1
|
Schmitz-Peiffer C, Laybutt DR, Burchfield JG, Gurisik E, Narasimhan S, Mitchell CJ, Pedersen DJ, Braun U, Cooney GJ, Leitges M, Biden TJ. Inhibition of PKCepsilon improves glucose-stimulated insulin secretion and reduces insulin clearance. Cell Metab 2007; 6:320-8. [PMID: 17908560 DOI: 10.1016/j.cmet.2007.08.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 07/13/2007] [Accepted: 08/22/2007] [Indexed: 02/06/2023]
Abstract
In type 2 diabetes, pancreatic beta cells fail to secrete sufficient insulin to overcome peripheral insulin resistance. Intracellular lipid accumulation contributes to beta cell failure through poorly defined mechanisms. Here we report a role for the lipid-regulated protein kinase C isoform PKCepsilon in beta cell dysfunction. Deletion of PKCepsilon augmented insulin secretion and prevented glucose intolerance in fat-fed mice. Importantly, a PKCepsilon-inhibitory peptide improved insulin availability and glucose tolerance in db/db mice with preexisting diabetes. Functional ablation of PKCepsilon selectively enhanced insulin release ex vivo from diabetic or lipid-pretreated islets and optimized the glucose-regulated lipid partitioning that amplifies the secretory response. Independently, PKCepsilon deletion also augmented insulin availability by reducing both whole-body insulin clearance and insulin uptake by hepatocytes. Our findings implicate PKCepsilon in the etiology of beta cell dysfunction and highlight that enhancement of insulin availability, through separate effects on liver and beta cells, provides a rationale for inhibiting PKCepsilon to treat type 2 diabetes.
Collapse
|
2
|
Fiory F, Oriente F, Miele C, Romano C, Trencia A, Alberobello AT, Esposito I, Valentino R, Beguinot F, Formisano P. Protein Kinase C-ζ and Protein Kinase B Regulate Distinct Steps of Insulin Endocytosis and Intracellular Sorting. J Biol Chem 2004; 279:11137-45. [PMID: 14711831 DOI: 10.1074/jbc.m308751200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the molecular mechanisms regulating insulin internalization and intracellular sorting. Insulin internalization was decreased by 50% upon incubation of the cells with the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002. PI3K inhibition also reduced insulin degradation and intact insulin release by 50 and 75%, respectively. Insulin internalization was reduced by antisense inhibition of protein kinase C-zeta (PKCzeta) expression and by overexpression of a dominant negative PKCzeta mutant (DN-PKCzeta). Conversely, overexpression of PKCzeta increased insulin internalization as a function of the PKCzeta levels achieved in the cells. Expression of wild-type protein kinase B (PKB)-alpha or of a constitutively active form (myr-PKB) did not significantly alter insulin internalization and degradation but produced a 100% increase of intact insulin release. Inhibition of PKB by a dominant negative mutant (DN-PKB) or by the pharmacological inhibitor ML-9 reduced intact insulin release by 75% with no effect on internalization and degradation. In addition, overexpression of Rab5 completely rescued the effect of PKCzeta inhibition on insulin internalization but not that of PKB inhibition on intact insulin recycling. Indeed, PKCzeta bound to and activated Rab5. Thus, PI3K controls different steps within the insulin endocytic itinerary. PKCzeta appears to mediate the PI3K effect on insulin internalization in a Rab5-dependent manner, whereas PKB directs intracellular sorting toward intact insulin release.
Collapse
Affiliation(s)
- Francesca Fiory
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano and Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bifulco G, Di Carlo C, Caruso M, Oriente F, Di Spiezio Sardo A, Formisano P, Beguinot F, Nappi C. Glucose regulates insulin mitogenic effect by modulating SHP-2 activation and localization in JAr cells. J Biol Chem 2002; 277:24306-14. [PMID: 11983706 DOI: 10.1074/jbc.m202962200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucose effect on cell growth has been investigated in the JAr human choriocarcinoma cells. When JAr cells were cultured in the presence of 6 mm glucose (LG), proliferation and thymidine incorporation were induced by serum, epidermal growth factor, and insulin-like growth factor 1 but not by insulin. In contrast, at 25 mm glucose (HG), proliferation and thymidine incorporation were stimulated by insulin, serum, epidermal growth factor, and insulin-like growth factor 1 to a comparable extent, whereas basal levels were 25% lower than those in LG. HG culturing also enhanced insulin-stimulated insulin receptor and insulin receptor substrate 1 (IRS1) tyrosine phosphorylations while decreasing basal phosphorylations. These actions of glucose were accompanied by an increase in cellular tyrosine phosphatase activity. The activity of SHP-2 in HG-treated JAr cells was 400% of that measured in LG-treated cells. SHP-2 co-precipitation with IRS1 was also increased in HG-treated cells. SHP-2 was mainly cytosolic in LG-treated cells. However, HG culturing largely redistributed SHP-2 to the internal membrane compartment, where tyrosine-phosphorylated IRS1 predominantly localizes. Further exposure to insulin rescued SHP-2 cytosolic localization, thereby preventing its interaction with IRS1. Antisense inhibition of SHP-2 reverted the effect of HG on basal and insulin-stimulated insulin receptor and IRS1 phosphorylation as well as that on thymidine incorporation. Thus, in JAr cells, glucose modulates insulin mitogenic action by modulating SHP-2 activity and intracellular localization.
