1
|
Sornaraj P, Luang S, Lopato S, Hrmova M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta Gen Subj 2015; 1860:46-56. [PMID: 26493723 DOI: 10.1016/j.bbagen.2015.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/19/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Basic leucine zipper (bZIP) genes encode transcription factors (TFs) that control important biochemical and physiological processes in plants and all other eukaryotic organisms. SCOPE OF REVIEW Here we present (i) the homo-dimeric structural model of bZIP consisting of basic leucine zipper and DNA binding regions, in complex with the synthetic Abscisic Acid-Responsive Element (ABREsyn); (ii) discuss homo- and hetero-dimerisation patterns of bZIP TFs; (iii) summarise the current progress in understanding the molecular mechanisms of function of bZIP TFs, including features determining the specificity of their binding to DNA cis-elements, and (iv) review information on interaction partners of bZIPs during plant development and stress response, as well as on types and roles of post-translational modifications, and regulatory aspects of protein-degradation mediated turn-over. Finally, we (v) recapitulate on the recent advances regarding functional roles of bZIP factors in major agricultural crops, and discuss the potential significance of bZIP-based genetic engineering in improving crop yield and tolerance to abiotic stresses. MAJOR CONCLUSIONS An accurate analysis and understanding of roles of plant bZIP TFs in different biological processes requires the knowledge of interacting partners, time and location of expression in plant organs, and the information on mechanisms of homo- and hetero-dimerisation of bZIP TFs. GENERAL SIGNIFICANCE Studies on molecular mechanisms of plant bZIP TFs at the atomic levels will provide novel insights into the regulatory processes during plant development, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Pradeep Sornaraj
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sukanya Luang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
2
|
Selectional and mutational scope of peptides sequestering the Jun-Fos coiled-coil domain. J Mol Biol 2008; 381:73-88. [PMID: 18586270 DOI: 10.1016/j.jmb.2008.04.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 04/07/2008] [Accepted: 04/11/2008] [Indexed: 01/14/2023]
Abstract
The activator protein-1 (AP-1) complex plays a crucial role in numerous pathways, and its ability to induce tumorigenesis is well documented. Thus, AP-1 represents an interesting therapeutic target. We selected peptides from phage display and compared their ability to disrupt the cFos/cJun interaction to a previously described in vivo protein-fragment complementation assay (PCA). A cJun-based library was screened to enrich for peptides that disrupt the AP-1 complex by binding to the cFos coiled-coil domain. Interestingly, phage display identified one helix, JunW(Ph1) [phage-selected winning peptide (clone 1) targeting cFos], which differs in only 2 out of 10 randomized positions to JunW (PCA-selected winning peptide targeting cFos). Phage-selected peptides revealed higher affinity to cFos than wild-type cJun, harboring a T(m) of 53 degrees C compared to 16 degrees C for cFos/cJun or 44 degrees C for cFos/JunW. In PCA growth assays in the presence of cJun as competitor, phage-selected JunW(Ph1) conferred shorter generation times than JunW. Bacterial growth was barely detectable, using JunW(Ph1) as a competitor for the wild-type cJun/cFos interaction, indicating efficient cFos removal from the dimeric wild-type complex. Importantly, all inhibitory peptides were able to interfere with DNA binding as demonstrated in gel shift assays. The selected sequences have consequently improved our 'bZIP coiled-coil interaction prediction algorithm' in distinguishing interacting from noninteracting coiled-coil sequences. Predicting and manipulating protein interaction will accelerate the systems biology field, and generated peptides will be valuable tools for analytical and biomedical applications.
Collapse
|
3
|
Yoon MK, Kim HM, Choi G, Lee JO, Choi BS. Structural Basis for the Conformational Integrity of the Arabidopsis thaliana HY5 Leucine Zipper Homodimer. J Biol Chem 2007; 282:12989-3002. [PMID: 17261584 DOI: 10.1074/jbc.m611465200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leucine zipper (LZ) domain of the HY5 transcription factor from Arabidopsis thaliana has unique primary structural properties, including major occupation by the Leu residues as well as two buried polar residues in the a positions and a localized distribution of charged and polar residues in the first three heptad repeats. In this study, we solved the crystal structure of the HY5 LZ domain and show that the peculiarities in the primary sequence yield unusual structural characteristics. For example, the HY5 LZ domain exhibits a bipartite charge distribution characterized by a highly negative electrostatic surface potential in its N-terminal half and a nearly neutral potential in its C-terminal half. The LZ N-terminal region also contains two consecutive putative trigger sites for dimerization of the coiled coils. In addition, two buried asparagines at a positions 19 and 33 in the HY5 LZ domain display distinct modes of polar interaction. Whereas Asn(19) shows a conformational flip-flop, Asn(33) is engaged in a permanent hydrogen bond network. CD spectropolarimetry and analytical ultracentrifugation experiments performed with versions of the HY5 LZ domain containing mutations in the a positions yielded further evidence that position a amino acid residues are crucial for achieving an oligomeric state and maintaining stability. However, a low correlation between position a amino acid preference, core packing geometry, and rotamer conformations suggests that the oligomeric state of the LZ domain is not governed entirely by known structural properties. Taken together, our results suggest structural factors conferring conformational integrity of the HY5 LZ homodimer that are more complicated than proposed previously.
