andrianifahanana
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, 68198-5870, USA
| | | | | |
Collapse
|
9
|
Takai N, Ueda T, Narahara H, Miyakawa I. Expression of c-Ets1 protein in normal human placenta. Gynecol Obstet Invest 2005; 61:15-20. [PMID: 16127276 DOI: 10.1159/000087855] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 05/22/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND The proto-oncogene product c-Ets1 is a transcriptional factor that controls the expression of a number of genes involved in extracellular matrix remodeling such as stromelysin-1 (matrix metalloproteinase-3; MMP-3), collagenase-1, and urokinase-type plasminogen activator (u-PA). To elucidate the involvement of c-Ets1 in the invasive pathway of the trophoblasts, we analyzed c-Ets1 protein expression in placentas by fluorescent immunohistochemistry and Western blot analysis. METHODS We analyzed serial frozen sections for c-Ets1 protein expression of the chorionic villi and cell column in the first trimester and the basal plate of placenta and amniotic membranes in the third trimester by fluorescent immunohistochemistry. Moreover, we examined the expression of c-Ets1 in the first and the third trimester by Western blot analysis. RESULTS In the first trimester, c-Ets1 was strongly expressed in the cytoplasm of cytotrophoblasts. Moreover, the cell column that invaded the endometrium had the strongest expression of c-Ets1. In the third trimester, c-Ets1 was detected in both cytoplasm and nucleus of the invading trophoblasts in the basal plate. Furthermore, c-Ets1 was expressed in both cytoplasm and nucleus of the trophoblasts in amniotic membrane. Western blotting revealed that c-Ets1 expressions in the first trimester were stronger than those in the third trimester. CONCLUSION Our results demonstrate that c-Ets1 expression in normal human placenta correlates to the invasive behavior of the trophoblasts, probably by activating the transcription of matrix-degrading MMPs, including MMP-3, collagenase-1, and u-PA.
Collapse
Affiliation(s)
- Noriyuki Takai
- Department of Obstetrics and Gynecology, Oita University Faculty of Medicine, Japan. -.ac.jp
| | | | | | | |
Collapse
|
10
|
Ito H, Duxbury M, Benoit E, Clancy TE, Zinner MJ, Ashley SW, Whang EE. Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res 2004; 64:7439-46. [PMID: 15492268 DOI: 10.1158/0008-5472.can-04-1177] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2) in the pathogenesis of a wide range of malignancies. Here we tested the hypothesis that the COX-2 product prostaglandin E(2) (PGE(2)) increases cellular invasive potential by inducing matrix metalloproteinase-2 (MMP-2) expression and activity through an extracellular signal-regulated kinase (ERK)/Ets-1-dependent mechanism in pancreatic cancer. PANC-1 and MIAPaCa-2 pancreatic cancer cells were treated with PGE(2) or rofecoxib, a selective COX-2 inhibitor. MMP-2 expression and activity were assayed using Western blot analysis and zymography, respectively. MMP-2 promoter activity was analyzed with a luciferase-based assay. Ets-1 activity was analyzed using gel shift assay. Ets-1 expression was specifically silenced using RNA interference. Cellular invasive and migratory potentials were determined using a Boyden chamber assay with or without Matrigel, respectively. Exogenous PGE(2) induced MMP-2 expression and activity and increased ERK1/2 phosphorylation, Ets-1 binding activity, and MMP-2 promoter activity. PGE(2) also increased cellular migratory and invasive potentials. The mitogen-activated protein kinase kinase inhibitor PD98059 and Ets-1 silencing each abolished PGE(2)-induced increases in MMP-2 expression. PD98059 and Ets-1 silencing each abrogated the effect of PGE(2) on cellular invasive potential but not on cellular migratory potential. Rofecoxib suppressed MMP-2 expression and activity, Ets-1 binding activity, MMP-2 promoter activity, and cellular migratory and invasive potentials. These results suggest that PGE(2) mediates pancreatic cancer cellular invasiveness through an ERK/Ets-1-dependent induction of MMP-2 expression and activity. They also suggest that COX-2 inhibition may represent a strategy to inhibit invasive potential in pancreatic cancer.
Collapse
Affiliation(s)
- Hiromichi Ito
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Steinke JW, Barekzi E, Hagman J, Borish L. Functional analysis of -571 IL-10 promoter polymorphism reveals a repressor element controlled by sp1. THE JOURNAL OF IMMUNOLOGY 2004; 173:3215-22. [PMID: 15322183 DOI: 10.4049/jimmunol.173.5.3215] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcriptional dysregulation of the IL-10 gene may contribute to the development and severity of autoimmune, infectious, neoplastic, and allergic diseases. A C to A base substitution has been identified at -571 bp in the IL-10 promoter and has been linked to immune diseases. The role of this polymorphism in IL-10 promoter function was assessed using luciferase reporter constructs. The presence of an A at -571 (A allele) increases promoter activity compared with that of a promoter with a C at this position (C allele). Binding of nuclear extract proteins from IL-10-producing human cell lines to DNA sequences including this base exchange and flanking sequences was demonstrated using EMSAs. Specific binding of the transcription factors Sp1 and Sp3 was demonstrated to a region immediately upstream of the polymorphism. No differences in the binding affinity of recombinant Sp1 were observed between the two forms of the promoter. Reconstitution of Sp1 expression decreased IL-10 promoter function in an Sp1-deficient cell line, demonstrating that this element functions as a repressor. The C to A base exchange relieves the repression mediated by Sp1. Individuals carrying the A allele of the IL-10 promoter may display increased synthesis of IL-10, resulting in suppressed immune responses and a modulation of their susceptibility to autoimmune, infectious, neoplastic, or atopic disease.
Collapse
Affiliation(s)
- John W Steinke
- Asthma and Allergic Diseases Center, Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
12
|
Thompson HGR, Harris JW, Lin L, Brody JP. Identification of the protein Zibra, its genomic organization, regulation, and expression in breast cancer cells. Exp Cell Res 2004; 295:448-59. [PMID: 15093743 DOI: 10.1016/j.yexcr.2004.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/14/2004] [Indexed: 11/24/2022]
Abstract
The mRNA that encodes zibra (zinc, in-between-ring finger, ubiquitin-associated domain), previously known as hypothetical protein FLJ10111, or RNF31 is expressed in several distinct cancers. Little is known about the genomic organization, expression, or regulation of zibra. Using RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we cloned the full-length zibra cDNA from a transformed breast cell line. We identified a novel exon, the 5' untranslated region including the +1 start site, and three alternatively spliced zibra transcripts. The zibra protein contains three zinc ring-finger motifs, an ubiquitin-associated domain, and an in-between-ring-finger domain, characteristic of ubiquitin ligases. We obtained an antibody to zibra and confirmed the presence of translated zibra protein for the first time. Promoter studies localized a core element responsible for basal activity to a 14-bp region in the 5' untranslated region. Although there are numerous consensus Ets factor binding sites in the zibra promoter, we found no affect on promoter activity from Ets-1, PDEF, or PEA-3/E1A-F. Treatment of cells with the proteasome inhibitor I (PSI) decreased zibra protein to an undetectable level after 8 h. Zibra remained undetectable even after 32 h, while mRNA levels remained essentially unchanged. In conclusion, zibra is a translationally regulated putative ubiquitin ligase that is frequently overexpressed in different forms of cancer.