Collapse
Affiliation(s)
- Giuseppe Bifulco
- Dipartimento di Ginecologia, Ostetricia e Fisiopatologia della Riproduzione Umana, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Uden M, Morley GM, Dibb NJ. Evidence that downregulation of the M-CSF receptor is not dependent upon receptor kinase activity. Oncogene 1999; 18:3846-51. [PMID: 10445847 DOI: 10.1038/sj.onc.1202743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The downregulation of tyrosine kinase receptors attenuates signalling and is thought to be dependent upon intrinsic receptor kinase activity, largely because down-regulation is inhibited by a kinase-inactivating mutation of an invariant lysine residue of the receptors for EGF, insulin, M-CSF and PDGF. We confirmed that this mutation inhibited the degradation of the M-CSF receptor. However, two different kinase inactivating mutations of the invariant amino acids Gly 591 and Glu 633 did not prevent M-CSF-induced receptor degradation, so demonstrating that receptor kinase activity is not essential for this process. Three other kinase-inactivating mutations were found to cause constitutive receptor degradation in the absence of M-CSF, most probably by disrupting the structure of the activating loop of the kinase domain. It is known that extensive movement of the A-loop is necessary for kinase activation and is normally induced by ligand-binding. It is therefore suggested that some aspect or consequence of the change in structure of the A-loop caused by ligand binding also activates receptor downregulation, so ensuring that downregulation is coupled to but is not necessarily dependent upon receptor kinase activity.
Collapse
Affiliation(s)
- M Uden
- Cell Signalling Unit, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
5
|
Miele C, Caruso M, Calleja V, Auricchio R, Oriente F, Formisano P, Condorelli G, Cafieri A, Sawka-Verhelle D, Van Obberghen E, Beguinot F. Differential role of insulin receptor substrate (IRS)-1 and IRS-2 in L6 skeletal muscle cells expressing the Arg1152 --> Gln insulin receptor. J Biol Chem 1999; 274:3094-102. [PMID: 9915848 DOI: 10.1074/jbc.274.5.3094] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In L6 muscle cells expressing the Arg1152 --> Gln insulin receptor (Mut), basal tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was increased by 35% compared with wild-type cells (WT). Upon exposure to insulin, IRS-1 phosphorylation increased by 12-fold in both the Mut and WT cells. IRS-2 was constitutively phosphorylated in Mut cells and not further phosphorylated by insulin. The maximal phosphorylation of IRS-2 in basal Mut cells was paralleled by a 4-fold increased binding of the kinase regulatory loop binding domain of IRS-2 to the Arg1152 --> Gln receptor. Grb2 and phosphatidylinositol 3-kinase association to IRS-1 and IRS-2 reflected the phosphorylation levels of the two IRSs. Mitogen-activated protein kinase activation and [3H]thymidine incorporation closely correlated with IRS-1 phosphorylation in Mut and WT cells, while glycogen synthesis and synthase activity correlated with IRS-2 phosphorylation. The Arg1152 --> Gln mutant did not signal Shc phosphorylation or Shc-Grb2 association in intact L6 cells, while binding Shc in a yeast two-hybrid system and phosphorylating Shc in vitro. Thus, IRS-2 appears to mediate insulin regulation of glucose storage in Mut cells, while insulin-stimulated mitogenesis correlates with the activation of the IRS-1/mitogen-activated protein kinase pathway in these cells. IRS-1 and Shc-mediated mitogenesis may be redundant in muscle cells.