Collapse
Affiliation(s)
- Mi-Kyung Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | | | | | | | | |
Collapse
|
4
|
Mason JM, Schmitz MA, Müller KM, Arndt KM. Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Proc Natl Acad Sci U S A 2006; 103:8989-94. [PMID: 16754880 PMCID: PMC1482553 DOI: 10.1073/pnas.0509880103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activator protein-1 (AP-1) is a crucial transcription factor implicated in numerous cancers. For this reason, nine homologues of the AP-1 leucine zipper region have been characterized: Fos (c-Fos, FosB, Fra1, and Fra2), Jun (c-Jun, JunB, and JunD), and semirational library-designed winning peptides FosW and JunW. The latter two were designed to specifically target c-Fos or c-Jun. They have been identified by using protein-fragment complementation assays combined with growth competition. This assay removes nonspecific, unstable, and protease susceptible library members from the pool, leaving winners with excellent drug potential. Thermal melts of all 45 possible dimeric interactions have been surveyed, with the FosW-c-Jun complex displaying a melting temperature (T(m)) of 63 degrees C, compared to only 16 degrees C for wild-type c-Fos-c-Jun interaction. This impressive 70,000-fold K(D) decrease is largely due to optimized core packing, alpha-helical propensity, and electrostatics. Contrastingly, due to a poor c-Fos core, c-Fos-JunW dimerizes with lower affinity. However the T(m) far exceeds wild-type c-Fos-c-Jun and averaged JunW and c-Fos, indicating a preference over either homodimer. Finally, and with wider implications, we have compiled a method for predicting interaction of parallel, dimeric coiled coils, using our T(m) data as a training set, and applying it to 59 bZIP proteins previously reported. Our algorithm, unlike others to date, accounts for helix propensity, which is found to be integral in coiled coil stability. Indeed, in applying the algorithm to these 59(2) bZIP interactions, we were able to correctly identify 92% of all strong interactions and 92% of all noninteracting pairs.
Collapse
Affiliation(s)
- Jody M. Mason
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Mark A. Schmitz
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Kristian M. Müller
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Katja M. Arndt
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Singh S, Bandman E. Dimerization specificity of adult and neonatal chicken skeletal muscle myosin heavy chain rods. Biochemistry 2006; 45:4927-35. [PMID: 16605260 DOI: 10.1021/bi060204d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dimerization specificity of the recombinantly expressed and purified rod domain of adult and neonatal chicken myosin heavy chain was analyzed using metal chelation chromatography. Our results indicate that full-length adult and neonatal rods preferentially formed homodimers when renatured from an equimolar mixture of the two isoforms denatured in guanidine hydrochloride. The contribution made toward the dimerization specificity by subdomains of the rod has been addressed by making a chimeric protein consisting of the subfragment 2 (S2) region of the adult isoform and the light meromyosin region of the neonatal isoform. The proportion of heterodimers formed in exchange experiments between the chimera and the neonatal and adult rods rose with increase in the sequence homology between the two exchanging proteins. This suggests that multiple regions of the rod domain of chicken MyHC including S2 can contribute toward dimerization specificity.
Collapse
Affiliation(s)
- Sheetal Singh
- Department of Food Science and Technology, University of California, Davis, One Shields Way, Davis, California 95616, USA
| | | |
Collapse
|
6
|
Arndt KM, Pelletier JN, Müller KM, Plückthun A, Alber T. Comparison of in vivo selection and rational design of heterodimeric coiled coils. Structure 2002; 10:1235-48. [PMID: 12220495 DOI: 10.1016/s0969-2126(02)00838-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate how electrostatic interactions restrict the associations of coiled coils, we improved a heterodimeric coiled coil (WinZip-A1B1) by in vivo selection and, alternatively, by rational design. Selection from libraries encoding variable edge (g and e) residues enriched g/e' ion pairs, but the optimum selected heterodimers unexpectedly retained two predicted repulsive g/e' pairs. The best genetically selected heterodimer displayed similar thermodynamic stability and specificity as a rationally designed dimer with predicted ion pairs at all edge positions. This rationally designed pair, however, was less effective than the best genetically selected pair in mediating dimerization in vivo. Thus, the effects of predicted charge pairs depend on sequence context, and complementary charges at the edge positions rationalize only a fraction of the sequences that form stable, specific coiled coils.