Collapse
Affiliation(s)
- H Garrett R Thompson
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA 92697-2715, USA
| | | | | | | |
Collapse
|
13
|
Cataisson C, Gordon J, Roussière M, Abdalkhani A, Lindemann R, Dittmer J, Foley J, Bouizar Z. Ets-1 activates parathyroid hormone-related protein gene expression in tumorigenic breast epithelial cells. Mol Cell Endocrinol 2003; 204:155-68. [PMID: 12850290 DOI: 10.1016/s0303-7207(02)00298-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is produced by many tumors not associated with humoral hypercalcemia, including breast cancers. In this study, we used three human immortalized mammary epithelial cell lines that differ in tumorigenicity and PTHrP expression. Using RT-PCR we investigated 5' and 3' alternative splicing of PTHrP transcripts and promoter usage in the lines. Increased levels of P3-derived transcripts and the 1-139 mRNA isoform were observed in the most tumorigenic cell line. Transient transfection experiments identified elements close to P3 promoter that appeared to account for a portion of differential PTHrP expression among the three cell lines. Using site-directed mutagenesis, a previously described Ets-1/Sp1 binding site upstream of P3 was determined to be crucial for full activity of this promoter. RT-PCR and western blot evaluation of Ets family member expression found that Ese-1 was present in all three lines, but that appreciable levels of Ets-1 protein were present exclusively in the most tumorigenic line. Cotransfection of Ets-1 expression vectors activated PTHrP reporter constructs in the most tumorigenic line but not in the other cell lines. These findings suggest a potential mechanism by which PTHrP transcription may be regulated as a consequence of events that promote tumorigenic behavior in breast epithelial cells.
Collapse
Affiliation(s)
- Christophe Cataisson
- INSERM U349, Centre Viggo Petersen Hôpital Lariboisière, 6 rue Guy Patin 75010, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hao H, Qi H, Ratnam M. Modulation of the folate receptor type beta gene by coordinate actions of retinoic acid receptors at activator Sp1/ets and repressor AP-1 sites. Blood 2003; 101:4551-60. [PMID: 12543860 DOI: 10.1182/blood-2002-10-3174] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Folate receptor (FR) type beta is a promising target for therapeutic intervention in acute myelogenous leukemia (AML) owing particularly to its specific up-regulation in AML cells by all-trans retinoic acid (ATRA). Here we identify functional elements in the FR-beta gene and examine the molecular mechanism of transcriptional induction of FR-beta by ATRA. The basal promoter activity of FR-beta resulted from synergistic interaction between Sp1 and ets binding sites (EBSs) and repression by upstream AP-1-like elements, whose action required EBSs. A minimal promoter containing the Sp1 and ets elements was ATRA-responsive. The repressor elements bound Fos family proteins; association of the proteins with the repressor elements correlated negatively with FR-beta expression in peripheral blood neutrophils and monocytes and also in KG-1 (AML) cells grown in the absence or in the presence of ATRA. Furthermore, down-regulation of FR-beta in KG-1 cells treated with O-tetradecanoylphorbol 13-acetate (TPA) was accompanied by increased AP-1 binding to the repressor elements. From chromatin immunoprecipitation (ChIP) assays, the nuclear retinoic acid receptor alpha (RARalpha) associated with the Sp1 region, and RARs beta and gamma associated with the AP-1 and Sp1 regions; treatment of KG-1 cells with ATRA did not alter Sp1 binding but increased the association of RARalpha and decreased the association of RARs beta and gamma. ATRA also decreased RAR expression levels. The results suggest that the FR-beta gene is a target for multiple coordinate actions of nuclear receptors for ATRA directly and indirectly acting on a transcriptional complex containing activating Sp1/ets and inhibitory AP-1 proteins. The multiple mechanisms favor the prediction that ATRA will induce FR-beta expression in a broad spectrum of AML cells. Further, optimal FR-beta induction may be expected when all 3 RAR subtypes bind agonist.
Collapse
Affiliation(s)
- Hong Hao
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH 43614-5804, USA
| | | | | |
Collapse
|
15
|
Uchida C, Oda T, Sugiyama T, Otani S, Kitagawa M, Ichiyama A. The role of Sp1 and AP-2 in basal and protein kinase A--induced expression of mitochondrial serine:pyruvate aminotransferase in hepatocytes. J Biol Chem 2002; 277:39082-92. [PMID: 12169688 DOI: 10.1074/jbc.m201380200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of mitochondrial serine:pyruvate aminotransferase (SPT) mRNA (SPTm-mRNA) in rat liver is unique in that it occurs from the upstream site of the two transcription start sites within the first exon of the SPT gene and is selectively enhanced by cAMP via the protein kinase A (PKA) signaling pathway. In this study, we identified the DNA elements and nuclear factors responsible for the basal and PKA-induced activities of the upstream promoter. By using a luciferase reporter assay with HepG2 cells, DNase I footprinting analysis, and gel shift experiments, we identified the binding sites for Sp1 and AP-2 within the regions -125 to -89 and -14 to +10, respectively. Mutational analyses indicated that these regions are essential for the transcription factor binding and the SPT promoter activity. Expression of AP-2 caused a marked increase in the basal promoter activity to about the same level as that achieved by PKA. On the other hand, both the basal and PKA-induced activities were elevated by overexpression of Sp1, its effect on PKA-induced activity being more pronounced with coexpression of CBP and repressed by E1A oncoprotein. These results suggest that AP-2 and Sp1 regulate basal promoter activity, and Sp1 is also involved in PKA-mediated expression of the rat SPT gene in concert with the transcriptional coactivator CBP.
Collapse
Affiliation(s)
- Chiharu Uchida
- Department of Biochemistry I, Hamamatsu University School of Medicine, 1-20-1 Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Lindemann RK, Ballschmieter P, Nordheim A, Dittmer J. Transforming growth factor beta regulates parathyroid hormone-related protein expression in MDA-MB-231 breast cancer cells through a novel Smad/Ets synergism. J Biol Chem 2001; 276:46661-70. [PMID: 11590145 DOI: 10.1074/jbc.m105816200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of breast cancers metastasizing to bone secrete parathyroid hormone-related protein (PTHrP). PTHrP induces local osteolysis that leads to activation of bone matrix-borne transforming growth factor beta (TGF beta). In turn, TGF beta stimulates PTHrP expression and, thereby, accelerates bone destruction. We studied the mechanism by which TGF beta activates PTHrP in invasive MDA-MB-231 breast cancer cells. We demonstrate that TGF beta 1 up-regulates specifically the level of PTHrP P3 promoter-derived RNA in an actinomycin D-sensitive fashion. Transient transfection studies revealed that TGF beta 1 and its effector Smad3 are able to activate the P3 promoter. This effect depended upon an AGAC box and a previously described Ets binding site. Addition of Ets1 greatly enhanced the Smad3/TGF beta-mediated activation. Ets2 had also some effect, whereas other Ets proteins, Elf-1, Ese-1, and Erf-1, failed to cooperate with Smad3. In comparison, Ets1 did not increase Smad3/TGF beta-induced stimulation of the TGF beta-responsive plasminogen activator inhibitor 1 (PAI-1) promoter. Smad3 and Smad4 were able to specifically interact with the PTHrP P3-AGAC box and to bind to the P3 promoter together with Ets1. Inhibition of endogenous Ets1 expression by calphostin C abrogated TGF beta-induced up-regulation of the P3 transcript, whereas it did not affect the TGF beta effect on PAI expression. In TGF beta receptor II- and Ets1-deficient, noninvasive MCF-7 breast cancer cells, TGF beta 1 neither influenced endogenous PTHrP expression nor stimulated the PTHrP P3 promoter. These data suggest that TGF beta activates PTHrP expression by specifically up-regulating transcription from the PTHrP P3 promoter through a novel Smad3/Ets1 synergism.
