1
|
Wong NR, Sundar R, Kazanis S, Biswas J, Pochapsky TC. Conformational heterogeneity suggests multiple substrate binding modes in CYP106A2. J Inorg Biochem 2023; 241:112129. [PMID: 36731370 PMCID: PMC9992128 DOI: 10.1016/j.jinorgbio.2023.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
CYP106A2 (cytochrome P450meg) is a bacterial enzyme originally isolated from B. megaterium, and has been shown to hydroxylate a wide variety of substrates, including steroids. The regio- and stereochemistry of CYP106A2 hydroxylation has been shown to be dependent on a variety of factors, and hydroxylation often occurs at more than one site and/or with lack of stereospecificity for some substrates. Comprehensive backbone 15N, 1H and 13C resonance assignments based on multidimensional nuclear magnetic resonance (NMR) experiments performed with uniform and selective isotopically labeled CYP106A2 samples are reported herein, and broadening and splitting of resonances assigned to regions of the enzyme shown to be affected by substrate binding in other P450 enzymes indicate that substrate binding does not reduce structural heterogeneity as has been observed previously in P450 enzymes CYP101A1 and MycG. Paramagnetic relaxation enhancement (PRE) due to proximity between substrate protons and the heme iron were measured for three different substrates, and the relatively uniform nature of the PREs support the proposal that multiple substrate binding modes are occupied at saturating substrate concentrations.
Collapse
Affiliation(s)
- Nathan R Wong
- Dept. of Biochemistry, Brandeis University, 415 South St., Waltham, MA 02454, United States of America
| | - Reethy Sundar
- Dept. of Biochemistry, Brandeis University, 415 South St., Waltham, MA 02454, United States of America
| | - Sophia Kazanis
- Dept. of Chemistry, Brandeis University, MS 015, 415 South St., Waltham, MA 02454, United States of America; Middlesex Community College, 33 Kearney Sq., Lowell, MA 01852, United States of America
| | - Jeetayu Biswas
- Dept. of Chemistry, Brandeis University, MS 015, 415 South St., Waltham, MA 02454, United States of America; Department of Medicine, Weill-Cornell Medicine, New York, NY, United States of America
| | - Thomas C Pochapsky
- Dept. of Biochemistry, Brandeis University, 415 South St., Waltham, MA 02454, United States of America; Dept. of Chemistry, Brandeis University, MS 015, 415 South St., Waltham, MA 02454, United States of America; Rosenstiel Center for Basic Biomedical Research, Brandeis University, 415 South St., Waltham, MA 02454, United States of America.
| |
Collapse
|
2
|
Carius Y, Hutter M, Kiss F, Bernhardt R, Lancaster CRD. Structural comparison of the cytochrome P450 enzymes CYP106A1 and CYP106A2 provides insight into their differences in steroid conversion. FEBS Lett 2022; 596:3133-3144. [PMID: 36151590 DOI: 10.1002/1873-3468.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023]
Abstract
Understanding the structural basis of the selectivity of steroid hydroxylation requires detailed structural and functional investigations on various steroid hydroxylases with different selectivities, such as the bacterial cytochrome P450 enzymes. Here, the crystal structure of the cytochrome P450 CYP106A1 from Priestia megaterium was solved. CYP106A1 exhibits a rare additional structural motif of a cytochrome P450, a sixth β-sheet. The protein was found in different unusual conformations corresponding to both open and closed forms even when crystallized without any known substrate. The structural comparison of CYP106A1 with the previously investigated CYP106A2, including docking studies for both isoforms with the substrate cortisol, reveals a completely different orientation of the steroid molecule in the active sites. This distinction convincingly explains the experimentally observed differences in substrate conversion and product formation by the two enzymes.
Collapse
Affiliation(s)
- Yvonne Carius
- Department of Structural Biology, Faculty of Medicine, Center of Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Michael Hutter
- Centre for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Flora Kiss
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - C Roy D Lancaster
- Department of Structural Biology, Faculty of Medicine, Center of Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Zhu R, Liu Y, Yang Y, Min Q, Li H, Chen L. Cytochrome P450 Monooxygenases Catalyse Steroid Nucleus Hydroxylation with Regio‐ and Stereo‐selectivity. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
de Paula SFC, Rosset IG, Porto ALM. Hydroxylated steroids in C-7 and C-15 positions from progesterone bio-oxidation by the marine-derived fungus Penicillium oxalicum CBMAI 1996. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
6
|
Chen W, Fisher MJ, Leung A, Cao Y, Wong LL. Oxidative Diversification of Steroids by Nature-Inspired Scanning Glycine Mutagenesis of P450BM3 (CYP102A1). ACS Catal 2020. [DOI: 10.1021/acscatal.0c02077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenyu Chen
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Matthew J. Fisher
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Aaron Leung
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Yang Cao
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu 215123, P.R. China
| | - Luet L. Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu 215123, P.R. China
| |
Collapse
|
7
|
Zhang X, Peng Y, Zhao J, Li Q, Yu X, Acevedo-Rocha CG, Li A. Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-019-0290-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractSteroids are the most widely marketed products by the pharmaceutical industry after antibiotics. Steroid hydroxylation is one of the most important functionalizations because their derivatives enable a higher biological activity compared to their less polar non-hydroxylated analogs. Bacterial cytochrome P450s constitute promising biocatalysts for steroid hydroxylation due to their high expression level in common workhorses like Escherichia coli. However, they often suffer from wrong or insufficient regio- and/or stereoselectivity, low activity, narrow substrate range as well as insufficient thermostability, which hampers their industrial application. Fortunately, these problems can be generally solved by protein engineering based on directed evolution and rational design. In this work, an overview of recent developments on the engineering of bacterial cytochrome P450s for steroid hydroxylation is presented.