Collapse
Affiliation(s)
- Katja M Arndt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
7
|
Campbell KM, Sholders AJ, Lumb KJ. Contribution of buried lysine residues to the oligomerization specificity and stability of the fos coiled coil. Biochemistry 2002; 41:4866-71. [PMID: 11939781 DOI: 10.1021/bi0159276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled coils comprise two or more helices characterized by a heptad repeat of amino acids denoted a through g. The buried a and d positions are usually occupied by hydrophobic residues. Fos dimerizes via a coiled coil (leucine zipper) with Jun family members to form the transcription factor AP-1. Fos homodimers are relatively unstable due to unfavorable interhelical electrostatic interactions within the Fos two-stranded coiled coil. The Fos coiled coil contains two polar position a Lys residues (Lys 16 and Lys 30 of Fos-p1, a peptide corresponding to the coiled-coil domain of v-Fos). Lys 16 and Lys 30 of Fos-p1 were replaced individually and together with the unnatural amino acid norleucine (2-aminohexanoic acid), which corresponds to a deletion of the Lys epsilon-amino group. The midpoint of thermal denaturation (T(m)) of Fos-p1 (10 microM) is 30 degrees C at pH 7. The Lys 16 --> Nle variant forms predominantly homodimers that are relatively unstable (T(m) = 46 degrees C). The Lys 30 --> Nle variant forms a stable homotetramer (T(m) = 60 degrees C). The Lys 16/Lys 30 --> Nle variant forms a very stable homotetramer (T(m) = 80 degrees C). The results show that (i) the effects of buried position a Lys residues on coiled-coil oligomerization are context dependent and (ii) electrostatic destabilization of the Fos homodimer can be mitigated by an oligomerization switch moderated by a single buried Lys residue.
Collapse
Affiliation(s)
- Kathleen M Campbell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
8
|
Ulmer TS, Yaspan B, Ginsberg MH, Campbell ID. NMR analysis of structure and dynamics of the cytosolic tails of integrin alpha IIb beta 3 in aqueous solution. Biochemistry 2001; 40:7498-508. [PMID: 11412103 DOI: 10.1021/bi010338l] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural and dynamic properties of the cytosolic tails of the adhesion receptor integrin alphaIIbbeta3, fused to a coiled-coil construct via (Gly)(3) linkers, were studied in aqueous solution by nuclear magnetic resonance (NMR) spectroscopy. Both tails were largely flexible and unstructured, although, in the beta3 tail, residues Arg(724)-Ala(735) have a propensity to form a helical structure and residues Asn(744)-Tyr(747) (NPLY) have a propensity to adopt reverse-turn conformations. The mutation beta3(Y747A) disrupted this reverse-turn tendency and markedly reduced the affinity of the head domain of the cytoskeletal protein, talin for the beta3 tail. Omission of the (Gly)(3) linker connecting the coiled-coiled helices and the integrin tails lead to helix propagation into the beta3 tail extending up to eight residues. A variety of different tail constructs were made and studied to reveal tail-tail interactions, but surprisingly no significant interactions between both tails could be detected within the context of our constructs. These results provide structural insight into a highly conserved beta tail motif (NPXY/F) required for integrin signaling and highlight a second transiently structured region (residues Arg(724)-Ala(735)), which might also be of functional significance.
Collapse
Affiliation(s)
- T S Ulmer
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
9
|
Ginsberg MH, Yaspan B, Forsyth J, Ulmer TS, Campbell ID, Slepak M. A membrane-distal segment of the integrin alpha IIb cytoplasmic domain regulates integrin activation. J Biol Chem 2001; 276:22514-21. [PMID: 11304543 DOI: 10.1074/jbc.m101915200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous evidence suggests that interactions between integrin cytoplasmic domains regulate integrin activation. We have constructed and validated recombinant structural mimics of the heterodimeric alpha(IIb)beta(3) cytoplasmic domain. The mimics elicited polyclonal antibodies that recognize a combinatorial epitope(s) formed in mixtures of the alpha(IIb) and beta(3) cytoplasmic domains but not present in either isolated tail. This epitope(s) is present within intact alpha(IIb)beta(3), indicating that interaction between the tails can occur in the native integrin. Furthermore, the combinatorial epitope(s) is also formed by introducing the activation-blocking beta(3)(Y747A) mutation into the beta(3) tail. A membrane-distal heptapeptide sequence in the alpha(IIb) tail ((997)RPPLEED) is responsible for this effect on beta(3). Membrane-permeant palmitoylated peptides, containing this alpha(IIb) sequence, specifically blocked alpha(IIb)beta(3) activation in platelets. Thus, this region of the alpha(IIb) tail causes the beta(3) tail to resemble that of beta(3)(Y747A) and suppresses activation of the integrin.
Collapse
Affiliation(s)
- M H Ginsberg
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Amino Acids, Peptides, and Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Spott S, Dong F, Kisters-Woike B, Müller-Hill B. Dimerisation mutants of Lac repressor. II. A single amino acid substitution, D278L, changes the specificity of dimerisation. J Mol Biol 2000; 296:673-84. [PMID: 10669616 DOI: 10.1006/jmbi.1999.3469] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Assembly of the lactose repressor tetramer involves two subunit interfaces, the C-terminal heptad repeats, and the monomer-monomer interface. Dimerisation between two monomers of Lac repressor of Escherichia coli lacking the two C-terminal heptad repeats occurs through the interactions between three alpha-helices of each monomer, which form a highly hydrophobic interface. Residues possibly involved in specific dimer formation are known from X-ray studies and from the phenotypes of more than 4000 single amino acid substitutions. During the examination of numerous mutants within the dimerisation interface of Lac repressor, we found that substitution of one amino acid, D278 to leucine, is sufficient to change the specificity of dimerisation. Analysis of this single substitution indicates that D278L mutant Lac repressor represses like wild-type. However, it no longer forms heterodimers with wild-type Lac repressor.