Collapse
Affiliation(s)
- R K Lindemann
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
17
|
Galvagni F, Capo S, Oliviero S. Sp1 and Sp3 physically interact and co-operate with GABP for the activation of the utrophin promoter. J Mol Biol 2001; 306:985-96. [PMID: 11237613 DOI: 10.1006/jmbi.2000.4335] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The utrophin gene codes for a large cytoskeletal protein closely related to dystrophin which, in the absence of dystrophin, can functionally substitute it. Utrophin is transcribed by two independently regulated promoters about 50 kb apart. The upstream promoter is TATA-less and contains a functional GABP binding site which, in muscle, restricts the promoter activity to post-synaptic nuclei. Transient transfections analysis of mutant promoters in rhabdomyosarcoma cells showed that the upstream promoter contains three functional GC elements that are recognised by Sp1 and Sp3 factors in vitro. Co-transfections of the promoter with Sp1, Sp3 and GABP factors in Drosophila SL2 Schneider cells, which lack of endogenous Sp factors, demonstrated that both Sp1 and Sp3 are positive regulators of the utrophin promoter and that they activate transcription synergistically with GABP. Consistent with this result, we observed physical interaction of both Sp factors with the GABPalpha subunit in vitro. Functional domain interaction analysis of Sp1 and Sp3 revealed that both factors interact with GABPalpha through their DNA binding zinc finger domain. The modulation and correct interaction between Sp1, Sp3 and GABP in muscle cells may be critical for the regulation of the utrophin promoter, and provide new targets for therapies of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- F Galvagni
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, via Fiorentina 1, Siena, 53100, Italy
| | | | | |
Collapse
|
18
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
19
|
Mikulska JE, Simister NE. Analysis of the promoter region of the human FcRn gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:180-4. [PMID: 11004487 DOI: 10.1016/s0167-4781(00)00068-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 5'-flanking region of the human FcRn alpha-chain gene was analyzed for its ability to directly express the chloramphenicol acetyltransferase (CAT) reporter gene in NIH3T3 and Lu106 cells. Transient transfection of the CAT constructs revealed that there was promoter activity in the region -660 to +300 of the 5'-flanking sequence. Electrophoretic mobility-shift assays showed that there are functional binding sites for Sp1 or Sp1-like factors, AP1 or a related factor, and additional unidentified proteins in the promoter region.
Collapse
Affiliation(s)
- J E Mikulska
- Ludwik Hirszfeld Institute of Immunolgy and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | | |
Collapse
|
20
|
Naito S, Shimizu K, Nakashima M, Nakayama T, Ito T, Ito M, Yamashita S, Sekine I. Overexpression of Ets-1 transcription factor in angiosarcoma of the skin. Pathol Res Pract 2000; 196:103-9. [PMID: 10707367 DOI: 10.1016/s0344-0338(00)80041-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiosarcoma of the skin is a rare malignant tumor which is slow-growing but highly aggressive and often recurs following surgery and/or radiation therapy, finally metastasizing to the regional lymph nodes. The ets-1 protooncogene is shown to be transcribed in endothelial cells during angiogenesis in granulation tissue and in malignant cells during tumor invasion. Furthermore, it can regulate the expression of metalloproteinase genes such as collagenase-1 (MMP-1), stromelysin (MMP-3) and urokinase-type plasminogen activator (uPA). In this study we investigated the ets-1 and MMP-1 expression in 7 angiosarcomas of the skin, compared with 7 hemangiomas and 7 granuloma pyogenicums of the skin, which are well known as benign vascular diseases. The ets-1 and MMP-1 mRNAs and their proteins were overexpressed in all angiosarcomas tested, and the localization of MMP-1 expression corresponded to that of ets-1. On the other hand, they were weakly or not at all expressed in hemangiomas and granuloma pyogenicums. These results suggest that the constitutive overexpression of ets-1 might be closely related with the malignant progression of angiosarcoma, possibly through the up-regulation of the transcription of MMP-1.
Collapse
Affiliation(s)
- S Naito
- Tissue and Histopathology Section, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Foley J, Wysolmerski JJ, Missero C, King CS, Philbrick WM. Regulation of parathyroid hormone-related protein gene expression in murine keratinocytes by E1A isoforms: a role for basal promoter and Ets-1 site. Mol Cell Endocrinol 1999; 156:13-23. [PMID: 10612419 DOI: 10.1016/s0303-7207(99)00151-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PTHrP gene expression was evaluated in a murine keratinocyte line, Pam 212K, transformed with E1A and ras. We found that the 12S-E1A oncogene, with or without ras transformation, markedly reduced PTHrP mRNA expression. Using transient transfection assays, we found that the 12S isoform repressed activity from a 5'PTHrP-driven reporter gene. E1A-induced repression of PTHrP reporter constructs appears to be mediated by sequences within minimal promoter region. The 13S-E1A isoform did not repress PTHrP reporter gene activity, and a 13S-deletion mutant that lacked the repressor domains activated a subset of reporter constructs. Mutation of an Ets-1 binding site upstream of the basal promoter substantially decreased activation of reporter constructs by this 13S-deletion mutant. These findings suggest that the E1A oncoprotein may serve as a model for both activation and repression of PTHrP gene expression.
Collapse
Affiliation(s)
- J Foley
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
22
|
Ahlgren R, Suske G, Waterman MR, Lund J. Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene. J Biol Chem 1999; 274:19422-8. [PMID: 10383457 DOI: 10.1074/jbc.274.27.19422] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary peptide hormone ACTH regulates transcription of the cholesterol side chain cleavage cytochrome P450 (CYP11A) gene via cAMP and activation of cAMP-dependent protein kinase. A G-rich sequence element conferring cAMP-dependent regulation has been found to reside within region -118 to -100 of the bovine CYP11A promoter. Previous studies have suggested that it binds a protein antigenically related to the transcription factor Sp1. We now report that the -118/-100 element binds both Sp1 and Sp3, members of the Sp family of transcription factors. We have made use of Drosophila SL2 cells, which lack endogenous Sp factors, to dissect the possible functional roles of Sp1, Sp3, and Sp4. All factors stimulated the activity of cotransfected reporter constructs in which the promoter of the bovine CYP11A gene regulates luciferase expression. Sp3 did not repress Sp1-dependent activation, as has previously been shown for other G-rich promoters. Mutation of the -118/-100 element of CYP11A abolished Sp1-mediated activation of a CYP11A reporter gene in SL2 cells as well as cAMP responsiveness in human H295R cells. Furthermore, cotransfection of SL2 cells with the catalytic subunit of cAMP-dependent protein kinase together with Sp1 and a CYP11A reporter construct enhanced Sp1-dependent activation of the reporter 4.2-fold, demonstrating that Sp1 confers cAMP responsiveness in these cells. Thus, we show that introduction of Sp1 alone in an Sp-negative cell such as SL2 is sufficient to achieve the cAMP-dependent regulation observed using the -118/-100 element of CYP11A in adrenocortical cells.
Collapse
Affiliation(s)
- R Ahlgren
- Department of Anatomy and Cell Biology, University of Bergen, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
23
|
Müller S, Maas A, Islam TC, Sideras P, Suske G, Philipsen S, Xanthopoulos KG, Hendriks RW, Smith CI. Synergistic activation of the human Btk promoter by transcription factors Sp1/3 and PU.1. Biochem Biophys Res Commun 1999; 259:364-9. [PMID: 10362515 DOI: 10.1006/bbrc.1999.0677] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis of the human Bruton's agammaglobulinemia tyrosine kinase (Btk) gene promoter revealed that 280 bp upstream of the transcriptional start site is sufficient for a cell restricted expression pattern. Here, the interplay of the transcription factors Sp1, Sp3, and PU.1 binding to this promoter area was analysed. All three proteins are able to independently activate the promoter in Drosophila Schneider (SL2) cells lacking endogenous Sp- or PU.1-like activities. Furthermore, PU.1 is able to act synergistically with Sp1 as well as Sp3 to transactivate the promoter. This transactivation is mediated through adjacent binding sites rather than through the more distant Sp binding site, suggesting a possible direct interaction between PU.1 and Sp1/3. Expression of Btk was found in ES cells and levels of expression were the same as in ES cells with a targeted deletion of the Sp1 gene, suggesting that Sp3 acts as a positive regulator of Btk in vivo, in the absence of Sp1.