Collapse
|
8
|
Zoghi M, Gandomkar S, Habibi Z. Biotransformation of progesterone and testosterone enanthate by Circinella muscae. Steroids 2019; 151:108446. [PMID: 31302114 DOI: 10.1016/j.steroids.2019.108446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/07/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022]
Abstract
In this study, the biotransformation of progesterone (1) and testosterone enanthate (5) using the whole cells of Circinella muscae was investigated for the first time. Microbial transformation of 1 with C. muscae afforded three known metabolites including 9α-hydroxyprogesterone (2), 14α-hydroxyprogesterone (3) and 6β,14α dihydroxyprogesterone (4) after 6 days of incubation at 26 °C. The biotransformation of 5 with C. muscae yielded a new metabolite; 8β,14α-dihydroxytestosterone (8), in addition to two known metabolites; 6β-hydroxytestosterone (6), and 9α-hydroxytestosterone (7). The structure of the metabolites were established on the basis of spectroscopic data.
Collapse
Affiliation(s)
- Mahsa Zoghi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran
| | - Somayyeh Gandomkar
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran.
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University G.C, Tehran, Iran.
| |
Collapse
|
9
|
Sagadin T, Riehm J, Putkaradze N, Hutter MC, Bernhardt R. Novel approach to improve progesterone hydroxylation selectivity by
CYP
106A2 via rational design of adrenodoxin binding. FEBS J 2019; 286:1240-1249. [DOI: 10.1111/febs.14722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tanja Sagadin
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Jan Riehm
- Center for Bioinformatics Saarland University Saarbrücken Germany
| | | | | | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
10
|
Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Commun Biol 2018; 1:99. [PMID: 30271979 PMCID: PMC6123783 DOI: 10.1038/s42003-018-0104-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Natural redox partners of bacterial cytochrome P450s (P450s) are mostly unknown. Therefore, substrate conversions are performed with heterologous redox partners; in the case of CYP106A2 from Bacillus megaterium ATCC 13368, bovine adrenodoxin (Adx) and adrenodoxin reductase (AdR). Our aim was to optimize the redox system for CYP106A2 for improved product formation by testing 11 different combinations of redox partners. We found that electron transfer protein 1(516–618) showed the highest yield of the main product, 15β-hydroxyprogesterone, and, furthermore, produced a reduced amount of unwanted polyhydroxylated side products. Molecular protein–protein docking indicated that this is caused by subtle structural changes leading to alternative binding modes of both redox enzymes. Stopped-flow measurements analyzing the CYP106A2 reduction and showing substantial differences in the apparent rate constants supported this conclusion. The study provides for the first time to our knowledge rational explanations for differences in product patterns of a cytochrome P450 caused by difference in the binding mode of the redox partners. Tanja Sagadin et al. show that different redox systems can be used to tune the rate selectivity and yield of progesterone conversion by the cytochrome P450 CYP106A2. They screen 11 redox partner combinations and identify specific combinations that may be used to improve biotechnological production of mono- and polyhydroxylated products.
Collapse
|
11
|
Litzenburger M, Bernhardt R. CYP260B1 acts as 9α-hydroxylase for 11-deoxycorticosterone. Steroids 2017; 127:40-45. [PMID: 28827071 DOI: 10.1016/j.steroids.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 01/27/2023]
Abstract
Steroids and their oxyfunctionalized counterparts are valuable compounds for the pharmaceutical industry; however, the regio- and stereoselective introduction of oxygen is a challenging task for the synthetic chemistry. Thus, cytochromes P450 play an important role for the functionalization of steroidal compounds. In this study, we elucidated the main product of 11-deoxycorticosterone conversion formed by CYP260B1 from Sorangium cellulosum So ce56 as 9α-OH 11-deoxycorticosterone by NMR spectroscopy. This is, to the best of our knowledge, the first identification of a 9α-hydroxylase for this substrate. In addition, the major side product was identified as 21-OH pregna-1,4-diene-3,20-dione. Studies using 1α-OH 11-deoxycorticosterone as substrate suggested that the major side product is formed via dehydrogenation reaction. This side reaction was considerably decreased by employing the CYP260B1-T224A mutant, which showed an increased selectivity of about 75% compared to the 60% of the wild type for the 9α-hydroxylation. To scale up the production, an E. coli based whole-cell system harboring the CYP260B1-T224A variant as well as two heterologous redox partners was used. Employing growing cells in minimal medium led to a productivity of about 0.25g/l/d at a 50ml scale showing the biotechnological potential of this system.
Collapse
Affiliation(s)
- Martin Litzenburger
- Saarland University, Institute of Biochemistry, Campus B.2.2, 66123 Saarbruecken, Germany
| | - Rita Bernhardt
- Saarland University, Institute of Biochemistry, Campus B.2.2, 66123 Saarbruecken, Germany.
| |
Collapse
|
12
|
Bakkes PJ, Riehm JL, Sagadin T, Rühlmann A, Schubert P, Biemann S, Girhard M, Hutter MC, Bernhardt R, Urlacher VB. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Sci Rep 2017; 7:9570. [PMID: 28852040 PMCID: PMC5575160 DOI: 10.1038/s41598-017-10075-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Most bacterial cytochrome P450 monooxygenases (P450s or CYPs) require two redox partner proteins for activity. To reduce complexity of the redox chain, the Bacillus subtilis flavodoxin YkuN (Y) was fused to the Escherichia coli flavodoxin reductase Fpr (R), and activity was tuned by placing flexible (GGGGS)n or rigid ([E/L]PPPP)n linkers (n = 1–5) in between. P-linker constructs typically outperformed their G-linker counterparts, with superior performance of YR-P5, which carries linker ([E/L]PPPP)5. Molecular dynamics simulations demonstrated that ([E/L]PPPP)n linkers are intrinsically rigid, whereas (GGGGS)n linkers are highly flexible and biochemical experiments suggest a higher degree of separation between the fusion partners in case of long rigid P-linkers. The catalytic properties of the individual redox partners were best preserved in the YR-P5 construct. In comparison to the separate redox partners, YR-P5 exhibited attenuated rates of NADPH oxidation and heme iron (III) reduction, while coupling efficiency was improved (28% vs. 49% coupling with B. subtilis CYP109B1, and 44% vs. 50% with Thermobifida fusca CYP154E1). In addition, YR-P5 supported monooxygenase activity of the CYP106A2 from Bacillus megaterium and bovine CYP21A2. The versatile YR-P5 may serve as a non-physiological electron transfer system for exploitation of the catalytic potential of other P450s.