Collapse
Affiliation(s)
- S Spott
- Institut für Genetik, der Universität Kön, Koln, Weyertal 121, 50931, Germany
| | | | | | | |
Collapse
|
12
|
Arndt KM, Pelletier JN, Müller KM, Alber T, Michnick SW, Plückthun A. A heterodimeric coiled-coil peptide pair selected in vivo from a designed library-versus-library ensemble. J Mol Biol 2000; 295:627-39. [PMID: 10623552 DOI: 10.1006/jmbi.1999.3352] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel heterodimeric coiled-coil pairs were selected simultaneously from two DNA libraries using an in vivo protein-fragment complementation assay with dihydrofolate reductase, and the best pair was biophysically characterized. We randomized the interface-flanking e and g positions to Gln, Glu, Arg or Lys, and the core a position to Asn or Val in both helices simultaneously, using trinucleotide codons in DNA synthesis. Selection cycles with three different stringencies yielded sets of coiled-coil pairs, of which 80 clones were statistically analyzed. Thereby, properties most crucial for successful heterodimerization could be distinguished from those mediating more subtle optimization. A strong bias towards an Asn pair in the core a position indicated selection for structural uniqueness, and a reduction of charge repulsions at the e/g positions indicated selection for stability. Increased stringency led to additional selection for heterospecificity by destabilizing the respective homodimers. Interestingly, the best heterodimers did not contain exclusively complementary charges. The dominant pair, WinZip-A1B1, proved to be at least as stable in vitro as naturally occurring coiled coils, and was shown to be dimeric and highly heterospecific with a K(D) of approximately 24 nM. As a result of having been selected in vivo it possesses all characteristics required for a general in vivo heterodimerization module. The combination of rational library design and in vivo selection presented here is a very powerful strategy for protein design, and it can reveal new structural relationships.
Collapse
Affiliation(s)
- K M Arndt
- Biochemisches Institut, Universität Zürich, Winterthurerstr. 190, Zürich, CH-8057, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Hendsch ZS, Tidor B. Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Protein Sci 1999; 8:1381-92. [PMID: 10422826 PMCID: PMC2144375 DOI: 10.1110/ps.8.7.1381] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The GCN4 leucine zipper is a peptide homodimer that has been the subject of a number of experimental and theoretical investigations into the determinants of affinity and specificity. Here, we utilize this model system to investigate electrostatic effects in protein binding using continuum calculations. A particularly novel feature of the computations made here is that they provide an interaction-by-interaction breakdown of the electrostatic contributions to the free energy of docking that includes changes in the interaction of each functional group with solvent and changes in interactions between all pairs of functional groups on binding. The results show that (1) electrostatic effects disfavor binding by roughly 15 kcal/mol due to desolvation effects that are incompletely compensated in the bound state, (2) while no groups strongly stabilize binding, the groups that are most destabilizing are charged and polar side chains at the interface that have been implicated in determining binding specificity, and (3) attractive intramolecular interactions (e.g., backbone hydrogen bonds) that are enhanced on binding due to reduced solvent screening in the bound state contribute significantly to affinity and are likely to be a general effect in other complexes. A comparison is made between the results obtained in an electrostatic analysis carried out calculationally and simulated results corresponding to idealized data from a scanning mutagenesis experiment. It is shown that scanning experiments provide incomplete information on interactions and, if overinterpreted, tend to overestimate the energetic effect of individual side chains that make attractive interactions. Finally, a comparison is made between the results available from a continuum electrostatic model and from a simpler surface-area dependent solvation model. In this case, although the simpler model neglects certain interactions, on average it performs rather well.
Collapse
Affiliation(s)
- Z S Hendsch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | |
Collapse
|
14
|
Pelletier JN, Arndt KM, Plückthun A, Michnick SW. An in vivo library-versus-library selection of optimized protein-protein interactions. Nat Biotechnol 1999; 17:683-90. [PMID: 10404162 DOI: 10.1038/10897] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a rapid and efficient in vivo library-versus-library screening strategy for identifying optimally interacting pairs of heterodimerizing polypeptides. Two leucine zipper libraries, semi-randomized at the positions adjacent to the hydrophobic core, were genetically fused to either one of two designed fragments of the enzyme murine dihydrofolate reductase (mDHFR), and cotransformed into Escherichia coli. Interaction between the library polypeptides reconstituted enzymatic activity of mDHFR, allowing bacterial growth. Analysis of the resulting colonies revealed important biases in the zipper sequences relative to the original libraries, which are consistent with selection for stable, heterodimerizing pairs. Using more weakly associating mDHFR fragments, we increased the stringency of selection. We enriched the best-performing leucine zipper pairs by multiple passaging of the pooled, selected colonies in liquid culture, as the best pairs allowed for better bacterial propagation. This competitive growth allowed small differences among the pairs to be amplified, and different sequence positions were enriched at different rates. We applied these selection processes to a library-versus-library sample of 2.0 x 10(6) combinations and selected a novel leucine zipper pair that may be appropriate for use in further in vivo heterodimerization strategies.