Collapse
Affiliation(s)
- S Müller
- Center for BioTechnology, Karolinska Institute, NOVUM, S-14157 Huddinge, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Beaulieu PL, Cameron DR, Ferland JM, Gauthier J, Ghiro E, Gillard J, Gorys V, Poirier M, Rancourt J, Wernic D, Llinas-Brunet M, Betageri R, Cardozo M, Hickey ER, Ingraham R, Jakes S, Kabcenell A, Kirrane T, Lukas S, Patel U, Proudfoot J, Sharma R, Tong L, Moss N. Ligands for the tyrosine kinase p56lck SH2 domain: discovery of potent dipeptide derivatives with monocharged, nonhydrolyzable phosphate replacements. J Med Chem 1999; 42:1757-66. [PMID: 10346928 DOI: 10.1021/jm980676t] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p56lck is a member of the src family of tyrosine kinases. Through modular binding units called SH2 domains, p56lck promotes phosphotyrosine-dependent protein-protein interactions and plays a critical role in signal transduction events that lead to T-cell activation. Starting from the phosphorylated dipeptide (2), a high-affinity ligand for the p56lck SH2 domain, we have designed novel dipeptides that contain monocharged, nonhydrolyzable phosphate group replacements and bind to the protein with KD's in the low micromolar range. Replacement of the phosphate group in phosphotyrosine-containing sequences by a (R/S)-hydroxyacetic (compound 8) or an oxamic acid (compound 10) moiety leads to hydrolytically stable, monocharged ligands, with 83- and 233-fold decreases in potency, respectively. This loss in binding affinity can be partially compensated for by incorporating large lipophilic groups at the inhibitor N-terminus. These groups provide up to 13-fold increases in potency depending on the nature of the phosphate replacement. The discovery of potent (2-3 microM), hydrolytically stable dipeptide derivatives, bearing only two charges at physiological pH, represents a significant step toward the discovery of compounds with cellular activity and the development of novel therapeutics for conditions associated with undesired T-cell proliferation.
Collapse
Affiliation(s)
- P L Beaulieu
- Boehringer Ingelheim Pharmaceuticals Inc., 175 Briar Ridge Road, Ridgefield, Connecticut 06877, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rodrigo I, Cato AC, Cano A. Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Exp Cell Res 1999; 248:358-71. [PMID: 10222128 DOI: 10.1006/excr.1999.4438] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new regulatory region (-108 to -86), named CE, containing potential CRE- and Ets-binding sites has been identified in the murine E-cadherin promoter. The Ets-binding site (at -97 position) negatively modulates the activity of the E-cadherin promoter in expressing keratinocyte cell lines and was responsible for the specific retarded complexes obtained with the CE region. Analysis of the methylation status of the endogenous E-cadherin promoter indicated that silencing of E-cadherin expression in malignant keratinocytes cannot be explained by hypermethylation mechanisms. Furthermore, treatment with 5'-aza-2'-deoxycytidine was unable to induce the expression of E-cadherin in deficient keratinocytes. However, in vivo footprinting analysis of the endogenous E-cadherin promoter showed a very distinct pattern in expressing and nonexpressing keratinocytes. Extensive interactions in the previously postulated proximal regulatory elements and in the CE region were detected in expressing cells, while only some nucleotides of the E-pal element and of the CE region were protected in nonexpressing keratinocytes. These results indicate a complex regulation of the mouse E-cadherin promoter and support a model where the combination of positive (CCAAT-box and GC-rich region) and negative (E-pal element and CE region) cis-acting elements contribute to the final level of E-cadherin gene expression. In addition, our results show that downregulation of E-cadherin expression in transformed epidermal keratinocytes is mainly exerted through the interaction of repressor factor(s) with the E-pal element and to the lack of interaction of positive acting factors with the proximal regions.
Collapse
Affiliation(s)
- I Rodrigo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, Madrid, 28029, Spain
| | | | | |
Collapse
|
26
|
Blumenthal SG, Aichele G, Wirth T, Czernilofsky AP, Nordheim A, Dittmer J. Regulation of the human interleukin-5 promoter by Ets transcription factors. Ets1 and Ets2, but not Elf-1, cooperate with GATA3 and HTLV-I Tax1. J Biol Chem 1999; 274:12910-6. [PMID: 10212281 DOI: 10.1074/jbc.274.18.12910] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin-5 (IL-5), expressed primarily by type-2 T helper (Th2) cells, plays an important role in the development of allergic diseases, such as allergic asthma. Studying the regulation of IL-5 gene expression by Ets transcription factors, we found that Ets1 and Ets2, but not Elf-1, were able to activate the human IL-5 promoter in Jurkat T-cells. This required the presence of either phorbol 12-myristate acetate (PMA) plus ionomycin or PMA plus the viral protein HTLV-I Tax1. By mutation studies, it could be shown that Ets1 and Ets2 exerted their effects on the IL-5 promoter through a GGAA motif within the Cle0 element. In myeloid Kasumi cells, Ets1 and Ets2 failed to stimulate IL-5 promoter activity, unless the T-cell specific transcription factor GATA3 was added. These results show, for the first time, that Ets1 and Ets2 are able to cooperate with GATA3. Both ionomycin and Tax1 increased the combined effect of GATA3 with Ets1 and Ets2 in the presence of PMA. The data further demonstrate that, in addition to Ets1, Ets2 is also able to functionally cooperate with Tax1. The synergism of GATA3 with either Ets1 or Ets2 may play an important role in calcium- or Tax1-dependent regulation of IL-5 expression in Th2 cells or in HTLV-I transformed adult T-cell leukemia cells, respectively.
Collapse
Affiliation(s)
- S G Blumenthal
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Lan ZJ, Lye RJ, Holic N, Labus JC, Hinton BT. Involvement of polyomavirus enhancer activator 3 in the regulation of expression of gamma-glutamyl transpeptidase messenger ribonucleic acid-IV in the rat epididymis. Biol Reprod 1999; 60:664-73. [PMID: 10026114 DOI: 10.1095/biolreprod60.3.664] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) mRNA-IV and polyomavirus enhancer activator 3 (PEA3) mRNA are highly expressed in the initial segment of the rat epididymis, and both are regulated by testicular factors. PEA3 protein in rat initial segment nuclear extracts has been shown to bind to a PEA3/Ets binding motif, which is derived from the partially characterized GGT mRNA-IV promoter region. This suggests that PEA3 may be involved in regulating transcription from the rat GGT mRNA-IV gene promoter in the initial segment. Using DNA oligonucleotide primers and DNA sequencing analysis, an approximately 1500-basepair (bp) DNA sequence at the 5' region of the promoter was obtained. Using transient transfection, PEA3 activated transcription of the rat GGT mRNA-IV promoter only in cultured epididymal cells from the rat initial segment, but not in Cos-1 or NRK-52E cells. Promoter deletion analysis indicated that a PEA3/Ets binding motif between nucleotides -22 and -17 is the functional site for PEA3 to activate transcription of GGT promoter IV and that an adjacent Sp1 binding motif is also required to maintain promoter IV activity in epididymal cells. Transcriptional activation of promoter IV was shown to be epididymal cell-specific and PEA3-specific. In addition, PEA3 may act as a weak repressor for transcription of promoter IV, probably using a PEA3/Ets binding motif(s) distal to the transcription start site. A model of how PEA3 is involved in the regulation of transcription of GGT promoter IV in epididymal cells is proposed.
Collapse
Affiliation(s)
- Z J Lan
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
28
|
Weidler M, Marx UC, Seidel G, Schäfer W, Hoffmann E, Esswein A, Rösch P. The structure of human parathyroid hormone-related protein(1-34) in near-physiological solution. FEBS Lett 1999; 444:239-44. [PMID: 10050767 DOI: 10.1016/s0014-5793(98)01658-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parathyroid hormone-related protein plays a major role in the pathogenesis of humoral hypercalcemia of malignancy. Under normal physiological conditions, parathyroid hormone-related protein is produced in a wide variety of tissues and acts in an autocrine or paracrine fashion. Parathyroid hormone-related protein and parathyroid hormone bind to and activate the same G-protein-coupled receptor. Here we present the structure of the biologically active NH2-terminal domain of human parathyroid hormone-related protein(1-34) in near-physiological solution in the absence of crowding reagents as determined by two-dimensional proton magnetic resonance spectroscopy. An improved strategy for structure calculation revealed the presence of two helices, His-5-Leu-8 and Gln-16-Leu-27, connected by a flexible linker. The parathyroid hormone-related protein(1-34) structure and the structure of human parathyroid hormone(1-37) as well as human parathyroid hormone(1-34) are highly similar, except for the well defined turn, His-14-Ser-17, present in parathyroid hormone. Thus, the similarity of the binding affinities of parathyroid hormone and parathyroid hormone-related protein to their common receptor may be based on their structural similarity.
