1
|
Abstract
GP 32 (molecular weight 35000) is a T4 bacteriophage protein that destabilizes the DNA helix. The fragment GP32*I (77% of the total weight), which destabilizes helices better than does the parent molecule, crystallizes as platelets thin enough for electron diffraction and electron imaging. In this paper we discuss the structure of this protein as revealed in images reconstructed from stained and unstained crystals.Crystals were prepared as previously described. Crystals for electron microscopy were pelleted from the buffer suspension, washed in distilled water, and resuspended in 1% glucose. Two lambda droplets were placed on grids over freshly evaporated carbon, allowed to sit for five minutes, and then were drained. Stained crystals were prepared the same way, except that prior to draining the droplet, two lambda of aqueous 1% uranyl acetate solution were applied for 20 seconds. Micrographs were produced using less than 2 e/Å2for unstained crystals or less than 8 e/Å2for stained crystals.
Collapse
|
2
|
Pant K, Anderson B, Perdana H, Malinowski MA, Win AT, Pabst C, Williams MC, Karpel RL. The role of the C-domain of bacteriophage T4 gene 32 protein in ssDNA binding and dsDNA helix-destabilization: Kinetic, single-molecule, and cross-linking studies. PLoS One 2018; 13:e0194357. [PMID: 29634784 PMCID: PMC5892887 DOI: 10.1371/journal.pone.0194357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/01/2018] [Indexed: 11/19/2022] Open
Abstract
The model single-stranded DNA binding protein of bacteriophage T4, gene 32 protein (gp32) has well-established roles in DNA replication, recombination, and repair. gp32 is a single-chain polypeptide consisting of three domains. Based on thermodynamics and kinetics measurements, we have proposed that gp32 can undergo a conformational change where the acidic C-terminal domain binds internally to or near the single-stranded (ss) DNA binding surface in the core (central) domain, blocking ssDNA interaction. To test this model, we have employed a variety of experimental approaches and gp32 variants to characterize this conformational change. Utilizing stopped-flow methods, the association kinetics of wild type and truncated forms of gp32 with ssDNA were measured. When the C-domain is present, the log-log plot of k vs. [NaCl] shows a positive slope, whereas when it is absent (*I protein), there is little rate change with salt concentration, as expected for this model.A gp32 variant lacking residues 292-296 within the C-domain, ΔPR201, displays kinetic properties intermediate between gp32 and *I. The single molecule force-induced DNA helix-destabilizing activitiesas well as the single- and double-stranded DNA affinities of ΔPR201 and gp32 truncated at residue 295 also fall between full-length protein and *I. Finally, chemical cross-linking of recombinant C-domain and gp32 lacking both N- and C-terminal domains is inhibited by increasing concentrations of a short single-stranded oligonucleotide, and the salt dependence of cross-linking mirrors that expected for the model. Taken together, these results provide the first evidence in support of this model that have been obtained through structural probes.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, Dana Research Center, Boston, Massachusetts, United States of America
| | - Brian Anderson
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Hendrik Perdana
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Matthew A. Malinowski
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Aye T. Win
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Christopher Pabst
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
| | - Mark C. Williams
- Department of Physics, Northeastern University, Dana Research Center, Boston, Massachusetts, United States of America
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Dana Research Center, Boston, Massachusetts, United States of America
| | - Richard L. Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Hilltop Circle, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kozlov AG, Cox MM, Lohman TM. Regulation of single-stranded DNA binding by the C termini of Escherichia coli single-stranded DNA-binding (SSB) protein. J Biol Chem 2010; 285:17246-52. [PMID: 20360609 DOI: 10.1074/jbc.m110.118273] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homotetrameric Escherichia coli single-stranded DNA-binding (SSB) protein plays a central role in DNA replication, repair, and recombination. In addition to its essential activity of binding to transiently formed single-stranded (ss) DNA, SSB also binds an array of partner proteins and recruits them to their sites of action using its four intrinsically disordered C-terminal tails. Here we show that the binding of ssDNA to SSB is inhibited by the SSB C-terminal tails, specifically by the last 8 highly acidic amino acids that comprise the binding site for its multiple partner proteins. We examined the energetics of ssDNA binding to short oligodeoxynucleotides and find that at moderate salt concentration, removal of the acidic C-terminal ends increases the intrinsic affinity for ssDNA and enhances the negative cooperativity between ssDNA binding sites, indicating that the C termini exert an inhibitory effect on ssDNA binding. This inhibitory effect decreases as the salt concentration increases. Binding of ssDNA to approximately half of the SSB subunits relieves the inhibitory effect for all of the subunits. The inhibition by the C termini is due primarily to a less favorable entropy change upon ssDNA binding. These observations explain why ssDNA binding to SSB enhances the affinity of SSB for its partner proteins and suggest that the C termini of SSB may interact, at least transiently, with its ssDNA binding sites. This inhibition and its relief by ssDNA binding suggest a mechanism that enhances the ability of SSB to selectively recruit its partner proteins to sites on DNA.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
4
|
Ghosh S, Marintcheva B, Takahashi M, Richardson CC. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA. J Biol Chem 2009; 284:30339-49. [PMID: 19726688 DOI: 10.1074/jbc.m109.024059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.