Collapse
Affiliation(s)
- J N Pelletier
- Département de biochimie, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
15
|
Arrizubieta MJ, Bandman E. Regulation of alpha-helical coiled-coil dimerization in chicken skeletal muscle light meromyosin. J Biol Chem 1999; 274:13847-53. [PMID: 10318791 DOI: 10.1074/jbc.274.20.13847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dimerization specificity of the light meromyosin (LMM) domain of chicken neonatal and adult myosin isoforms was analyzed by metal chelation chromatography. Our results show that neonatal and adult LMMs associate preferentially, although not exclusively, as homodimeric coiled-coils. Using chimeric LMM constructs combining neonatal and adult sequences, we observed that a stretch of 183 amino acids of sequence identity at the N terminus of the LMM was sufficient to allow the adult LMM to dimerize in a non-selective manner. In contrast, sequence identity in the remaining C-terminal 465 amino acids had only a modest effect on the dimerization selectivity of the adult isoform. Sequence identity at the N terminus also promoted dimerization of the neonatal LMM to a greater degree than sequence identity at the C terminus. However, the N terminus had only a partial effect on the dimerization specificity of the neonatal sequence, and residues distributed throughout the LMM were capable of affecting dimerization selectivity of this isoform. These results indicated that dimerization preference of the neonatal and adult isoforms was affected to a different extent by sequence identity at a given region of the LMM.
Collapse
Affiliation(s)
- M J Arrizubieta
- Department of Food Science and Technology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
16
|
Chao H, Bautista DL, Litowski J, Irvin RT, Hodges RS. Use of a heterodimeric coiled-coil system for biosensor application and affinity purification. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 715:307-29. [PMID: 9792518 DOI: 10.1016/s0378-4347(98)00172-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The two-stranded alpha-helical coiled-coil is now recognized as one of nature's favorite ways of creating a dimerization motif. Based on the knowledge of protein folding studies and de novo design model systems, a novel heterodimeric coiled-coil protein was synthesized. The heterodimeric E/K coiled-coil was constructed with two distinct peptides (E and K) that will spontaneously associate into a full helical coiled-coil structure in solution. Equilibrium CD, NMR and real time biosensor kinetics experiments showed that the E/K coiled-coil is both structurally (deltaG(unfold)=11.3 kcal/mol) and kinetically (Kd approximately 1 nM) stable in solution at neutral pH. The engineered coiled-coil had been applied as a dimerization and capture domain for biosensor based applications and used in an expression/detection/affinity chromatography system. Specific test examples demonstrated the usefulness of the E/K heterodimeric system in these applications. The universality of coiled-coil as a dimerization motif in nature and our ability to design and synthesize these proteins suggest a wide variety of applications.
Collapse
Affiliation(s)
- H Chao
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
17
|
Sharma VA, Logan J, King DS, White R, Alber T. Sequence-based design of a peptide probe for the APC tumor suppressor protein. Curr Biol 1998; 8:823-30. [PMID: 9663391 DOI: 10.1016/s0960-9822(98)70324-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Proteins form specific associations, but predictive rules for protein pairing are generally unknown. Here, we describe amino-acid sequence patterns capable of mediating specific pairing of a widespread protein motif: the parallel, dimeric, alpha-helical coiled coil. The pairing rules were tested by designing a 54-residue peptide (anti-APCp1) that is predicted to dimerize preferentially with a coiled-coil sequence from the adenomatous polyposis coli (APC) tumor suppressor protein. RESULTS As judged by circular dichroism, ultracentrifugation and native gel electrophoresis, anti-APCp1 formed a specific, helical, dimeric complex with the target APC coiled coil. On western blots of APC fragments expressed in Escherichia coli, the designed peptide detected a pattern of bands identical to the pattern detected by an antibody directed against the APC coiled coil. Peptide-mediated precipitation experiments showed that anti-APCp1 bound and sequestered wild-type and mutant APC proteins in extracts of human colon cancer cell lines. In addition, binding of the designed peptide preserved native APC-beta-catenin complexes. CONCLUSIONS These biochemical experiments demonstrate that the anti-APC peptide preferentially forms a heterodimeric coiled coil with mutant and full-length APC proteins. The specificity of the designed peptide is sufficient to support several applications that commonly use antibodies. The observed specificity of anti-APCp1 validates the pairing rules used as the basis for the probe design, and it suggests that residues in the core positions of coiled coils help impart pairing selectivity.