Collapse
Affiliation(s)
- M Weidler
- Lehrstuhl für Biopolymere, Universität Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Lubon H. Transgenic animal bioreactors in biotechnology and production of blood proteins. BIOTECHNOLOGY ANNUAL REVIEW 1999; 4:1-54. [PMID: 9890137 DOI: 10.1016/s1387-2656(08)70066-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regulatory elements of genes used to target the tissue-specific expression of heterologous human proteins have been studied in vitro and in transgenic mice. Hybrid genes exhibiting the desired performance have been introduced into large animals. Complex proteins like protein C, factor IX, factor VIII, fibrinogen and hemoglobin, in addition to simpler proteins like alpha 1-antitrypsin, antithrombin III, albumin and tissue plasminogen activator have been produced in transgenic livestock. The amount of functional protein secreted when the transgene is expressed at high levels may be limited by the required posttranslational modifications in host tissues. This can be overcome by engineering the transgenic bioreactor to express the appropriate modifying enzymes. Genetically engineered livestock are thus rapidly becoming a choice for the production of recombinant human blood proteins.
Collapse
Affiliation(s)
- H Lubon
- Plasma Derivatives Department, American Red Cross, Rockville, Maryland, USA.
| |
Collapse
|
30
|
Nuchprayoon I, Shang J, Simkevich CP, Luo M, Rosmarin AG, Friedman AD. An enhancer located between the neutrophil elastase and proteinase 3 promoters is activated by Sp1 and an Ets factor. J Biol Chem 1999; 274:1085-91. [PMID: 9873055 DOI: 10.1074/jbc.274.2.1085] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adjacent neutrophil elastase, proteinase 3, and azurocidin genes encode serine proteases expressed specifically in immature myeloid cells. Subclones of a 17-kilobase (kb) murine neutrophil elastase genomic clone were assessed for their ability to stimulate the neutrophil elastase promoter in 32D cl3 myeloid cells. Region -9.3 to -7.3 kb stimulated transcription 7-fold, whereas other genomic segments were inactive. This enhancer is located in the second intron of the proteinase-3 gene and so may regulate more than one gene in the myeloid protease cluster. Deletional analysis of the enhancer identified several segments which activated the neutrophil elastase and thymidine kinase promoters 3-6-fold. The most active segment was a 220-base pair region centered at -8.6 kb, which activated transcription 31-fold. This segment contains an Sp1 consensus site, which bound Sp1, flanked by two Ets family consensus sequences, which bound PU.1, GABP, and an Ets factor present in myeloid cell extracts. Mutation of the Sp1-binding site reduced enhancer activity 8-fold in 32D cl3 cells, and mutation of either or both Ets-binding sites reduced activity 3-4-fold. Sp1 activated the distal enhancer 5-fold, GABP 3-fold, and the combination 8-fold in Schneider cells.
Collapse
Affiliation(s)
- I Nuchprayoon
- Division of Pediatric Oncology, The Johns Hopkins Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chen H, Teng L, Li JN, Park R, Mold DE, Gnabre J, Hwu JR, Tseng WN, Huang RC. Antiviral activities of methylated nordihydroguaiaretic acids. 2. Targeting herpes simplex virus replication by the mutation insensitive transcription inhibitor tetra-O-methyl-NDGA. J Med Chem 1998; 41:3001-7. [PMID: 9685239 DOI: 10.1021/jm980182w] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We had previously reported that tetramethyl-O-NGDA (M4N), a synthetic derivative of the naturally occurring nordihydroguaiaretic acid (NDGA), is able to inhibit HIV Tat transactivation by blocking host Sp1 protein at the Sp1 cognate binding site on the HIV LTR promoter. The present studies were undertaken to examine whether M4N is able to inhibit the replication of herpes simplex virus (HSV), another Sp1-regulated virus. The results showed that in Vero cells, M4N inhibits at micromolar levels (IC50 = 43.5 microM) the expression of the herpes immediate early gene (alpha-ICP4), which is essential for HSV replication. An electrophoretic mobility shift assay, examining Sp1 binding to the alpha-ICP4 promoter, showed a significant inhibition of the control bands: 88% inhibition of the fast moving band (FMB) and 45% of the slow moving band (SMB), at 100 microM of drug concentration. Comparative studies between M4N and acycloguanosine (acyclovir, ACV) in cultured Vero cells revealed an interesting pattern in the drug sensitivity (IC50) and cytotoxicity (TC50) parameters. For M4N, the IC50 varied between 11.7 and 4 microM in 10 passages of HSV-1 and 4 passages of HSV-2 with no indication for a requirement of higher drug concentration. In contrast, for acyclovir, the IC50 increased from 7 microM in the first passage to 444 microM in the tenth passage of HSV-1, and >88 microM for the fourth passage of HSV-2, indicating a rapid build-up of drug resistance against acyclovir. While the selective index (SI), defined as the ratio: TC50/IC50, remained relatively constant for M4N; it dropped 60-fold for acyclovir in the endpoints of viral passages. Drug sensitivity for M4N toward the acyclovir-sensitive strain (sm44) and the acyclovir-resistant strain (ACV-10) of HSV-1 was similar, indicating no cross-resistance between M4N and acyclovir in their anti-HSV effects. These results may have an important clinical relevance since HSV has been shown to be a factor for spreading of HIV.
Collapse
Affiliation(s)
- H Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China, Organosilicon and Synthesis Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, China-Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Parathyroid Hormone-Related Protein-Induced Hypercalcemia in SCID Mice Engrafted With Adult T-Cell Leukemia Cells. Blood 1998. [DOI: 10.1182/blood.v91.12.4747] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractParathyroid hormone-related protein (PTHrP) is considered to be one of the main causes of hypercalcemia associated with adult T-cell leukemia (ATL). To clarify the role of PTHrP and bone remodeling in the development of hypercalcemia in ATL, we examined the SCID mouse model of ATL that has previously been shown to mimic the disease in humans. Using this model, we found clear elevations in serum levels of calcium and C-terminal PTHrP (C-PTHrP). PTHrP mRNA was highly expressed in ATL cells proliferating in vivo. After the development of hypercalcemia, ATL mice were killed and bone histomorphometric analysis was performed. Bone volume was clearly decreased in the ATL mice. In comparison to control SCID mice, bone formation indices were very low in the ATL mice. Surprisingly, no significant difference was detected between the ATL mice and the control SCID mice in eroded surface/bone surface (ES/BS), a parameter of bone resorption. To our knowledge, the model presented here is the first animal model of ATL with humoral hypercalcemia. This is in contrast to previously reported, well-characterized animal models of human solid tumors associated with humoral hypercalcemia of malignancy (HHM). Furthermore, this model not only provides us with the opportunity to study the mechanisms underlying development of elevated calcium levels in ATL, but also allows us to test new therapeutic agents designed to treat hypercalcemia.
Collapse
|
33
|
Abstract
Parathyroid hormone-related protein (PTHrP) is considered to be one of the main causes of hypercalcemia associated with adult T-cell leukemia (ATL). To clarify the role of PTHrP and bone remodeling in the development of hypercalcemia in ATL, we examined the SCID mouse model of ATL that has previously been shown to mimic the disease in humans. Using this model, we found clear elevations in serum levels of calcium and C-terminal PTHrP (C-PTHrP). PTHrP mRNA was highly expressed in ATL cells proliferating in vivo. After the development of hypercalcemia, ATL mice were killed and bone histomorphometric analysis was performed. Bone volume was clearly decreased in the ATL mice. In comparison to control SCID mice, bone formation indices were very low in the ATL mice. Surprisingly, no significant difference was detected between the ATL mice and the control SCID mice in eroded surface/bone surface (ES/BS), a parameter of bone resorption. To our knowledge, the model presented here is the first animal model of ATL with humoral hypercalcemia. This is in contrast to previously reported, well-characterized animal models of human solid tumors associated with humoral hypercalcemia of malignancy (HHM). Furthermore, this model not only provides us with the opportunity to study the mechanisms underlying development of elevated calcium levels in ATL, but also allows us to test new therapeutic agents designed to treat hypercalcemia.