Collapse
Affiliation(s)
- Sharmistha Ghosh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
5
|
Norais CA, Chitteni-Pattu S, Wood EA, Inman RB, Cox MM. DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J Biol Chem 2009; 284:21402-11. [PMID: 19515845 DOI: 10.1074/jbc.m109.010454] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deinococcus radiodurans exhibits an extraordinary resistance to the effects of exposure to ionizing radiation (IR). DdrB is one of five proteins induced to high levels in Deinococcus following extreme IR exposure and that play a demonstrable role in genome reconstitution. Although homology is limited, DdrB is a bacterial single-stranded DNA-binding protein. DdrB features a stable core with a putative OB-fold, and a C-terminal segment with properties consistent with other bacterial SSBs. In solution, the protein functions as a pentamer. The protein binds single-stranded DNA but not duplex DNA. Electron microscopy and assays with two RecA proteins provide further structural and functional identification with bacterial SSB. Overall, the results establish DdrB as the prototype of a new bacterial SSB family. Given the role of SSB as a mobilization scaffold for many processes in DNA metabolism, the induction of an alternative and quite novel SSB following irradiation has potentially broad significance for the organization of genome reconstitution functions.
Collapse
Affiliation(s)
- Cédric A Norais
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
6
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
7
|
Acidic C-terminal tail of the ssDNA-binding protein of bacteriophage T7 and ssDNA compete for the same binding surface. Proc Natl Acad Sci U S A 2008; 105:1855-60. [PMID: 18238893 DOI: 10.1073/pnas.0711919105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ssDNA-binding proteins are key components of the machinery that mediates replication, recombination, and repair. Prokaryotic ssDNA-binding proteins share a conserved DNA-binding fold and an acidic C-terminal tail. It has been proposed that in the absence of ssDNA, the C-terminal tail contacts the ssDNA-binding cleft, therefore predicting that the binding of ssDNA and the C-terminal tail is mutually exclusive. Using chemical cross-linking, competition studies, and NMR chemical-shift mapping, we demonstrate that: (i) the C-terminal peptide of the gene 2.5 protein cross-links to the core of the protein only in the absence of ssDNA, (ii) the cross-linked species fails to bind to ssDNA, and (iii) a C-terminal peptide and ssDNA bind to the same overall surface of the protein. We propose that the protection of the DNA-binding cleft by the electrostatic shield of the C-terminal tail observed in prokaryotic ssDNA-binding proteins, ribosomal proteins, and high-mobility group proteins is an evolutionarily conserved mechanism. This mechanism prevents random binding of charged molecules to the nucleic acid-binding pocket and coordinates nucleic acid-protein and protein-protein interactions.