Collapse
Affiliation(s)
- Patrick J Bakkes
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Jan L Riehm
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany
| | - Tanja Sagadin
- Institute of Biochemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Ansgar Rühlmann
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Peter Schubert
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Stefan Biemann
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Marco Girhard
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus Building B2.2, 66123, Saarbrücken, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
Schmitz D, Janocha S, Kiss FM, Bernhardt R. CYP106A2-A versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:11-22. [PMID: 28780179 DOI: 10.1016/j.bbapap.2017.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
CYP106A2 from Bacillus megaterium ATCC13368, was identified in the 1970s as one of the first bacterial steroid hydroxylases responsible for the conversion of progesterone to 15β-hydroxyprogesterone. Later on it has been proven to be a potent hydroxylase of numerous 3-oxo-Δ4 as well as 3-hydroxy-Δ5-steroids and has recently also been characterized as a regioselective allylic bacterial diterpene hydroxylase. The main hydroxylation position of CYP106A2 is thought to be influenced by the functional groups at C3 position in the steroid core leading to a favored 15β-hydroxylation of 3-oxo-Δ4-steroids and 7β-hydroxylation of 3-hydroxy-Δ5-steroids. However, in some cases the hydroxylation is not strictly selective, resulting in the formation of undesired side-products. To overcome the unspecific hydroxylations or, on the contrary, to gain more of these products in case they are of industrial interest, rational protein design and directed evolution have been successfully performed to shift the stereoselectivity of hydroxylation by CYP106A2. The subsequently obtained hydroxylated steroid and terpene derivatives are especially useful as drug metabolites and drug precursors for the pharmaceutical industry, due to their diverse biological properties and hardship of their chemical synthesis. As a soluble prokaryotic P450 with broad substrate spectrum and hydroxylating capacity, CYP106A2 is an outstanding candidate to establish bioconversion processes. It has been expressed with respectable yields in Escherichia coli and Bacillus megaterium and was applied for the preparative hydroxylation of several steroids and terpenes. Recently, the application of the enzyme was assessed under process conditions as well, depicting a successfully optimized process development and getting us closer to industrial scale process requirements and a future large scale application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Daniela Schmitz
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Flora Marta Kiss
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbruecken, Germany.
| |
Collapse
|
14
|
Nikolaus J, Nguyen KT, Virus C, Riehm JL, Hutter M, Bernhardt R. Engineering of CYP106A2 for steroid 9α- and 6β-hydroxylation. Steroids 2017; 120:41-48. [PMID: 28163026 DOI: 10.1016/j.steroids.2017.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 11/25/2022]
Abstract
CYP 106A2 from Bacillus megaterium ATCC 13368 has been described as a 15β-hydroxylase showing also minor 11α-, 9α- and 6β-hydroxylase activity for progesterone conversion. Previously, mutant proteins with a changed selectivity towards 11α-OH-progesterone have already been produced. The challenge of this work was to create mutant proteins with a higher regioselectivity towards hydroxylation at positions 9 and 6 of the steroid molecule. 9α-hydroxyprogesterone exhibits pharmaceutical importance, because it is a useful intermediate in the production of physiologically active substances which possess progestational activity. Sixteen mutant proteins were selected from a library containing mutated proteins created by a combination of site-directed and saturation mutagenesis of active site residues. Four mutant proteins out of these catalyzed the conversion of progesterone to 9α-OH-progesterone as a main product. For further optimization site-directed mutagenesis was performed. The introduction of seven mutations (D217V, A243V, A106T, F165L, T89N, T247V or T247W) into these four mutant proteins led to 28 new variants, which were also used for an in vivo conversion of progesterone. The best mutant protein, F165L/A395E/G397V, showed a ten-fold increase in the selectivity towards progesterone 9α-hydroxylation compared with the wild type CYP106A2. Also 6β-OH-progesterone is a pharmaceutically important compound, especially as intermediate for the production of drugs against breast cancer. For the rational design of mutant proteins with 6β-selectivity, docking of the 3D-structure of CYP106A2 with progesterone was performed. The introduction of three mutations (T247A, A243S, F173A) led to seven new mutant proteins. Clone A243S showed the greatest improvement in 6β-selectivity being more than ten-fold. Finally, an in vivo conversion of 11-deoxycorticosterone (DOC), testosterone and cortisol with the best five mutant proteins displaying 9α- or 6β-hydroxylation, respectively, of progesterone was performed to investigate whether the introduced mutations also effected the conversion of other substrates.
Collapse
Affiliation(s)
- Julia Nikolaus
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Kim Thoa Nguyen
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Cornelia Virus
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Jan L Riehm
- Center for Bioinformatics, Saarland University, Campus E2.1, 66123 Saarbrücken, Germany
| | - Michael Hutter
- Center for Bioinformatics, Saarland University, Campus E2.1, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
15
|
Putkaradze N, Kiss FM, Schmitz D, Zapp J, Hutter MC, Bernhardt R. Biotransformation of prednisone and dexamethasone by cytochrome P450 based systems – Identification of new potential drug candidates. J Biotechnol 2017; 242:101-110. [DOI: 10.1016/j.jbiotec.2016.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/11/2023]
|
16
|
Milhim M, Putkaradze N, Abdulmughni A, Kern F, Hartz P, Bernhardt R. Identification of a new plasmid-encoded cytochrome P450 CYP107DY1 from Bacillus megaterium with a catalytic activity towards mevastatin. J Biotechnol 2016; 240:68-75. [DOI: 10.1016/j.jbiotec.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
|
17
|
Janocha S, Carius Y, Hutter M, Lancaster CRD, Bernhardt R. Crystal Structure of CYP106A2 in Substrate-Free and Substrate-Bound Form. Chembiochem 2016; 17:852-60. [DOI: 10.1002/cbic.201500524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Simon Janocha
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| | - Yvonne Carius
- Department of Structural Biology, ZHMB; Saarland University; Building 60 66421 Homburg Germany
| | - Michael Hutter
- Center for Bioinformatics; Saarland University; Campus E2.1 66123 Saarbrücken Germany
| | - C. Roy D. Lancaster
- Department of Structural Biology, ZHMB; Saarland University; Building 60 66421 Homburg Germany
| | - Rita Bernhardt
- Department of Biochemistry; Saarland University; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|
18
|
Khatri Y, Ringle. M, Lisurek M, von Kries JP, Zapp J, Bernhardt R. Substrate Hunting for the Myxobacterial CYP260A1 Revealed New 1α-Hydroxylated Products from C-19 Steroids. Chembiochem 2015; 17:90-101. [DOI: 10.1002/cbic.201500420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Yogan Khatri
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Michael Ringle.