Collapse
|
34
|
Rosmarin AG, Luo M, Caprio DG, Shang J, Simkevich CP. Sp1 cooperates with the ets transcription factor, GABP, to activate the CD18 (beta2 leukocyte integrin) promoter. J Biol Chem 1998; 273:13097-103. [PMID: 9582348 DOI: 10.1074/jbc.273.21.13097] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
CD18, the beta chain of the leukocyte integrins, plays a crucial role in immune and inflammatory responses. CD18 is expressed exclusively by leukocytes, and it is transcriptionally regulated during the differentiation of myeloid cells. The ets factors, PU.1 and GABP, bind to three ets sites in the CD18 promoter, which are essential for high level myeloid expression of CD18. We now identify two binding sites for the transcription factor, Sp1, that flank these ets sites. Sp1 is the only factor from myeloid cells that binds to these sites in a sequence-specific manner. Mutagenesis of these sites abrogates Sp1 binding and significantly reduces the activity of the transfected CD18 promoter in myeloid cells. Transfection of Sp1 into Drosophila Schneider cells, which otherwise lack Sp1, activates the CD18 promoter dramatically. GABP also activates the CD18 promoter in Schneider cells. Co-transfection of Sp1 and GABP activates CD18 more than the sum of their individual effects, indicating that these factors cooperate to transcriptionally activate myeloid expression of CD18. These studies support a model of high level, lineage-restricted gene expression mediated by cooperative interactions between widely expressed transcription factors.
Collapse
Affiliation(s)
- A G Rosmarin
- Division of Hematology, Brown University Department of Medicine and the Division of Hematology/Oncology, The Miriam Hospital, Providence, Rhode Island 02906, USA.
| | | | | | | | | |
Collapse
|
35
|
Dittmer J, Nordheim A. Ets transcription factors and human disease. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1377:F1-11. [PMID: 9606973 DOI: 10.1016/s0304-419x(97)00039-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Dittmer
- Abteilung für Molekularbiologie, Universität Tübingen, Germany
| | | |
Collapse
|
36
|
Chilco PJ, Leopold V, Zajac JD. Differential regulation of the parathyroid hormone-related protein gene P1 and P3 promoters by cAMP. Mol Cell Endocrinol 1998; 138:173-84. [PMID: 9685226 DOI: 10.1016/s0303-7207(97)00239-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of calcitonin, and other agonists which activate the cAMP pathway, in regulating transcription of the human parathyroid hormone-related protein (PTHrP) gene was investigated in a human lung cancer cell line (BEN). Both calcitonin and forskolin caused a 5-6-fold increase in transcription initiated from both the P1 and P3 promoters, but with no observed effect on the P2 promoter. Maximal 6-fold activation of the P1 promoter occurred at 16 h post-stimulation and effects of calcitonin were observed within the pM range. The PKC agonist, phorbol 12-myristate 13-acetate diester (PMA), did not modulate transcription initiated from the P1 promoter. The ionophore ionomycin had a small effect on transcription of the P1 promoter, and transcriptional control may involve an interaction between the cAMP and intracellular calcium second messenger pathways. Deletion mapping studies indicated that increases in transcription of the human PTHrP gene is being mediated via a CRE element situated at -3313 to -3306 upstream of the P1 promoter. Mutational analysis of this CRE element confirmed a role for this sequence in mediating the increase in transcription effected by cAMP. Consistent with these transfection studies, RT-PCR of PTHrP mRNA also indicated a significant increase in transcripts generated from the P1 promoter. Gel retardation assays utilising a fragment of the P1 promoter region, encompassing the putative CRE, determined that nuclear proteins were binding to this region. Competition binding studies with labelled probe and cold competitors determined that the binding was specific for this sequence. A wild-type CRE consensus oligonucleotide also competed for binding with this sequence.
Collapse
Affiliation(s)
- P J Chilco
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Victoria, Australia
| | | | | |
Collapse
|
37
|
Rellahan BL, Jensen JP, Howcroft TK, Singer DS, Bonvini E, Weissman AM. Elf-1 Regulates Basal Expression from the T Cell Antigen Receptor ζ-Chain Gene Promoter. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In mature T cells, limited synthesis of the TCR-ζ subunit is primarily responsible for regulating surface expression of TCRs. Transcription of ζ is directed by a complex promoter that includes two potential binding sites for the Ets family of transcription factors at −52 (zEBS1) and −135 (zEBS2). Mutation of these two sites results in a marked reduction of transcription from this promoter. Using electrophoretic mobility shift analysis, Elf-1 was demonstrated to be the Ets family member that binds to these sites. One site, zEBS1, matches the optimal Elf-1 consensus sequence in eight of nine bases, making it the best match of any known mammalian Elf-1 binding site. A role for Elf-1 in TCR-ζ trans-activation was confirmed by ectopic expression of Elf-1 in COS-7 cells. This resulted in an increase in TCR-ζ promoter activity that mapped to zEBS1 and zEBS2. Additional support for the involvement of Elf-1 in TCR-ζ trans-activation derives from the finding that a GAL4-Elf-1 fusion protein trans-activated TCR-ζ promoter constructs that had been modified to contain GAL4 DNA binding sites. These results demonstrate that Elf-1 plays an essential role in the trans-activation of a constitutively expressed T cell-specific gene, and that trans-activation occurs in the context of the native promoter in both lymphoid and nonlymphoid cells. Taken together with the existing literature, these data also suggest that the requirement for inducible factors in Elf-1-mediated trans-activation may decrease as the affinity and number of Elf-1 sites increase.
Collapse
Affiliation(s)
- Barbara L. Rellahan
- *Laboratory of Immunobiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | - Jane P. Jensen
- †Laboratory of Immune Cell Biology, National Cancer Institute, and
| | - Thomas K. Howcroft
- ‡Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dinah S. Singer
- ‡Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ezio Bonvini
- *Laboratory of Immunobiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | | |
Collapse
|
38
|
Pei L. Genomic organization and identification of an enhancer element containing binding sites for multiple proteins in rat pituitary tumor-transforming gene. J Biol Chem 1998; 273:5219-25. [PMID: 9478977 DOI: 10.1074/jbc.273.9.5219] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The rat pituitary tumor transforming gene (PTTG) genomic structure was characterized in this study. Northern blot analysis showed that PTTG mRNA is highly expressed in testicular cell lines. Transfection of testicular cell lines with fusion constructs containing various portions of PTTG 5'-flanking sequences linked to luciferase showed that at least 745 base-pair (bp(s)) 5'-flanking sequences are required for PTTG transcriptional activation. DNaseI footprinting assays indicated that nuclear protein(s) from testicular cell lines interacts with PTTG 5'-flanking sequence between -509 and -624 bp, including two consensus Sp1 binding sites. Western and Southwestern blot analysis showed that three nuclear proteins in addition to Sp1 protein specifically interact with this DNA sequence and that two of these proteins are testicular cell-specific. Deletion of this 115-bp sequence from PTTG promoter resulted in complete loss of promoter function. Site-directed mutagenesis within the Sp1 consensus sequences indicated that the Sp1 binding sites are not critical components of the enhancer sequence for PTTG trancriptional activation in testicular cell lines. Finally, the 115-bp enhancer sequence was shown to be able to activate transcription from a heterologous promoter. These results suggest that PTTG transcriptional activation in testicular cell lines involves interactions of multiple nuclear factors with the PTTG 5' enhancer sequence.