Collapse
|
8
|
Roy R, Kozlov AG, Lohman TM, Ha T. Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol 2007; 369:1244-57. [PMID: 17490681 PMCID: PMC2041828 DOI: 10.1016/j.jmb.2007.03.079] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli single-stranded (ss)DNA binding (SSB) protein binds ssDNA in multiple binding modes and regulates many DNA processes via protein-protein interactions. Here, we present direct evidence for fluctuations between the two major modes of SSB binding, (SSB)(35) and (SSB)(65) formed on (dT)(70), with rates of interconversion on time scales that vary as much as 200-fold for a mere fourfold change in NaCl concentration. Such remarkable electrostatic effects allow only one of the two modes to be significantly populated outside a narrow range of salt concentration, providing a context for precise control of SSB function in cellular processes via SSB expression levels and interactions with other proteins. Deletion of the acidic C terminus of SSB, the site of binding of several proteins involved in DNA metabolism, does not affect the strong salt dependence, but shifts the equilibrium towards the highly cooperative (SSB)(35) mode, suggesting that interactions of proteins with the C terminus may regulate the binding mode transition and vice versa. Single molecule analysis further revealed a novel low abundance binding configuration and provides a direct demonstration that the SSB-ssDNA complex is a finely tuned assembly in dynamic equilibrium among several well-defined structural and functional states.
Collapse
Affiliation(s)
- Rahul Roy
- Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- *Correspondence should be addressed to T.H. () or T.M.L. ()
| | - Taekjip Ha
- Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
- Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
- *Correspondence should be addressed to T.H. () or T.M.L. ()
| |
Collapse
|
9
|
Sun S, Geng L, Shamoo Y. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity. Proteins 2006; 65:231-8. [PMID: 16881051 DOI: 10.1002/prot.21088] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vivo, replicative DNA polymerases are made more processive by their interactions with accessory proteins at the replication fork. Single-stranded DNA binding protein (SSB) is an essential protein that binds tightly and cooperatively to single-stranded DNA during replication to remove adventitious secondary structures and protect the exposed DNA from endogenous nucleases. Using information from high resolution structures and biochemical data, we have engineered a functional chimeric enzyme of the bacteriophage RB69 DNA polymerase and SSB with substantially increased processivity. Fusion of RB69 DNA polymerase with its cognate SSB via a short six amino acid linker increases affinity for primer-template DNA by sixfold and subsequently increases processivity by sevenfold while maintaining fidelity. The crystal structure of this fusion protein was solved by a combination of multiwavelength anomalous diffraction and molecular replacement to 3.2 A resolution and shows that RB69 SSB is positioned proximal to the N-terminal domain of RB69 DNA polymerase near the template strand channel. The structural and biochemical data suggest that SSB interactions with DNA polymerase are transient and flexible, consistent with models of a dynamic replisome during elongation.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
10
|
Marintcheva B, Hamdan SM, Lee SJ, Richardson CC. Essential residues in the C terminus of the bacteriophage T7 gene 2.5 single-stranded DNA-binding protein. J Biol Chem 2006; 281:25831-40. [PMID: 16807232 DOI: 10.1074/jbc.m604601200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 2.5 of bacteriophage T7 encodes a single-stranded DNA (ssDNA)-binding protein (gp2.5) that is an essential component of the phage replisome. Similar to other prokaryotic ssDNA-binding proteins, gp2.5 has an acidic C terminus that is involved in protein-protein interactions at the replication fork and in modulation of the ssDNA binding properties of the molecule. We have used genetic and biochemical approaches to identify residues critical for the function of the C terminus of gp2.5. The presence of an aromatic residue in the C-terminal position is essential for gp2.5 function. Deletion of the C-terminal residue, phenylalanine, is detrimental to its function, as is the substitution of this residue with non-aromatic amino acids. Placing the C-terminal phenylalanine in the penultimate position also results in loss of function. Moderate shortening of the length of the acidic portion of the C terminus is tolerated when the aromatic nature of the C-terminal residue is preserved. Gradual removal of the acidic C terminus of gp2.5 results in a higher affinity for ssDNA and a decreased ability to interact with T7 DNA polymerase/thioredoxin. The replacement of the charged residues in the C terminus with neutral amino acids abolishes gp2.5 function. Our data show that both the C-terminal aromatic residue and the overall acidic charge of the C terminus of gp2.5 are critical for its function.