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Michael Lisurek
- Forschungsinstitut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Jens Peter von Kries
- Forschungsinstitut für Molekulare Pharmakologie; Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Josef Zapp
- Universität des Saarlandes; Pharmazeutische Biologie; Campus C2.2 66123 Saarbrücken Germany
| | - Rita Bernhardt
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|
19
|
Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium – identification of a novel 11-oxidase activity. Appl Microbiol Biotechnol 2015; 99:8495-514. [DOI: 10.1007/s00253-015-6563-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
|
20
|
Kiss FM, Lundemo MT, Zapp J, Woodley JM, Bernhardt R. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microb Cell Fact 2015; 14:28. [PMID: 25890176 PMCID: PMC4354754 DOI: 10.1186/s12934-015-0210-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Background CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15β-hydroxylase of 3-oxo-∆4-steroids. Recently, it was shown that besides 3-oxo-∆4-steroids, 3-hydroxy-∆5-steroids as well as di- and triterpenes can also serve as substrates for this biocatalyst. It is highly selective towards the 15β position, but the 6β, 7α/β, 9α, 11α and 15α positions have also been described as targets for hydroxylation. Based on the broad substrate spectrum and hydroxylating capacity, it is an excellent candidate for the production of human drug metabolites and drug precursors. Results In this work, we demonstrate the conversion of a synthetic testosterone derivative, cyproterone acetate, by CYP106A2 under in vitro and in vivo conditions. Using a Bacillus megaterium whole-cell system overexpressing CYP106A2, sufficient amounts of product for structure elucidation by nuclear magnetic resonance spectroscopy were obtained. The product was characterized as 15β-hydroxycyproterone acetate, the main human metabolite. Since the product is of pharmaceutical interest, our aim was to intensify the process by increasing the substrate concentration and to scale-up the reaction from shake flasks to bioreactors to demonstrate an efficient, yet green and cost-effective production. Using a bench-top bioreactor and the recombinant Bacillus megaterium system, both a fermentation and a transformation process were successfully implemented. To improve the yield and product titers for future industrial application, the main bottlenecks of the reaction were addressed. Using 2-hydroxypropyl-β-cyclodextrin, an effective bioconversion of 98% was achieved using 1 mM substrate concentration, corresponding to a product formation of 0.43 g/L, at a 400 mL scale. Conclusions Here we describe the successful scale-up of cyproterone acetate conversion from shake flasks to bioreactors, using the CYP106A2 enzyme in a whole-cell system. The substrate was converted to its main human metabolite, 15β-hydroxycyproterone acetate, a highly interesting drug candidate, due to its retained antiandrogen activity but significantly lower progestogen properties than the mother compound. Optimization of the process led to an improvement from 55% to 98% overall conversion, with a product formation of 0.43 g/L, approaching industrial process requirements and a future large-scale application.
Collapse
Affiliation(s)
- Flora M Kiss
- Institute of Biochemistry, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| | - Marie T Lundemo
- CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Josef Zapp
- Institute of Pharmaceutical Biology, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| | - John M Woodley
- CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| | - Rita Bernhardt
- Institute of Biochemistry, University of Saarland, Campus B 2.2, 66123, Saarbruecken, Germany.
| |
Collapse
|
21
|
Janocha S, Schmitz D, Bernhardt R. Terpene hydroxylation with microbial cytochrome P450 monooxygenases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:215-50. [PMID: 25682070 DOI: 10.1007/10_2014_296] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids' diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C-H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes.
Collapse
Affiliation(s)
- Simon Janocha
- Department of Biochemistry, Saarland University, Campus B2 2, 66123, Saarbruecken, Germany
| | | | | |
Collapse
|
22
|
Schmitz D, Zapp J, Bernhardt R. Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites. Microb Cell Fact 2014; 13:81. [PMID: 24903845 PMCID: PMC4080778 DOI: 10.1186/1475-2859-13-81] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022] Open
Abstract
Background Steroids are lipophilic compounds with a gonane skeleton and play an important role in higher organisms. Due to different functionalizations - mainly hydroxylations - at the steroid molecule, they vary highly in their mode of action. The pharmaceutical industry is, therefore, interested in hydroxysteroids as therapeutic agents. The insertion of hydroxyl groups into a steroid core, however, is hardly accomplishable by classical chemical means; that is because microbial steroid hydroxylations are investigated and applied since decades. CYP106A2 is a cytochrome P450 monooxygenase from Bacillus megaterium ATCC 13368, which was first described in the late 1970s and which is capable to hydroxylate a variety of 3-oxo-delta4 steroids at position 15beta. CYP106A2 is a soluble protein, easy to express and to purify in high amounts, which makes this enzyme an interesting target for biotechnological purposes. Results In this work a focused steroid library was screened in vitro for new CYP106A2 substrates using a reconstituted enzyme assay. Five new substrates were identified, including dehydroepiandrosterone and pregnenolone. NMR-spectroscopy revealed that both steroids are mainly hydroxylated at position 7beta. In order to establish a biotechnological system for the preparative scale production of 7beta-hydroxylated dehydroepiandrosterone, whole-cell conversions with growing and resting cells of B. megaterium ATCC1336 the native host of CYP1062 and also with resting cells of a recombinant B. megaterium MS941 strain overexpressing CYP106A2 have been conducted and conversion rates of 400 muM/h (115 mg/l/h) were obtained. Using the B. megaterium MS941 overexpression strain, the selectivity of the reaction was improved from 0.7 to 0.9 for 7beta-OH-DHEA. Conclusions In this work we describe CYP106A2 for the first time as a regio-selective hydroxylase for 3-hydroxy-delta5 steroids. DHEA was shown to be converted to 7beta-OH-DHEA which is a highly interesting human metabolite, supposed to act as neuroprotective, anti-inflammatory and immune-modulatory agent. Optimization of the whole-cell system using different B. megaterium strains lead to a conversion of DHEA with B. megaterium showing high selectivity and conversion rates and displaying a volumetric yield of 103 mg/l/h 7beta-OH-DHEA.