Collapse
Affiliation(s)
- L Pei
- Division of Endocrinology, Cedars-Sinai Research Institute, UCLA School of Medicine, Los Angeles, California 90048, USA.
| |
Collapse
|
39
|
Trejo SR, Fahl WE, Ratner L. The tax protein of human T-cell leukemia virus type 1 mediates the transactivation of the c-sis/platelet-derived growth factor-B promoter through interactions with the zinc finger transcription factors Sp1 and NGFI-A/Egr-1. J Biol Chem 1997; 272:27411-21. [PMID: 9341193 DOI: 10.1074/jbc.272.43.27411] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcriptional up-regulation of the c-sis/platelet-derived growth factor-B (PDGF-B) proto-oncogene by the Tax protein of human T-cell leukemia virus type 1 has been implicated as one possible mechanism of cellular transformation by human T-cell leukemia virus type 1. In previous work, we identified an essential site in the c-sis/PDGF-B promoter, Tax-responsive element 1 (TRE1), necessary for transactivation by Tax. We also identified Sp1, Sp3, and NGFI-A/Egr-1 as the primary nuclear transcription factors binding to TRE1 which mediate Tax responsiveness. In the present work, we have investigated the mechanism(s) whereby Tax transactivates the c-sis/PDGF-B proto-oncogene. In vitro transcription assays showed that Tax was able to significantly increase the transcriptional activity of a template containing the -257 to +74 region of the c-sis/PDGF-B promoter. Electrophoretic mobility shift assay analysis showed that Tax increased the DNA binding activity of both Sp1 and NGFI-A/Egr-1 using a TRE1 probe. Analysis of Tax mutants showed that two mutants, IEXC29S and IEXL320G, were unable to significantly transactivate the c-sis/PDGF-B promoter. Finally, co-immunoprecipitation analysis revealed that Tax is able to stably bind to both Sp1 and NGFI-A/Egr-1. Interestingly, co-immunoprecipitation analysis also revealed that Tax mutant IEXC29S is unable to interact with NGFI-A/Egr-1, whereas Tax mutant IEXL320G is able to interact with NGFI-A/Egr-1.
Collapse
Affiliation(s)
- S R Trejo
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
40
|
Spain TA, Sun R, Miller G. The locus of Epstein-Barr virus terminal repeat processing is bound with enhanced affinity by Sp1 and Sp3. Virology 1997; 237:137-47. [PMID: 9344916 DOI: 10.1006/viro.1997.8770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EBV DNA contains G-rich, repeat regions that are involved in rearrangement and recombination events including terminal repeat (TR) processing and the EBNA-2 deletion in the EBV strain P3HR-1. Cellular proteins, called terminal or tandem repeat binding proteins (TRBPs), recognize sequences at the junctions of these recombination events. In this study, using antibody supershift assays and expression of recombinant proteins, we show that Sp1 and Sp3 are the sequence-specific components of TRBP and that Ku is the nonspecific binding component. Sp1 binds other recombinogenic regions of EBV DNA, but Sp3 does not bind to the large internal repeat. The sequence GGGGTGGGG, a low affinity site for Sp1 and Sp3, is the minimal binding site within terminal repeat binding site 1 (TRBS1). However, 3' flanking sequences in the sequence GGGGTGGGGCATGGGG augment binding of Sp1 and Sp3 so that their affinity of binding is increased approximately twofold relative to a classical high-affinity Sp1 site. EBV lytic cycle induction does not alter the abundance or binding activity of any of the three identified components of TRBP. Sp1 and Sp3 may act in trans to promote EBV terminal repeat processing and possibly other viral and cellular recombination events.
Collapse
Affiliation(s)
- T A Spain
- Department of Epidemiology, Department of Public Health, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
41
|
Karperien M, Farih-Sips H, Löwik CW, de Laat SW, Boonstra J, Defize LH. Expression of the parathyroid hormone-related peptide gene in retinoic acid-induced differentiation: involvement of ETS and Sp1. Mol Endocrinol 1997; 11:1435-48. [PMID: 9280059 DOI: 10.1210/mend.11.10.9997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Differentiation of P19 embryonal carcinoma (EC) and embryonal stem (ES)-5 cells with retinoic acid (RA) induces expression of PTH-related peptide (PTHrP) mRNA. In this study we have characterized a region between nucleotide (nt) -88 and -58 relative to the transcription start site in the murine PTHrP gene that was involved in this expression. Sequence analysis identified two partially overlapping binding sites for the Ets family of transcription factors and an inverted Sp1-binding site. Two major specific bands were detected in a bandshift assay using an oligonucleotide spanning nt -88 and -58 as a probe and nuclear extracts from both undifferentiated and RA-differentiated P19 EC cells. The lower complex consisted of Ets-binding proteins as demonstrated by competition with consensus Ets-binding sites, while the upper complex contained Sp1-binding activity as demonstrated by competition with consensus Sp1-binding sites. The observed bandshift patterns using nuclear extracts of undifferentiated or RA-differentiated P19 cells were indistinguishable, suggesting that the differentiation-mediated expression was not caused by the induction of expression of new transcription factors. Mutations in either of the Ets-binding sites or the Sp1-binding site completely abolished RA-induced expression of PTHrP promoter reporter constructs, indicating that the RA effect was dependent on the simultaneous action of both Ets- and Sp1-like activities. Furthermore, these mutations also abolished promoter activity in cells that constitutively expressed PTHrP mRNA, suggesting a central role for the Ets and Sp1 families of transcription factors in the expression regulation of the mouse PTHrP gene.
Collapse
Affiliation(s)
- M Karperien
- Department of Endocrinology, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Dittmer J, Pise-Masison CA, Clemens KE, Choi KS, Brady JN. Interaction of human T-cell lymphotropic virus type I Tax, Ets1, and Sp1 in transactivation of the PTHrP P2 promoter. J Biol Chem 1997; 272:4953-8. [PMID: 9030555 DOI: 10.1074/jbc.272.8.4953] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously shown that the parathyroid hormone-related protein (PTHrP) promoter contains binding sites for transcription factors Ets1 and Sp1 and that human T-cell lymphotropic virus type I (HTLV-I) Tax cooperates with Ets1 to transactivate the PTHrP P2 promoter. Using the yeast two-hybrid interaction system, we now provide evidence that Tax interacts with Ets1. Moreover, a double mutation (D22A,C23S) in the Tax protein that abrogated the Tax/Ets1 interaction also inhibited the Tax/Ets1 cooperative effect, suggesting that the interaction between Tax and Ets1 is important for transactivation of the PTHrP promoter. In coimmunoprecipitation assays, we find that Tax facilitates the interaction between Ets1 and Sp1, forming a ternary complex. When the Sp1 site in the PTHrP promoter was mutated, the Tax/Ets1 cooperative effect was dramatically decreased. This suggests that Sp1 plays an important role in the Ets1-dependent Tax transactivation of the PTHrP P2 promoter. Finally, we demonstrate that Gal4-Tax is a strong activator of the Gal PTHrP promoter, implying that Tax contributes directly to the transcriptional activation of the promoter. We propose a model in which the Tax/Ets1 cooperative effect on the PTHrP P2 promoter is based on the ability of Tax, Ets1, and Sp1 to form a ternary complex on the template DNA. Tax facilitates the interaction of Ets1/Sp1 and participates directly in the transcription initiation process.
Collapse
Affiliation(s)
- J Dittmer
- Virus Tumor Biology Section, Laboratory of Molecular Virology, NCI, National Institutes of Health, Bethesda, Maryland 20892-5005, USA
| | | | | | | | | |
Collapse
|
43
|
Deftos LJ, Burton DW, Baird SM, Terkeltaub RA. Hypercalcemia and systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 1996; 39:2066-9. [PMID: 8961913 DOI: 10.1002/art.1780391217] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypercalcemia is commonly caused by the increased production of parathyroid hormone-related protein (PTHrP) by a malignancy. In fact, the demonstration of increased PTHrP production in a patient with hypercalcemia is virtually pathognomonic of malignancy. We studied a patient with systemic lupus erythematosus (SLE), generalized lymphadenopathy, and hypercalcemia. Immunohistology of 2 biopsied lymph nodes revealed the abundant expression of PTHrP and the absence of malignant transformation. Although apparently rare, PTHrP production by non-malignant lymphoid tissue may occur in SLE and should be considered in the differential diagnosis of hypercalcemia.