Collapse
Affiliation(s)
- Boriana Marintcheva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
11
|
Cubeddu L, White MF. DNA damage detection by an archaeal single-stranded DNA-binding protein. J Mol Biol 2005; 353:507-16. [PMID: 16181640 DOI: 10.1016/j.jmb.2005.08.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/11/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.
Collapse
Affiliation(s)
- Liza Cubeddu
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews KY16 9ST, UK
| | | |
Collapse
|
12
|
Rouzina I, Pant K, Karpel RL, Williams MC. Theory of electrostatically regulated binding of T4 gene 32 protein to single- and double-stranded DNA. Biophys J 2005; 89:1941-56. [PMID: 15994897 PMCID: PMC1366697 DOI: 10.1529/biophysj.105.063776] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA binding protein, which is essential for DNA replication, recombination, and repair. In a recent article, we described a new method using single DNA molecule stretching measurements to determine the noncooperative association constants K(ds) to double-stranded DNA for gp32 and *I, a truncated form of gp32. In addition, we developed a single molecule method for measuring K(ss), the association constant of these proteins to single-stranded DNA. We found that in low salt both K(ds) and K(ss) have a very weak salt dependence for gp32, whereas for *I the salt dependence remains strong. In this article we propose a model that explains the salt dependence of gp32 and *I binding to single-stranded nucleic acids. The main feature of this model is the strongly salt-dependent removal of the C-terminal domain of gp32 from its nucleic acid binding site that is in pre-equilibrium to protein binding to both double-stranded and single-stranded nucleic acid. We hypothesize that unbinding of the C-terminal domain is associated with counterion condensation of sodium ions onto this part of gp32, which compensates for sodium ion release from the nucleic acid upon its binding to the protein. This results in the salt-independence of gp32 binding to DNA in low salt. The predictions of our model quantitatively describe the large body of thermodynamic and kinetic data from bulk and single molecule experiments on gp32 and *I binding to single-stranded nucleic acids.
Collapse
Affiliation(s)
- Ioulia Rouzina
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
13
|
Pant K, Karpel RL, Rouzina I, Williams MC. Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: single molecule force spectroscopy measurements. J Mol Biol 2005; 349:317-30. [PMID: 15890198 DOI: 10.1016/j.jmb.2005.03.065] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 03/17/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Bacteriophage T4 gene 32 protein (gp32) is a well-studied representative of the large family of single-stranded DNA (ssDNA) binding proteins, which are essential for DNA replication, recombination and repair. Surprisingly, gp32 has not previously been observed to melt natural dsDNA. At the same time, *I, a truncated version of gp32 lacking its C-terminal domain (CTD), was shown to decrease the melting temperature of natural DNA by about 50 deg. C. This profound difference in the duplex destabilizing ability of gp32 and *I is especially puzzling given that the previously measured binding of both proteins to ssDNA was similar. Here, we resolve this apparent contradiction by studying the effect of gp32 and *I on the thermodynamics and kinetics of duplex DNA melting. We use a previously developed single molecule technique for measuring the non-cooperative association constants (K(ds)) to double-stranded DNA to determine K(ds) as a function of salt concentration for gp32 and *I. We then develop a new single molecule method for measuring K(ss), the association constant of these proteins to ssDNA. Comparing our measured binding constants to ssDNA for gp32 and *I we see that while they are very similar in high salt, they strongly diverge at [Na+] < 0.2 M. These results suggest that intact protein must undergo a conformational rearrangement involving the CTD that is in pre-equilibrium to its non-cooperative binding to both dsDNA and ssDNA. This lowers the effective concentration of protein available for binding, which in turn lowers the rate at which it can destabilize dsDNA. For the first time, we quantify the free energy of this CTD unfolding, and show it to be strongly salt dependent and associated with sodium counter-ion condensation on the CTD.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
14
|