Collapse
Affiliation(s)
| | | | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus B2 2, Saarbruecken 66123, Germany.
| |
Collapse
|
23
|
Lee GY, Kim DH, Kim D, Ahn T, Yun CH. Functional characterization of steroid hydroxylase CYP106A1 derived from Bacillus megaterium. Arch Pharm Res 2014; 38:98-107. [PMID: 24988988 DOI: 10.1007/s12272-014-0366-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/07/2014] [Indexed: 11/30/2022]
Abstract
In this study, we examined the catalytic activity of CYP106A1 from the Bacillus megaterium American Type Culture Collection 14581 strain. The CYP106A1 gene was cloned from B. megaterium, heterologously expressed in Escherichia coli, and purified. Potential electron partners and possible bacterial CYP106A1 substrates were identified by examining the oxidative activity toward a set of steroids in the presence of several reductase systems. The activities of CYP106A1 in a reconstituted system could not be achieved using rat NADPH-P450 reductase or a putidaredoxin reductase-putidaredoxin pair. However, the spinach redox proteins, a ferredoxin reductase-ferredoxin pair, were found to be efficient redox partners for CYP106A1. CYP106A1 catalyzes the hydroxylation of a set of steroids including testosterone, progesterone, 17α-hydroxyprogesterone, 11-deoxycorticosterone, corticosterone, and 11-deoxycortisol to produce monohydroxylated products as the major metabolites. These results suggest that CYP106A1 would be useful for the bioconversion of steroid hormones to hydroxylated products that can be used for industrial applications.
Collapse
Affiliation(s)
- Ga-Young Lee
- School of Biological Sciences and Technology, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-β-boswellic acid (KBA). Appl Microbiol Biotechnol 2013; 98:1701-17. [DOI: 10.1007/s00253-013-5029-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022]
|
25
|
Application of a new versatile electron transfer system for cytochrome P450-based Escherichia coli whole-cell bioconversions. Appl Microbiol Biotechnol 2012; 97:7741-54. [PMID: 23254762 DOI: 10.1007/s00253-012-4612-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/14/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Cytochromes P450 monooxygenases are highly interesting biocatalysts for biotechnological applications, since they perform a diversity of reactions on a broad range of organic molecules. Nevertheless, the application of cytochromes P450 is limited compared to other enzymes mainly because of the necessity of a functional redox chain to transfer electrons from NAD(P)H to the monooxygenase. In this study, we established a novel robust redox chain based on adrenodoxin, which can deliver electrons to mitochondrial, bacterial and microsomal P450s. The natural membrane-associated reductase of adrenodoxin was replaced by the soluble Escherichia coli reductase. We could demonstrate for the first time that this reductase can transfer electrons to adrenodoxin. In the first step, the electron transfer properties and the potential of this new system were investigated in vitro, and in the second step, an efficient E. coli whole-cell system using CYP264A1 from Sorangium cellulosum So ce56 was developed. It could be demonstrated that this novel redox chain leads to an initial conversion rate of 55 μM/h, which was 52 % higher compared to the 36 μM/h of the redox chain containing adrenodoxin reductase. Moreover, we optimized the whole-cell biotransformation system by a detailed investigation of the effects of different media. Finally, we are able to demonstrate that the new system is generally applicable to other cytochromes P450 by combining it with the biotechnologically important steroid hydroxylase CYP106A2 from Bacillus megaterium.
Collapse
|
26
|
Colas H, Ewen KM, Hannemann F, Bistolas N, Wollenberger U, Bernhardt R, de Oliveira P. Direct and mediated electrochemical response of the cytochrome P450 106A2 from Bacillus megaterium ATCC 13368. Bioelectrochemistry 2012; 87:71-7. [DOI: 10.1016/j.bioelechem.2012.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 11/27/2022]
|
27
|
Ewen KM, Ringle M, Bernhardt R. Adrenodoxin-A versatile ferredoxin. IUBMB Life 2012; 64:506-12. [DOI: 10.1002/iub.1029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 11/07/2022]
|
28
|
Schmitz D, Zapp J, Bernhardt R. Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J 2012; 279:1663-74. [DOI: 10.1111/j.1742-4658.2012.08503.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 2011; 93:1135-46. [DOI: 10.1007/s00253-011-3467-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
|
30
|
Bleif S, Hannemann F, Lisurek M, von Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R. Identification of CYP106A2 as a Regioselective Allylic Bacterial Diterpene Hydroxylase. Chembiochem 2011; 12:576-82. [DOI: 10.1002/cbic.201000404] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Indexed: 11/06/2022]
|
31
|
Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lütz S. Towards Preparative Scale Steroid Hydroxylation with Cytochrome P450 Monooxygenase CYP106A2. Chembiochem 2010; 11:713-21. [DOI: 10.1002/cbic.200900706] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Virus C, Bernhardt R. Molecular evolution of a steroid hydroxylating cytochrome P450 using a versatile steroid detection system for screening. Lipids 2008; 43:1133-41. [PMID: 18830657 DOI: 10.1007/s11745-008-3236-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/30/2008] [Indexed: 11/26/2022]
Abstract
Molecular evolution is a powerful tool for improving or changing activities of enzymes for their use in biotechnological processes. Cytochromes P450 are highly interesting enzymes for biotechnological purposes because they are able to hydroxylate a broad variety of substrates with high regio- and stereoselectivity. One promising steroid hydroxylating cytochrome P450 for biotechnological applications is CYP106A2 from Bacillus megaterium ATCC 13368. It is one of a few known bacterial cytochromes P450 able to transform steroids such as progesterone and 11-deoxycortisol. CYP106A2 can be easily expressed in Escherichia coli with a high yield and can be reconstituted using the adrenal redox proteins, adrenodoxin and adrenodoxin reductase. We developed a simple screening assay for this system and performed random mutagenesis of CYP106A2, yielding variants with improved 11-deoxycortisol and progesterone hydroxylation activity. After two generations of directed evolution, we were able to improve the k (cat)/K (m) of the 11-deoxycortisol hydroxylation by a factor of more than four. At the same time progesterone conversion was improved about 1.4-fold. Mapping the mutations identified in catalytically improved CYP106A2 variants into the structure of a CYP106A2 model suggests that these mutations influence the mobility of the F/G loop, and the interaction with the redox partner adrenodoxin. The results show the evolution of a soluble steroid hydroxylase as a potential new catalyst for the production of steroidogenic compounds.