Collapse
Affiliation(s)
- C Miele
- Dipartimento di Biologia e Patologia Cellulare e Molecolare & Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Federico II University of Naples, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Formisano P, Oriente F, Miele C, Caruso M, Auricchio R, Vigliotta G, Condorelli G, Beguinot F. In NIH-3T3 fibroblasts, insulin receptor interaction with specific protein kinase C isoforms controls receptor intracellular routing. J Biol Chem 1998; 273:13197-202. [PMID: 9582362 DOI: 10.1074/jbc.273.21.13197] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin increased protein kinase C (PKC) activity by 2-fold in both membrane preparations and insulin receptor (IR) antibody precipitates from NIH-3T3 cells expressing human IRs (3T3hIR). PKC-alpha, -delta, and -zeta were barely detectable in IR antibody precipitates of unstimulated cells, while increasing by 7-, 3.5-, and 3-fold, respectively, after insulin addition. Preexposure of 3T3hIR cells to staurosporine reduced insulin-induced receptor coprecipitation with PKC-alpha, -delta, and -zeta by 3-, 4-, and 10-fold, respectively, accompanied by a 1.5-fold decrease in insulin degradation and a similar increase in insulin retroendocytosis. Selective depletion of cellular PKC-alpha and -delta, by 24 h of 12-O-tetradecanoylphorbol-13-acetate (TPA) exposure, reduced insulin degradation by 3-fold and similarly increased insulin retroendocytosis, with no change in PKC-zeta. In lysates of NIH-3T3 cells expressing the R1152Q/K1153A IRs (3T3Mut), insulin-induced coprecipitation of PKC-alpha, -delta, and -zeta with the IR was reduced by 10-, 7-, and 3-fold, respectively. Similar to the 3T3hIR cells chronically exposed to TPA, untreated 3T3Mut featured a 3-fold decrease in insulin degradation, with a 3-fold increase in intact insulin retroendocytosis. Thus, in NIH-3T3 cells, insulin elicits receptor interaction with multiple PKC isoforms. Interaction of PKC-alpha and/or -delta with the IR appears to control its intracellular routing.
Collapse
Affiliation(s)
- P Formisano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano" and Centro di Endocrinologia ed Oncolgia Sperimentale del Consiglio Nazionale delle Ricerche (CNR), "Federico II" University of Naples Medical School, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Caruso M, Miele C, Formisano P, Condorelli G, Bifulco G, Oliva A, Auricchio R, Riccardi G, Capaldo B, Beguinot F. In skeletal muscle, glucose storage and oxidation are differentially impaired by the IR1152 mutant receptor. J Biol Chem 1997; 272:7290-7. [PMID: 9054426 DOI: 10.1074/jbc.272.11.7290] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
L6 myotubes expressing the constitutively active Arg1152-->Gln insulin receptor (L6(1152)) featured a 31% increased glucose consumption as compared with L6 cells expressing wild-type receptors (L6(WT)). However, insulin treatment decreased glucose consumption of the mutant cells by 20% while increasing that of the L6(WT) by 30%. In the L6(WT), insulin elicited a significant increase in glucose transport and GLUT1 and GLUT4 plasma membrane expression, while in the L6(1152), all of these functions were constitutively activated and not further stimulated by insulin. Similarly, glycogen content and glycogen synthase activity were increased by 80 and 125%, respectively, in the L6(1152 )versus the L6(WT) and unaffected by insulin (while a 2-fold increase was measured in insulin-exposed L6(WT)). Glucose oxidation and pyruvate dehydrogenase activity were also 25% higher in the mutant compared with the L6(WT). However, in the L6(1152), both functions decreased by 35% in response to insulin (while increasing by 60 and 80%, respectively, in the L6(WT)). Similarly as in the L6(1152), in vivo, forearm glucose uptake in IR1152 patients was 2-fold higher than in control subjects. This difference was not accounted for by higher plasma glucose levels. We conclude that, in skeletal muscle, glucose storage and oxidation are differentially impaired by the expression of IR1152, suggesting that their regulation by insulin involves divergent signaling pathways. Muscle expression of IR1152 may contribute to impairing glucose tolerance in IR1152 individuals.