Jones CE, Mueser TC, Nossal NG. Bacteriophage T4 32 protein is required for helicase-dependent leading strand synthesis when the helicase is loaded by the T4 59 helicase-loading protein. J Biol Chem 2004; 279:12067-75. [PMID: 14729909 DOI: 10.1074/jbc.m313840200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the bacteriophage T4 DNA replication system, T4 gene 59 protein binds preferentially to fork DNA and accelerates the loading of the T4 41 helicase. 59 protein also binds the T4 32 single-stranded DNA-binding protein that coats the lagging strand template. Here we explore the function of the strong affinity between the 32 and 59 proteins at the replication fork. We show that, in contrast to the 59 helicase loader, 32 protein does not bind forked DNA more tightly than linear DNA. 32 protein displays a strong binding polarity on fork DNA, binding with much higher affinity to the 5' single-stranded lagging strand template arm of a model fork, than to the 3' single-stranded leading strand arm. 59 protein promotes the binding of 32 protein on forks too short for cooperative binding by 32 protein. We show that 32 protein is required for helicase-dependent leading strand DNA synthesis when the helicase is loaded by 59 protein. However, 32 protein is not required for leading strand synthesis when helicase is loaded, less efficiently, without 59 protein. Leading strand synthesis by wild type T4 polymerase is strongly inhibited when 59 protein is present without 32 protein. Because 59 protein can load the helicase on forks without 32 protein, our results are best explained by a model in which 59 helicase loader at the fork prevents the coupling of the leading strand polymerase and the helicase, unless the position of 59 protein is shifted by its association with 32 protein.
Collapse
Affiliation(s)
- Charles E Jones
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Building 8, Room 2A19, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
15
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Sun S, Shamoo Y. Biochemical characterization of interactions between DNA polymerase and single-stranded DNA-binding protein in bacteriophage RB69. J Biol Chem 2003; 278:3876-81. [PMID: 12458197 DOI: 10.1074/jbc.m210497200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
17
|
Dudas KC, Scouten SK, Ruyechan WT. Conformational change in the herpes simplex single-strand binding protein induced by DNA. Biochem Biophys Res Commun 2001; 288:184-90. [PMID: 11594771 DOI: 10.1006/bbrc.2001.5766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protease digestion of the herpes simplex virus type 1 major single-strand DNA binding protein ICP8 showed that the cleavage patterns observed in the presence and absence of single-stranded DNA oligonucleotides are substantially different with protection of cleavage sites between amino acids 293 and 806 observed in the presence of oligonucleotide. Experiments using ICP8 modified with fluorescein-5-maleimide (FM) showed that the fluorescence signal exhibited increased susceptibility to antibody quenching and a significant decrease in polarization of the FM fluorescence was observed in the presence compared to the absence of oligonucleotide. Taken together, these results indicate that ICP8 undergoes a conformational change upon binding to single-stranded DNA.
Collapse
Affiliation(s)
- K C Dudas
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
18
|
Waidner LA, Flynn EK, Wu M, Li X, Karpel RL. Domain effects on the DNA-interactive properties of bacteriophage T4 gene 32 protein. J Biol Chem 2001; 276:2509-16. [PMID: 11053417 DOI: 10.1074/jbc.m007778200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T4 gene 32 protein, a model for single-strand specific nucleic acid-binding proteins, consists of three structurally and functionally distinct domains. We have studied the effects of the N and C domains on the protein structure and its nucleic acid-interactive properties. Although the presence of the C domain decreases the proteolytic susceptibility of the core (central) domain, quenching of the core tryptophan fluorescence by iodide is unaltered by the presence of the terminal domains. These results suggest that the overall conformation of the core domain remains largely independent of the flanking domains. Removal of the N or the C terminus does not abolish the DNA renaturation activity of the protein. However, intact protein and its three truncated forms differ in DNA helix-destabilizing activity. The C domain alone is responsible for the kinetic barrier to natural DNA helix destabilization seen with intact protein. Intact protein and core domain potentiate the DNA helix-destabilizing activity of truncated protein lacking only the C domain (*I), enhancing the observed hyperchromicity while increasing the melting temperature. Proteolysis experiments suggest that the affinity of core domain for single-stranded DNA is increased in the presence of *I. We propose that *I can "mingle" with intact protein or core domain while bound to single-stranded DNA.