Collapse
Affiliation(s)
- Cornelia Virus
- Naturwissenschaftlich-Technische Fakultät III, Institut für Biochemie, Universität des Saarlandes, Postfach 151150, 66041, Saarbrücken, Germany.
| | | |
Collapse
|
33
|
Lisurek M, Simgen B, Antes I, Bernhardt R. Theoretical and Experimental Evaluation of a CYP106A2 Low Homology Model and Production of Mutants with Changed Activity and Selectivity of Hydroxylation. Chembiochem 2008; 9:1439-49. [DOI: 10.1002/cbic.200700670] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Ruijssenaars HJ, Sperling EMGM, Wiegerinck PHG, Brands FTL, Wery J, de Bont JAM. Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 2007; 131:205-8. [PMID: 17655961 DOI: 10.1016/j.jbiotec.2007.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/12/2007] [Indexed: 11/26/2022]
Abstract
A steroid 15beta-hydroxylating whole-cell solvent tolerant biocatalyst was constructed by expressing the Bacillus megaterium steroid hydroxylase CYP106A2 in the solvent tolerant Pseudomonas putida S12. Testosterone hydroxylation was improved by a factor 16 by co-expressing Fer, a putative Fe-S protein from Bacillus subtilis. In addition, the specificity for 15beta-hydroxylation was improved by mutating threonine residue 248 of CYP106A2 into valine. These new insights provide the basis for an optimized whole-cell steroid-hydroxylating biocatalyst that can be applied with an organic solvent phase.
Collapse
|
35
|
Virus C, Lisurek M, Simgen B, Hannemann F, Bernhardt R. Function and engineering of the 15beta-hydroxylase CYP106A2. Biochem Soc Trans 2007; 34:1215-8. [PMID: 17073788 DOI: 10.1042/bst0341215] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CYP106A2 from Bacillus megaterium ATCC 13368 is a bacterial cytochrome P450 that is capable of transforming steroid hormones. It can be easily expressed in Escherichia coli with a high yield. Its activity in vitro can be achieved by using the adrenal redox proteins adrenodoxin and adrenodoxin reductase. So far, it was not possible to crystallize CYP106A2 because of degradation during the crystallization process. Nevertheless, CYP106A2 is an interesting enzyme for biotechnological use. It hydroxylates pharmaceutically important steroids such as progesterone and 11-deoxycortisol. However, it will be necessary for efficient application of CYP106A2 in biotechnology to improve the hydroxylation activity and manipulate the regiospecificity. The present paper gives an overview of recent developments in protein engineering of CYP106A2.
Collapse
Affiliation(s)
- C Virus
- Naturwissenschaftlich-Technische Fakultät III, Institut für Biochemie, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
36
|
Hannemann F, Virus C, Bernhardt R. Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. J Biotechnol 2006; 124:172-81. [PMID: 16504331 DOI: 10.1016/j.jbiotec.2006.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/16/2005] [Accepted: 01/04/2006] [Indexed: 11/28/2022]
Abstract
The 15beta-hydroxylase (CYP106A2) from Bacillus megaterium, one of the few bacterial steroid hydroxylases, which has been isolated and characterized so far, catalyses the 15beta-hydroxylation of a variety of steroids. The enzyme can be supported in its activity with adrenodoxin (Adx) and adrenodoxin reductase (AdR) from bovine adrenals, supplying this enzyme with the reducing equivalents necessary for steroid hydroxylation activity. This three-component electron transfer chain was implemented in Escherichia coli by coexpression of the corresponding coding sequences from two plasmids, containing different selection markers and compatible origins of replication. The cDNAs of AdR and Adx on the first plasmid were separated by a ribosome binding sequence, with the reductase preceding the ferredoxin. The second plasmid for CYP106A2 expression was constructed with all features necessary for a molecular evolution approach. The transformed bacteria show the inducible ability to efficiently convert 11-deoxycorticosterone (DOC) to 15beta-DOC at an average rate of 1 mM/d in culture volumes of 300 ml. The steroid conversion system was downscaled to the microtiter plate format and a robot set-up was developed for a fluorescence-based conversion assay as well as a CO difference spectroscopy assay, which enables the screening for enzyme variants with higher activity and stability.
Collapse
Affiliation(s)
- Frank Hannemann
- FR 8.3--Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | |
Collapse
|
37
|
Taupp M, Heckel F, Harmsen D, Schreier P. Biohydroxylation of N,N-dialkylarylamines by the isolated topsoil bacterium Bacillus megaterium. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Sainz G, Jakoncic J, Sieker LC, Stojanoff V, Sanishvili N, Asso M, Bertrand P, Armengaud J, Jouanneau Y. Structure of a [2Fe–2S] ferredoxin from Rhodobacter capsulatus likely involved in Fe–S cluster biogenesis and conformational changes observed upon reduction. J Biol Inorg Chem 2006; 11:235-46. [PMID: 16402206 DOI: 10.1007/s00775-005-0069-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
FdVI from Rhodobacter capsulatus is structurally related to a group of [2Fe-2S] ferredoxins involved in iron-sulfur cluster biosynthesis. Comparative genomics suggested that FdVI and orthologs found in alpha-Proteobacteria are involved in this process. Here, the crystal structure of FdVI has been determined for both the oxidized and the reduced protein. The [2Fe-2S] cluster lies 6 A below the protein surface in a hydrophobic pocket without access to the solvent. This particular cluster environment might explain why the FdVI midpoint redox potential (-306 mV at pH 8.0) did not show temperature or ionic strength dependence. Besides the four cysteines that bind the cluster, FdVI features an extra cysteine which is located close to the S1 atom of the cluster and is oriented in a position such that its thiol group points towards the solvent. Upon reduction, the general fold of the polypeptide chain was almost unchanged. The [2Fe-2S] cluster underwent a conformational change from a planar to a distorted lozenge. In the vicinity of the cluster, the side chain of Met24 was rotated by 180 degrees , bringing its S atom within hydrogen-bonding distance of the S2 atom of the cluster. The reduced molecule also featured a higher content of bound water molecules, and more extensive hydrogen-bonding networks compared with the oxidized molecule. The unique conformational changes observed in FdVI upon reduction are discussed in the light of structural studies performed on related ferredoxins.