Collapse
Affiliation(s)
- L J Deftos
- Department of Medicine, University of California, San Diego, USA
| | | | | | | |
Collapse
|
44
|
Piras G, Dittmer J, Radonovich MF, Brady JN. Human T-cell leukemia virus type I Tax protein transactivates RNA polymerase III promoter in vitro and in vivo. J Biol Chem 1996; 271:20501-6. [PMID: 8702791 DOI: 10.1074/jbc.271.34.20501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tax protein of the human T-cell lymphotropic virus type 1 (HTLV-I) is critical for viral replication and is a potent transcriptional activator of viral and cellular polymerase II (pol II) genes. We report here that Tax is able to transactivate a classical pol III promoter, VA-I. In cotransfection experiments, Tax is shown to increase transcription of the VA-I promoter approximately 25-fold. Moreover, Tax is able to activate VA-I transcription when added exogenously to an in vitro transcription reaction. Using Tax affinity column chromatography, we demonstrate that Tax is able to deplete a HeLa cell extract for components required for transcription of VA-I. The transcriptional activity of the Tax-depleted extract can be restored by the 0.6 phosphocellulose fraction. Interestingly, a consensus binding site for cAMP-responsive element binding protein (CREB) is located upstream of the VA-I promoter, and deletion of this element results in the loss of Tax responsiveness. When this CREB binding site is replaced by a Gal-4 binding site, the VA-I promoter can be transactivated by a Gal4-Tax fusion protein. Taken together, these results suggest that Tax may activate pol III and pol II promoter through a similar mechanism involving the CREB activation pathway. It is also possible that Tax affects pol III transcription by direct interaction with a component of the pol III transcriptional machinery.
Collapse
Affiliation(s)
- G Piras
- Laboratory of Molecular Virology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Trejo SR, Fahl WE, Ratner L. c-sis/PDGF-B promoter transactivation by the Yax protein of human T-cell leukemia virus type 1. J Biol Chem 1996; 271:14584-90. [PMID: 8662878 DOI: 10.1074/jbc.271.24.14584] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human c-sis proto-oncogene promoter is transactivated by the human T-cell leukemia virus type 1 Tax protein in human Jurkat T-cells. Transactivation was >7-fold in Jurkat cells stably expressing the Tax protein (Jurkat-Tax) than in Jurkat E6.1 cells and was further enhanced in Jurkat-Tax cells stimulated with 12-O-tetradecanoylphorbol-13-acetate and the calcium ionophore, ionomycin. Deletion analysis showed that a 167-base pair promoter fragment retained full Tax responsiveness. Insertion of this minimal Tax-responsive region into a heterologous, minimal promoter resulted in approximately a 7-fold increase of transcriptional activation in the presence of Tax. Linker-scanning insertion analysis of this region identified Tax-responsive elements at nucleotides -64 to -45 (TRE1) and -34 to -15 (TATA box region). TRE1 contains a consensus binding site for the Sp family of transcription factors. The TATA box region corresponds to the TATA box and its 3'-neighboring sequence. Gel-shift and antibody supershift analysis of TRE1-binding proteins in unstimulated Jurkat E6.1 and Jurkat-Tax nuclear extracts identified Sp1 and Sp3 as the main TRE1 binding factors. Nuclear extracts from stimulated Jurkat E6.1 and Jurkat-Tax cells identified an additional TRE1 binding factor, Egr-1. These studies define a novel mechanism whereby Tax transactivates the c-sis promoter.
Collapse
Affiliation(s)
- S R Trejo
- Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
47
|
The mouseCD7 gene: Identification of a new element common to the humanCD7 and mouseThy-1 promoters. Immunogenetics 1996. [DOI: 10.1007/bf02660058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Fuks F, Deleu L, Dinsart C, Rommelaere J, Faisst S. ras oncogene-dependent activation of the P4 promoter of minute virus of mice through a proximal P4 element interacting with the Ets family of transcription factors. J Virol 1996; 70:1331-9. [PMID: 8627649 PMCID: PMC189952 DOI: 10.1128/jvi.70.3.1331-1339.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The P4 promoter of parvovirus minute virus of mice (MVMp) directs transcription of the genes coding for nonstructural proteins. The activity of promoter P4 is regulated by several cis-acting DNA elements. Among these, a promoter-proximal GC box was shown to be essential for P4 activity (J.K. Ahn, B.J. Gavin, G. Kumar, and D.C. Ward, J. Virol. 63:5425-5439, 1989). In this study, a motif homologous to an Ets transcription factor-binding site (EBS), located immediately upstream from the GC box, was found to be required for the full activity of promoter P4 in the ras-transformed rat fibroblast cell line FREJ4. In normal parental FR3T3 cells, the transcriptional function of P4 EBS was insignificant but could be restored by transient cell transfection with the c-Ha-ras oncogene. P4 EBS may thus contribute to the stimulation of promoter P4 in ras-transformed cells. Electrophoretic mobility shift assays using crude extracts from FREJ4 cells revealed the binding of a member(s) of the Ets family of transcription factors to the P4 EBS, as well as the interaction of two members of the Sp1 family, Sp1 and Sp3, with the adjacent GC box. When produced in Drosophila melanogaster SL2 cells, Ets-1 and Sp1 proteins acted synergistically to transactivate promoter P4 through their respective cognate sites.
Collapse
Affiliation(s)
- F Fuks
- Applied Tumor Virology Unit, Abteilung 0610, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Lee JH, Jang SI, Yang JM, Markova NG, Steinert PM. The Proximal Promoter of the Human Transglutaminase 3 Gene. J Biol Chem 1996. [DOI: 10.1074/jbc.271.8.4561] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
50
|
Motokura T, Endo K, Kumaki K, Ogata E, Ikeda K. Neoplastic transformation of normal rat embryo fibroblasts by a mutated p53 and an activated ras oncogene induces parathyroid hormone-related peptide gene expression and causes hypercalcemia in nude mice. J Biol Chem 1995; 270:30857-61. [PMID: 8537338 DOI: 10.1074/jbc.270.52.30857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Parathyroid hormone-related peptide (PTHRP) is a 141-amino acid protein identified in various carcinomas associated with humoral hypercalcemia of malignancy (HHM). Although the causal role of PTHRP in HHM syndrome has been established, the molecular and cellular mechanism by which PTHRP gene is overexpressed in certain malignancies remains unknown. We have demonstrated in the present study that PTHRP secretion was markedly induced concomitantly with the formation of transformed foci after normal rat embryo fibroblasts (REFs) were co-transfected with an activated ras (ras) and a mutated form of p53 (p53-mt) genes. In either ras- or p53-mt-transfected (nontransformed) cells, only modest or barely detectable secretion of PTHRP was observed, respectively. Northern blot analysis revealed that PTHRP mRNA was markedly induced in fully transformed cells 11 days after transfection with both ras and p53-mt genes. Inhibition of RNA synthesis with actinomycin D resulted in almost complete disappearance of PTHRP mRNA at 2-3 h, suggesting a transcriptional mechanism. Transient transfection experiments revealed that PTHRP promoter activity was induced in ras + p53-mt transfectants. REFs transformed by ras and p53-mt genes and thereby induced to secrete PTHRP in vitro produced aggressively growing tumors associated with HHM syndrome when injected into nude mice. These results suggest that activation of PTHRP gene is closely related to malignant transformation of normal mammalian cells and that ras and p53 may be important regulators of PTHRP gene transcription. The transfection-focus formation system of REFs should provide an excellent model to study the molecular and cellular mechanism underlying concomitant overexpression of PTHRP gene with carcinogenesis.
Collapse
Affiliation(s)
- T Motokura
- Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Japan
| | | | | | | | | |
Collapse
|