Collapse
Affiliation(s)
- V A Sharma
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA
| | | | | | | | | |
Collapse
|
18
|
Arrizubieta MJ, Bandman E. The role of interhelical ionic interactions in myosin rod assembly. Biochem Biophys Res Commun 1998; 244:588-93. [PMID: 9514858 DOI: 10.1006/bbrc.1998.8105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interhelical electrostatic interactions at specific heptad positions can regulate dimerization specificity of alpha-helical coiled-coils. We have analyzed 20 vertebrate myosin sequences from a variety of organisms and tissues in order to determine if interhelical ionic interactions correlate with the observed myosin dimerization specificity. We find that the sites for potential interhelical ion pairing are identical in virtually all sarcomeric myosins whether they form homo- or heterodimers. We also show that smooth muscle and non-muscle myosin rod sequences exhibit a different conserved pattern of potential interhelical ion pairing. These observations suggest that myosin rod residues involved in interhelical electrostatic interactions do not regulate dimerization specificity, but may contribute to the specific arrangements of myosin molecules that determine differences in the filament morphology of sarcomeric and non-sarcomeric muscles.
Collapse
Affiliation(s)
- M J Arrizubieta
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | |
Collapse
|
19
|
Zeng X, Zhu H, Lashuel HA, Hu JC. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci 1997; 6:2218-26. [PMID: 9336844 PMCID: PMC2143569 DOI: 10.1002/pro.5560061016] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Putative intersubunit electrostatic interactions between charged amino acids on the surfaces of the dimer interfaces of leucine zippers (g-e' ion pairs) have been implicated as determinants of dimerization specificity. To evaluate the importance of these ionic interactions in determining the specificity of dimer formation, we constructed a pool of > 65,000 GCN4 leucine zipper mutants in which all the e and g positions are occupied by different combinations of alanine, glutamic acid, lysine, or threonine. The oligomerization properties of these mutants were evaluated based on the phenotypes of cells expressing lambda repressor-leucine zipper fusion proteins. About 90% of the mutants do not form stable homooligomers. Surprisingly, approximately 8% of the mutant sequences have phenotypes consistent with the formation of higher-order (> dimer) oligomers, which can be classified into three types based on sequence features. The oligomerization states of mutants from two of these types were determined by characterizing purified fusion proteins. The Type I mutant behaved as a tetramer under all tested conditions, whereas the Type III mutant formed a variety of higher-order oligomers, depending on the solution conditions. Stable homodimers comprise less than 3% of the pool; several g-e' positions in these mutants could form attractive ion pairs. Putative repulsive ion pairs are not found among the homodimeric mutants. However, patterns of charged residues at the e and g positions do not seem to be sufficient to predict either homodimer or heterodimer formation among the mutants.
Collapse
Affiliation(s)
- X Zeng
- Department of Biochemistry & Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | | | | | |
Collapse
|
20
|
Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, Kazemi-Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I, Gietz RD, Hayden MR. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 1997; 16:44-53. [PMID: 9140394 DOI: 10.1038/ng0597-44] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Huntington disease (HD) is associated with the expansion of a polyglutamine tract, greater than 35 repeats, in the HD gene product, huntingtin. Here we describe a novel huntingtin interacting protein, HIP1, which co-localizes with huntingtin and shares sequence homology and biochemical characteristics with Sla2p, a protein essential for function of the cytoskeleton in Saccharomyces cerevisiae. The huntingtin-HIP1 interaction is restricted to the brain and is inversely correlated to the polyglutamine length in huntingtin. This provides the first molecular link between huntingtin and the neuronal cytoskeleton and suggests that, in HD, loss of normal huntingtin-HIP1 interaction may contribute to a defect in membrane-cytoskeletal integrity in the brain.
Collapse
Affiliation(s)
- M A Kalchman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zeng X, Herndon AM, Hu JC. Buried asparagines determine the dimerization specificities of leucine zipper mutants. Proc Natl Acad Sci U S A 1997; 94:3673-8. [PMID: 9108036 PMCID: PMC20499 DOI: 10.1073/pnas.94.8.3673] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of gene expression by many transcription factors is controlled by specific combinations of homo- and heterodimers through a short alpha-helical coiled-coil known as a leucine zipper. The dimer interface of a leucine zipper involves side chains of the residues at the a, d, e, and g positions of the (abcdefg)n heptad repeat. To understand the basis for the specificity of dimer formation, we characterized GCN4 leucine zipper mutants with all 16 possible permutations and combinations of isoleucines and asparagines at four a positions in the dimer interface, using a genetic test for the specificity of dimer formation by lambda repressor-leucine zipper fusions. Heterodimers were detected by loss of repressor activity in the presence of a fusion to a dominant-negative mutant form of the DNA-binding domain of repressor. Reconstruction experiments using leucine zippers from GCN4, Jun, Fos, and C/EBP showed that this assay distinguishes pairs that form heterodimers from those that do not. We found that the mutants have novel dimerization specificities determined by the positioning of buried asparagine residues at the a positions. The pattern of buried polar residues could also explain the dimerization specificities of some naturally occurring leucine zippers. The altered specificity mutants described here should be useful for the construction of artificial regulatory circuitry.