Collapse
Affiliation(s)
- Germaine Sainz
- European Synchrotron Radiation Facility, BP 220, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lisurek M, Kang MJ, Hartmann RW, Bernhardt R. Identification of monohydroxy progesterones produced by CYP106A2 using comparative HPLC and electrospray ionisation collision-induced dissociation mass spectrometry. Biochem Biophys Res Commun 2004; 319:677-82. [PMID: 15178459 DOI: 10.1016/j.bbrc.2004.05.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Indexed: 10/26/2022]
Abstract
Two previously uncharacterised products, produced by recombinant CYP106A2 of Bacillus megaterium ATCC 13368 using progesterone as substrate, were identified. For this purpose a combination of comparative HPLC and electrospray ionisation collision induced dissociation mass spectrometry (ESI CID MS) was established and applied for rapid identification of the steroids, which were identified as 11alpha-hydroxyprogesterone and 9alpha-hydroxyprogesterone. The pharmaceutical relevance of these steroids is discussed. Furthermore, the hydroxylation activity was quantified for all monohydroxylation products (15beta-hydroxyprogesterone, 6beta-hydroxyprogesterone, 11alpha-hydroxyprogesterone, and 9alpha-hydroxyprogesterone). The V(max) values for 15beta-hydroxyprogesterone, 6beta-hydroxyprogesterone, 11alpha-hydroxyprogesterone, and 9alpha-hydroxyprogesterone were determined as 337.3+/-43.7, 22.3+/-0.9, 17.5+/-0.9, and 6.5+/-0.3nmol product/min/nmol CYP106A2, respectively.
Collapse
Affiliation(s)
- Michael Lisurek
- Universität des Saarlandes, FR 8.8-Biochemie, Postfach 151150, 66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
40
|
Kang MJ, Lisurek M, Bernhardt R, Hartmann RW. Use of high-performance liquid chromatography/electrospray ionization collision-induced dissociation mass spectrometry for structural identification of monohydroxylated progesterones. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2004; 18:2795-2800. [PMID: 15508138 DOI: 10.1002/rcm.1694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For the structural identification of monohydroxylated progesterones synthesized by microorganisms, a method was developed using a combination of high-performance liquid chromatography and electrospray ionization collision-induced dissociation mass spectrometry (HPLC/ESI-CIDMS). The retention times and MS/MS spectra of 11 different standards at 30 eV were collected and compared. The identification of D-ring-hydroxylated progesterones (15beta-, 16alpha-, 17alpha- and 21-OH-P) using ESI-CIDMS was not possible. However, they were separated chromatographically using a 65:35 mixture of water and acetonitrile containing 0.5% acetic acid. The other hydroxylated progesterones (2alpha-, 6beta-, 7beta-, 9alpha-, 11alpha-, 11beta-, and 19-OH-P) could be identified by comparison of eight fragments. The complete separation of 11 standards was achieved chromatographically. The developed assay was evaluated by the identification of monohydroxylated progesterones produced by CYP106A2 from Bacillus megaterium ATCC 13368.
Collapse
Affiliation(s)
- Min-Jung Kang
- Pharmaceutical and Medicinal Chemistry, Saarland University, PO Box 151150, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
41
|
Fernandes P, Cruz A, Angelova B, Pinheiro H, Cabral J. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00029-2] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Berrie JR, Williams RA, Smith KE. Microbial transformations of steroids--XII. Progesterone hydroxylation profiles are modulated by post-translational modification of an electron transfer protein in Streptomyces roseochromogenes. J Steroid Biochem Mol Biol 2001; 77:87-96. [PMID: 11358678 DOI: 10.1016/s0960-0760(01)00024-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When Streptomyces roseochromogenes strain 10984 was incubated with exogenous progesterone for 25 h the major monohydroxylated metabolite, 16alpha-hydroxyprogesterone was produced in 3.6 fold excess to the minor metabolite 2beta,16alpha-dihydroxyprogesterone. In a reconstituted system containing highly purified progesterone 16alpha-hydroxylase cytochrome P-450, and electron transfer proteins ferredoxin-like redoxin (roseoredoxin) and redoxin reductase (roseoredoxin reductase), both metabolites were produced but in a 10:1 ratio. When S. roseochromogenes was pre-incubated for 8 h with 0.32 mM progesterone and the purified components of the hydroxylase system incubated as before, the ratio of 16alpha-hydroxyprogesterone to 2beta,16alpha-dihydroxyprogesterone produced decreased to 2.8:1, virtually identical to the ratio in whole cell transformations. Reconstitution assays containing all combinations of hydroxylase proteins purified from progesterone pre-incubated and control cells showed that the roseoredoxin was solely responsible for the observed changes in in vitro metabolite ratios. The fact that the lower 16alpha-hydroxyprogesterone to 2beta,16alpha-dihydroxyprogesterone ratio was also obtained when S. roseochromogenes was exposed to 0.335 mM cycloheximide for 8 h prior to the progesterone pre-incubation, pointed to post-translation modification of the roseoredoxin. Separation of two isoforms of roseoredoxin by isoelectric focusing supported this proposition.