Collapse
Affiliation(s)
- L A Waidner
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore 21250, USA
| | | | | | | | | |
Collapse
|
19
|
Sherman MB, Soejima T, Chiu W, van Heel M. Multivariate analysis of single unit cells in electron crystallography. Ultramicroscopy 1998; 74:179-99. [PMID: 9809457 DOI: 10.1016/s0304-3991(98)00041-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
High-resolution electron cryomicroscopy of two-dimensional protein crystals is associated with extremely noisy raw data in which even the crystal lattice often cannot be discerned. Correlation averaging procedures, aimed at calculating the total average of all unit cells of crystals in order to reduce noise, are now used routinely in electron crystallography. Multivariate statistical analysis (MSA) may be used for finding not only the average structure but also for quantifying the systematic departures from that average within the population of individual unit cells. We show that the MSA approach is applicable to single unit-cell images in the low-dose (< 10 electrons/A2), high-resolution (< 5 A) realm using 400 keV electron spot-scan images of ice-embedded gp32*I protein crystals. Our feasibility study opens a pathway toward exploiting these naturally occurring variations on the unit-cell theme in order to achieve higher-resolution three-dimensional reconstruction results, or to better understand the dynamic behaviour of molecules within two-dimensional crystals. We explain how single unit-cell images can be processed and classified into homogeneous groups, and we review how the results of such discriminate averaging may subsequently be exploited within the context of conventional "h, k"-space electron crystallographic approaches. Variations among the individual unit cells may thus be one of the most significant resolution-limiting factors currently experienced in electron crystallography. The quantitative assessment and exploitation of such variations may lead to an increased performance of electron crystallographic procedures.
Collapse
Affiliation(s)
- M B Sherman
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
20
|
Kong D, Richardson CC. Role of the acidic carboxyl-terminal domain of the single-stranded DNA-binding protein of bacteriophage T7 in specific protein-protein interactions. J Biol Chem 1998; 273:6556-64. [PMID: 9497392 DOI: 10.1074/jbc.273.11.6556] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene 2.5 single-stranded DNA (ssDNA) binding protein of bacteriophage T7 is essential for T7 DNA replication and recombination. Earlier studies have shown that the COOH-terminal 21 amino acids of the gene 2.5 protein are essential for specific protein-protein interaction with T7 DNA polymerase and T7 DNA helicase/primase. A truncated gene 2.5 protein, in which the acidic COOH-terminal 21 amino acid residues are deleted no longer supports T7 growth, forms dimers, or interacts with either T7 DNA polymerase or T7 helicase/primase in vitro. The single-stranded DNA-binding protein encoded by Escherichia coli (SSB protein) and phage T4 (gene 32 protein) also have acidic COOH-terminal domains, but neither protein can substitute for T7 gene 2.5 protein in vivo. To determine if the specificity for the protein-protein interaction involving gene 2.5 protein resides in its COOH terminus, we replaced the COOH-terminal region of the gene 2.5 protein with the COOH-terminal region from either E. coli SSB protein or T4 gene 32 protein. Both of the two chimeric proteins can substitute for T7 gene 2.5 protein to support the growth of phage T7. The two chimeric proteins, like gene 2.5 protein, form dimers and interact with T7 DNA polymerase and helicase/primase to stimulate their activities. In contrast, chimeric proteins in which the COOH terminus of T7 gene 2.5 protein replaced the COOH terminus of E. coli SSB protein or T4 gene 32 protein cannot support the growth of phage T7. We conclude that an acidic COOH terminus of the gene 2.5 protein is essential for protein-protein interaction, but it alone cannot account for the specificity of the interaction.