Collapse
Affiliation(s)
- M Caruso
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano" and Centro di Endocrinologia ed Oncologia Sperimentale del C.N.R., "Federico II" University of Naples Medical School, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Formisano P, Najjar SM, Gross CN, Philippe N, Oriente F, Kern-Buell CL, Accili D, Gorden P. Receptor-mediated internalization of insulin. Potential role of pp120/HA4, a substrate of the insulin receptor kinase. J Biol Chem 1995; 270:24073-7. [PMID: 7592607 DOI: 10.1074/jbc.270.41.24073] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
pp120/HA4 is a hepatocyte membrane glycoprotein phosphorylated by the insulin receptor tyrosine kinase. In this study, we have investigated the role of pp120/HA4 in insulin action. Transfection of antisense pp120/HA4 cDNA in H35 hepatoma cells resulted in inhibition of pp120/HA4 expression and was associated with a 2-3-fold decrease in the rate of insulin internalization. Furthermore, insulin internalization in NIH 3T3 fibroblasts co-transfected with insulin receptors and pp120/HA4 was increased 2-fold compared with cells expressing insulin receptors alone. In contrast, no effect on internalization was observed in cells overexpressing a naturally occurring splice variant of pp120/HA4 that lacks the phosphorylation sites in the intracellular domain. Insulin internalization was also unaffected in cells expressing three site-directed mutants of pp120/HA4 in which the sites of phosphorylation by the insulin receptor kinase had been removed (Y488F, Y488F/Y513F, and S503A). Our data suggest that pp120/HA4 is part of a complex of proteins required for receptor-mediated internalization of insulin. It is possible that this function is regulated by insulin-induced phosphorylation of the intracellular domain of pp120/HA4.
Collapse
Affiliation(s)
- P Formisano
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Miele C, Formisano P, Sohn KJ, Caruso M, Pianese M, Palumbo G, Beguino L, Beguinot F. Decreased phosphorylation of mutant insulin receptor by protein kinase C and protein kinase A. J Biol Chem 1995; 270:15844-52. [PMID: 7797589 DOI: 10.1074/jbc.270.26.15844] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have recently reported that the Arg1152-->Gln insulin receptor mutation (QK single mutant) alters a conserved motif (RK motif) immediately next to the key tyrosine phosphorylation sites (Tyr1146, Tyr1150, Tyr1151) of the receptor and constitutively activates its kinase and metabolic signaling. To investigate further the function of the RK motif, we have expressed two additional mutant insulin receptors: a single mutant, in which the second basic residue in the RK motif (Lys1153) was substituted (RA mutant); and a double mutant, in which both the Arg and the Lys residues were replaced with noncharged amino acids (QA mutant). As compared with the transfected wild-type receptors (WT), both the single and the double mutant receptors were normally synthetized and transported to the plasma membrane and bound insulin normally. Whereas the double mutant receptor exhibited preserved insulin-dependent autophosphorylation, kinase activity, and 2-deoxyglucose uptake, all of these functions were grossly impaired in the two single mutant receptors. Two-dimensional analysis of tryptic phosphopeptides from receptor beta-subunits revealed that decreased autophosphorylation of the single mutant receptors mainly involved regulatory Tyr1150,1151 and carboxyl-terminal Tyr1316,1322. At variance with the insulin-stimulated, insulin-independent tyrosine kinase activity toward poly(Glu-Tyr) 4:1 was increased 3-fold in both the double and the single mutants. All mutant receptors induced a 2-fold increase in basal 2-deoxyglucose uptake in NIH-3T3 cells. Treatment of WT transfected cells with 12-O-tetradecanoyl-phorbol-13-acetate or 8-bromo-cAMP increased insulin receptor phosphorylation by 3-fold. No phosphorylation was observed in cells expressing the two single or the double mutant receptor. Consistently, purified preparations of PKC and PKA phosphorylated the WT but not the mutant receptors in vitro. A 17-amino acid synthetic peptide encoding the receptor sequence surrounding the RK motif inhibited phosphorylation of WT insulin receptors by both protein kinases A and C. A mutant peptide in which the RK sequence was replaced by QK (to mimic the mutation in the QK receptor) exhibited no inhibitory effect. Thus, the RK insulin receptor motif is required for insulin receptor phosphorylation by protein kinases C and A and may modulate insulin-independent receptor activity. The RK motif may also have an important structural role in allowing normal insulin regulation of the kinase.
Collapse
Affiliation(s)
- C Miele
- Dipartimento di Biologia e Patologia Cellulare Molecolare L. Califano, University of Naples Medical School, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- D Accili
- Diabetes Branch, NIDDK, Bethesda, MD 20892, USA
| |
Collapse
|