Collapse
Affiliation(s)
- X Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | | | |
Collapse
|
22
|
|
23
|
Heuer KH, Mackay JP, Podzebenko P, Bains NP, Weiss AS, King GF, Easterbrook-Smith SB. Development of a sensitive peptide-based immunoassay: application to detection of the Jun and Fos oncoproteins. Biochemistry 1996; 35:9069-75. [PMID: 8703910 DOI: 10.1021/bi952817o] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
c-Jun and c-Fos belong to the bZIP class of transcriptional activator proteins, many of which have been implicated in the neoplastic transformation of cells. We are interested in engineering dominant-negative leucine zipper (LZ) peptides as a means of sequestering these proteins in vivo in order to suppress their transcriptional regulatory activity. Toward this end, we have developed a novel immunoassay for measuring the dimerization affinities of dimeric Jun and Fos complexes. This peptide-based ELISA relies on the fact that Jun and Fos preferentially form heterodimers via their leucine zipper domains. Recombinant Jun leucine zipper peptides (either native JunLZ or a V36 --> E point mutant) were labeled with biotin and specifically bound through a leucine zipper interaction to a FosLZ-glutathione S-transferase fusion protein adsorbed onto the wells of an ELISA tray. Jun:Fos complexes were subsequently detected using a recently developed streptavidin-based amplification system known as enzyme complex amplification [Wilson, M. R., & Easterbrook-Smith, S.B. (1993) Anal. Biochem. 209, 183-187]. This ELISA system can detect subnanomolar concentrations of Jun and Fos, thus allowing determination of the dissociation constants for complex formation. The dissociation constant for formation of the native JunLZ:FosLZ heterodimer at 37 degrees C was determined to be 0.99 +/- 0.30 nM, while that for JunLZ(V36E):FosLZ heterodimer was 0.90 +/- 0.13 microM. These results demonstrate that the novel peptide-based ELISA described herein is simple and sensitive and can be used to rapidly screen for potential dominant-negative leucine zipper peptides.
Collapse
Affiliation(s)
- K H Heuer
- Department of Biochemistry, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Junius FK, O'Donoghue SI, Nilges M, Weiss AS, King GF. High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. J Biol Chem 1996; 271:13663-7. [PMID: 8662824 DOI: 10.1074/jbc.271.23.13663] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The solution structure of the c-Jun leucine zipper domain has been determined to high resolution using a new calculation protocol designed to handle highly ambiguous sets of interproton distance restraints. The domain comprises a coiled coil of parallel alpha-helices in which most of the hydrophobic residues are buried at the highly symmetrical dimer interface; this interface extends over 10 helical turns and is the most elongated protein domain solved to date using NMR methods. The backbone fold is very similar to that seen in crystal structures of the GCN4 and Jun-Fos leucine zippers; however, in contrast with these crystal structures, the Jun leucine zipper dimer appears to be devoid of favorable intermolecular electrostatic interactions. A polar asparagine residue, located at the dimer interface, forms the sole point of asymmetry in the structure; furthermore, the side chain of this residue is disordered due to motional averaging. This residue, which is highly conserved in the leucine zipper family of transcription factors, provides a destabilizing influence that is likely to facilitate the rapid exchange of zipper strands in vivo.
Collapse
Affiliation(s)
- F K Junius
- Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
25
|
MacKay JP, Shaw GL, King GF. Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. Biochemistry 1996; 35:4867-77. [PMID: 8664278 DOI: 10.1021/bi952761y] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The backbone dynamics of the coiled-coil leucine zipper domain of c-Jun have been studied using proton-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation times, together with {1H}15N NOEs, were measured and analyzed by considering the protein to approximate a prolate ellipsoid. An analysis of the T1/T2 ratios for residues in the well-structured section of the protein showed that a model for the spectral density function in which the protein is considered to reorient anisotropically fitted the data significantly better than an isotropic model. Order parameters (S2) in the range 0.7-0.9 were observed for most residues, with lower values near the C-terminus, consistent with fraying of the two helices comprising the coiled-coil. Because nearly all of the N-H vectors have small angles to the long axis of the molecule, there was some uncertainty in the value of the rotational diffusion coefficient Dpar, which describes rotation about the long axis. Thus, an alternative method was examined for its ability to provide independent estimates of Dpar and Dperp (the diffusion coefficient describing rotation about axes perpendicular to the long axis); the transitional diffusion coefficient (Dt) of the protein was measured, and hydrodynamic calculations were used to predict Dpar and Dperp. However, the derived rotational diffusion coefficients proved to be very dependent on the hydrodynamic model used to relate Dt to Dpar and Dperp, and consequently the values obtained from the T1/T2 analysis were used in the order-paramenter analysis. Although it has previously been reported that the side chain of a polar residue at the dimer interface, Asn22, undergoes a conformational exchange process and destabilizes the dimer, no evidence of increased backbone mobility in this region was detected, suggesting that this process is confined to the Asn side chain.