Collapse
Affiliation(s)
- D Kong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Mosig G, Yu S, Myung H, Haggård-Ljungquist E, Davenport L, Carlson K, Calendar R. A novel mechanism of virus-virus interactions: bacteriophage P2 Tin protein inhibits phage T4 DNA synthesis by poisoning the T4 single-stranded DNA binding protein, gp32. Virology 1997; 230:72-81. [PMID: 9126263 DOI: 10.1006/viro.1997.8464] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
P2 prophages have been known to inhibit DNA replication and growth of T-even phages. We show here that this inhibition is due to poisoning of the T-even single-stranded DNA binding protein gp32 by the product of the nonessential P2 tin gene. Synthesis of Tin protein from a gene cloned in a multicopy plasmid is necessary and sufficient to completely prevent de novo DNA replication and growth of wild-type T2 or T4 phage. We isolated more than 20 independent mutants that render T-even phages resistant to poisoning by the P2 Tin protein. In all of these mutants, which we call asp, Asp codon 163 of gene 32 is changed to a Gly or Asn codon. The mutant alleles are recessive; i.e., when wild-type and asp mutants coinfect the same host cells, most DNA replication is poisoned by P2 Tin protein. To explain our results, we propose that the P2 Tin protein interacts with T-even gp32 at position 163 and distorts the helical filament of gene 32 protein on single-stranded DNA. Thereby Tin protein inhibits either assembly or function, or both, of the T4 replisome. The inhibition of late gene expression by P2 Tin protein may be an indirect consequence of inhibition of DNA replication.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville Tennessee, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Jiang H, Salinas F, Kodadek T. The gene 32 single-stranded DNA-binding protein is not bound stably to the phage T4 presynaptic filament. Biochem Biophys Res Commun 1997; 231:600-5. [PMID: 9070854 DOI: 10.1006/bbrc.1997.6160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A central reaction in homologous recombination is synapsis, which involves invasion of duplex DNA by a homologous single strand. A key intermediate in this process is the presynaptic filament, a protein-DNA complex composed of a "strand transferase" polymerized along the invading single strand. In this report, the organization and mechanism of assembly of the bacteriophage T4 presynaptic filament are explored. Three T4 proteins, encoded by the uvsX, uvsY and 32 genes, are involved in this process. It is demonstrated that a well-defined series of events involving multiple protein-DNA and protein-protein interactions is required to mediate a transition from an initial gene 32-DNA complex to a mature presynaptic filament in which the UvsX and UvsY proteins are in contact with the DNA and each other, while most or all of the gene 32 protein is removed from the complex.
Collapse
Affiliation(s)
- H Jiang
- Department of Chemistry and Biochemistry, University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
23
|
Gomes XV, Henricksen LA, Wold MS. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 1996; 35:5586-95. [PMID: 8611550 DOI: 10.1021/bi9526995] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Replication protein A (RPA) is multisubunit single-stranded DNA-binding protein required for multiple processes in DNA metabolism including DNA replication, DNA repair, and recombination. Human RPA is a stable complex of three subunits of 70, 32, and 14 kDa (RPA70, RPA32, and RPA14, respectively). We examined the structure of both wild-type and mutant forms of human RPA by mapping sites sensitive to proteolytic cleavage. For all three subunits, only a subset of the possible protease cleavage sites was sensitive to digestion. RPA70 was cleaved into multiple fragments of defined lengths. RPA32 was cleaved rapidly to a approximately 28-kDa polypeptide containing the C-terminus that was partially resistant to further digestion. RPA14 was refractory to digestion under the conditions used in these studies. The digestion properties of a complex of RPA32 and RPA14 were similar to those of the native heterotrimeric RPA complex, indicating that the structure of these subunits is similar in both complexes. Epitopes recognized by monoclonal antibodies to RPA70 were mapped, and this information was used to determine the position of individual cleavage events. These studies suggest that RPA70 is composed of at least two structural domains: an approximately 18-kDa N-terminal domain and a approximately 52-kDa C-terminal domain. The N-terminus of RPA70 was not required for single-stranded DNA-binding activity. Multiple changes in the digestion pattern were observed when RPA bound single-stranded DNA: degradation of the approximately 52-kDa domain of RPA70 was inhibited while proteolysis of RPA32 was stimulated. These data indicate that RPA undergoes a conformational change upon binding to single-stranded DNA.