Collapse
Affiliation(s)
- J R Berrie
- Molecular and Cellular Biology, Division of Biomedical Sciences, Queen Mary and Westfield College Medical School, University of London, Mile End Road, London E1 4NS, UK
| | | | | |
Collapse
|
43
|
Chatterjee P, Kouzi SA, Pezzuto JM, Hamann MT. Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368. Appl Environ Microbiol 2000; 66:3850-5. [PMID: 10966400 PMCID: PMC92230 DOI: 10.1128/aem.66.9.3850-3855.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial transformation of the antimelanoma agent betulinic acid was studied. The main objective of this study was to utilize microorganisms as in vitro models to predict and prepare potential mammalian metabolites of this compound. Preparative-scale biotransformation with resting-cell suspensions of Bacillus megaterium ATCC 13368 resulted in the production of four metabolites, which were identified as 3-oxo-lup-20(29)-en-28-oic acid, 3-oxo-11alpha-hydroxy-lup-20(29)-en-28-oic acid, 1beta-hydroxy-3-oxo-lup-20(29)-en-28-oic acid, and 3beta,7beta, 15alpha-trihydroxy-lup-20(29)-en-28-oic acid based on nuclear magnetic resonance and high-resolution mass spectral analyses. In addition, the antimelanoma activities of these metabolites were evaluated with two human melanoma cell lines, Mel-1 (lymph node) and Mel-2 (pleural fluid).
Collapse
Affiliation(s)
- P Chatterjee
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
44
|
Berrie JR, Williams RA, Smith KE. Microbial transformations of steroids-XI. Progesterone transformation by Streptomyces roseochromogenes-purification and characterisation of the 16alpha-hydroxylase system. J Steroid Biochem Mol Biol 1999; 71:153-65. [PMID: 10659704 DOI: 10.1016/s0960-0760(99)00132-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Streptomyces roseochromogenes, NCIB 10984, contains a cytochrome P450 which, in conjunction with two indigenous electron transfer proteins, roseoredoxin and roseoredoxin reductase, hydroxylates exogenous progesterone firstly to 16alpha-hydroxyprogesterone and thereafter in a second phase bioconversion to 2beta,16alpha-dihydroxyprogesterone. The progesterone 16alpha-hydroxylase P450 and the two electron transfer proteins have been purified to homogeneity. A reconstituted incubation containing these three purified proteins and NADH, the natural electron donor, produced identical hydroxy-progesterone metabolites as in intact cells. Peroxy and hydroperoxy compounds act in a shortened form of the cycle known as the 'peroxide shunt' by replacing the natural pathway requirement for the electron donor NADH, the electron transfer proteins and molecular O2, the terminal electron acceptor. In an NaIO4 supported incubation, the initial rate of progesterone hydroxylation was marginally higher (1.62 mmol progesterone/mmol P-450/h) than in the reconstituted natural incubation (1.18 mmol progesterone/mmol P-450/h) but the product yield was significantly lower, 0.45 mol hydroxyprogesterone produced/mol P-450 compared to 6.0 mol hydroxyprogesterone produced/mol P-450. These yield data show that in the reconstituted natural pathway, progesterone 16alpha-hydroxylase P450 supports multiple rounds of hydroxylation in contrast to a likely single oxygenation by a minority of P450s in the peroxide shunt pathway.
Collapse
Affiliation(s)
- J R Berrie
- Department of Biochemistry, Queen Mary and Westfield College, London, UK
| | | | | |
Collapse
|
45
|
|
46
|
|
47
|
Abstract
An investigation of the microbial biotransformation of a range of 3 beta-, 17 beta-, and 20-acetylamino C18 to C21 steroids by microorganisms known to hydroxylate conventional steroids has been undertaken, using Aspergillus ochraceus, Bacillus megaterium, Curvularia lunata, and Rhizoputus arrhizus. A. ochraceus and B. megaterium gave products of 11 alpha- and 15 beta-hydroxylation, respectively. In the case of C. lunata, the products were predominantly those of this organism's normal C-11 beta- and C-14 alpha-hydroxylating pathways, but in one instance, 3 beta-acetylamino-7 alpha-hydroxy-5 alpha-androstan-17-one, appeared to results from direction of the site of hydroxylation by the substitution pattern of the substrate. The products from R. arrhizus generally corresponded to those previously obtained from normal steroids of similar skeleton, with 6 beta- 11 alpha-hydroxylation predominating, but again the sites of hydroxylation and the range of hydroxylated products were found to depend on the substitution pattern of the substrate.
Collapse
Affiliation(s)
- H L Holland
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada.
| | | | | |
Collapse
|
48
|
Heterogeneous natures of the microbial steroid 9α-hydroxylase in nocardioforms. Arch Pharm Res 1997; 20:519-24. [DOI: 10.1007/bf02975204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Indexed: 10/21/2022]
|
49
|
Dror Y, Freeman A. Stabilization of microbial cytochrome P-450 activity by creation of station-phase conditions in a continuously operated immobilized-cell reactor. Appl Environ Microbiol 1995; 61:855-9. [PMID: 7793919 PMCID: PMC167350 DOI: 10.1128/aem.61.3.855-859.1995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacillus megaterium (ATCC 13368) exhibits cytochrome P-450 monooxygenase activity (referred to herein as Cyt P-450 meg) catalyzing 15 beta-steroid hydroxylation. This activity belongs to the widespread ferredoxin reductase-ferredoxin-Cyt P-450 type of monooxygenases, providing a representative model system for this type of activity. The level of Cyt P-450 meg activity reaches its maximum in the cells during the stationary phase of the growth curve and is not affected by Cyt P-450 inducers. Here we present the development of an approach for stabilizing the Cyt P-450 meg system so that it performs continuous steroid hydroxylation and will be a model system for Cyt P-450-based detoxification. It is based on cell immobilization and simulation of stationary-phase conditions in a continuously operated fluidized-bed bioreactor. The combination of an appropriate immobilization technique, operational conditions, and medium composition provided a stabilized cell environment resulting in "freezing" of a physiological steady-state analog under stationary phase conditions, allowing stable performance of continuous hydroxylation for several weeks. It is suggested that this approach may be extended for use with other environmentally induced enzymatic activities.
Collapse
Affiliation(s)
- Y Dror
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Israel
| | | |
Collapse
|
50
|
Stereoselective acetylation of 3,4-dihydro-3,4-dihydroxy-2,2-dimethyl-2H-1-benzopyran-6-carbonitrile. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0957-4166(94)00367-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|