Collapse
Affiliation(s)
- J P MacKay
- Department of Biochemistry, University of Sydney, Australia
| | | | | |
Collapse
|
26
|
|
27
|
Porte D, Oertel-Buchheit P, Granger-Schnarr M, Schnarr M. Fos leucine zipper variants with increased association capacity. J Biol Chem 1995; 270:22721-30. [PMID: 7559397 DOI: 10.1074/jbc.270.39.22721] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Fos wild-type leucine zipper is unable to support homodimerization. This finding is generally explained by the negative net charge of the Fos zipper leading to the electrostatic repulsion of two monomers. Using a LexA-dependent in vivo assay in Escherichia coli, we show here that additional antideterminants for Fos zipper association are the residues in position a within the Fos zipper interface. If the wild-type Fos zipper is fused to the DNA binding domain of the LexA repressor (LexA-DBD), no excess repression is observed as compared with the LexA-DBD alone, in agreement with the incapacity of the wild-type Fos zipper to promote homodimerization. If hydrophobic amino acids (Ile, Leu, Val, Phe, Met) are inserted into the five a positions of a LexA-Fos zipper fusion protein, substantial transcriptional repression is recovered showing that Fos zipper homodimerization is not only limited by the repulsion of negatively charged residues but also by the nonhydrophobic nature of the a positions. The most efficient variants (harboring Ile or Leu in the five a positions) show an about 80-fold increase in transcriptional repression as compared with the wild-type Fos zipper fusion protein. In the case of multiple identical substitutions, the overall improvement is correlated with the hydrophobicity of the inserted side chains, i.e. Ile Leu > Val > Phe > Met. However at least for Val, Phe, and Met the impact of a given residue type on the association efficiency depends strongly on the heptad, i.e. on the local environment of the a residue. This is particularly striking for the second heptad of the Fos zipper, where Val is less well tolerated than Phe and Met. Most likely the a1 residue modulates the interhelical repulsion between two glutamic acid side chains in positions g1 and e2. Most of the hydrophobic Fos zipper variants are also improved in heteroassociation with a Jun leucine zipper, such that roughly half of the additional free energy of homodimerization is imported into the heterodimer. A few candidates (including the Fos wild-type zipper) deviate from this correlation, showing considerable excess heteroassociation.
Collapse
Affiliation(s)
- D Porte
- Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002, Strasbourg, France
| | | | | | | |
Collapse
|
28
|
Cuozzo JW, Tao K, Wu QL, Young W, Sahagian GG. Lysine-based structure in the proregion of procathepsin L is the recognition site for mannose phosphorylation. J Biol Chem 1995; 270:15611-9. [PMID: 7797559 DOI: 10.1074/jbc.270.26.15611] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recognition of lysosomal enzymes by UDP-GlcNAc: lysosomal-enzyme GlcNAc-1-phosphotransferase (phosphotransferase) is mediated by a protein structure on lysosomal enzymes. It has been previously demonstrated that lysine residues are required for phosphorylation of procathepsin L and are a common feature of the site on many lysosomal proteins. In this work, the procathepsin L recognition structure was further defined by identification of the region of the protein containing the structure and the critical lysine residues involved. Removal of the cathepsin L propeptide by low pH-induced autocatalytic processing abolished phosphorylation. The addition of either the purified propeptide or a glutathione S-transferase-propeptide fusion protein to the processed protein restored phosphorylation. Mutagenesis of individual lysine residues demonstrated that two propeptide lysine residues (Lys-54 and Lys-99) were required for efficient phosphorylation of procathepsin L. By comparison of the phosphorylation rates of procathepsin L, lysine-modified procathepsin L, and the procathepsin L oligosaccharide, lysine residues were shown to account for most, if not all, of the protein-dependent interaction. On this basis, it is concluded that the proregion lysine residues are the major elements of the procathepsin L recognition site. In addition, lysine residues in cathepsin D were shown to be as important for phosphorylation as those in procathepsin L, supporting a general model of the recognition site as a specific three-dimensional arrangement of lysine residues exposed on the surface of lysosomal proteins.
Collapse
Affiliation(s)
- J W Cuozzo
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The dimerization specificity of the bZIP transcription factors resides in the leucine zipper region. It is commonly assumed that electrostatic interactions between oppositely charged amino acid residues on different helices of the leucine zipper contribute favorably to dimerization specificity. Crystal structures of the GCN4 leucine zipper contain interhelical salt bridges between Glu20 and Lys15' and between Glu22 and Lys27'. 13C-nuclear magnetic resonance measurements of the glutamic acid pKa values at physiological ionic strength indicate that the salt bridge involving Glu22 does not contribute to stability and that the salt bridge involving Glu20 is unfavorable, relative to the corresponding situation with a neutral (protonated) Glu residue. Moreover, the substitution of Glu20 by glutamine is stabilizing. Thus, salt bridges will not necessarily contribute favorably to bZIP dimerization specificity and may indeed be unfavorable, relative to alternative neutral-charge interactions.
Collapse
Affiliation(s)
- K J Lumb
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | |
Collapse
|