Collapse
Affiliation(s)
- X V Gomes
- Department of Biochemistry, University of Iowa School of Medicine, Iowa City 52242-1109, USA
| | | | | |
Collapse
|
24
|
Kim Y, Richardson C. Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein-protein interactions. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37684-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Kubasek WL, Spann D, Hockensmith JW. Laser cross-linking of proteins to nucleic acids: photodegradation and alternative photoproducts of the bacteriophage T4 gene 32 protein. Photochem Photobiol 1993; 58:1-10. [PMID: 8378427 DOI: 10.1111/j.1751-1097.1993.tb04895.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pulsed laser cross-linking provides a means of introducing a covalent bond between proteins and the nucleic acids to which they are bound. This rapid cross-linking effectively traps the equilibrium that exists at the moment of irradiation and thus allows examination of the protein-nucleic acid interactions that existed. Laser irradiation may also induce photodestruction of protein and we have used the bacteriophage T4 gene 32 protein to investigate this phenomenon. Our results show that both nonspecific and specific photoproducts can occur, specifically at wavelengths where the peptide backbone of proteins is known to absorb. These results demonstrate that nonspecific photodegradation can be correlated with the formation of a specific photodegradation product. The formation of this product was monitored to show that product yield is nonlinearly dependent on laser power and wavelength. We have also investigated an unexpected photoproduct whose formation is dependent on the length of the polynucleotide to which the gene 32 protein binds and that further demonstrates the complexities of analyzing protein-nucleic acid interactions through the use of UV laser cross-linking. These data provide essential information for the establishment of appropriate conditions for future studies that use UV cross-linking of protein-nucleic acid complexes.
Collapse
Affiliation(s)
- W L Kubasek
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
26
|
Sheflin LG, Fucile NW, Spaulding SW. The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes. Biochemistry 1993; 32:3238-48. [PMID: 8461290 DOI: 10.1021/bi00064a005] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sedimentation and gel retardation studies show a stronger interaction of HMG 1 and 2 with negatively supercoiled DNA than with linear, nicked-circular, or positively supercoiled ds-DNA. An apparent unwinding angle of 58 degrees was obtained for HMG 1 and 2 when assayed by protection of negatively supercoiled DNA from topoisomerase I relaxation or when assayed by the supercoiling of nicked-circular DNA with T4 DNA ligase. The protection of negatively supercoiled DNA was linear up to molar ratios of about 250:1. There was little change in binding reactions or in the protection of supercoiled DNA at ratios above 250:1, indicating that both activities saturate and that HMG 1 and 2 have binding site sizes of about 20 bp. P1, the major tryptic fragment of HMG 1 or 2 which retains the two DNA binding HMG 1/2 boxes, displays a 2-fold increase in binding to all types of ds-DNA compared to intact HMG 1 or 2. However P1 protects negatively supercoiled DNA from topoisomerase I relaxation about 5-fold less than intact HMG 1 or 2. Complete protection with P1 occurs at a molar ratio 1040:1, indicating a DNA binding site size of about 4 bp and an apparent unwinding angle of 10 degrees. P1 binding to closed-circular ss-DNA also involves a binding site of about 4 bp. Adding the acidic C-terminal fragment to P1 reversed its binding and allowed topoisomerase I to relax supercoiled DNA. These findings highlight the importance of the acidic C-terminal domains of HMG 1 and 2 in limiting electrostatic interactions of the HMG 1/2 boxes with ds- or ss-DNA. N-Ethylmaleimide inhibited the binding of intact HMG 1 or 2 to negatively supercoiled DNA, but did not inhibit the electrostatic binding of HMG 1 or 2 to ss-DNA, or of P1 to any form of DNA (ds or ss). These results suggest that cysteine residues are involved in the specific interaction of HMG 1 or 2 with negatively supercoiled DNA and that the acidic C-terminal domains modulate an intramolecular conformational change involving sulfhydryls within the HMG 1/2 boxes.
Collapse
Affiliation(s)
- L G Sheflin
- Department of Medicine, Buffalo Veterans Administration Medical Center, New York 14215
| | | | | |
Collapse
|
27
|
Tateishi S, Horii T, Ogawa T, Ogawa H. C-terminal truncated Escherichia coli RecA protein RecA5327 has enhanced binding affinities to single- and double-stranded DNAs. J Mol Biol 1992; 223:115-29. [PMID: 1731064 DOI: 10.1016/0022-2836(92)90720-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RecA5327 is a truncated RecA protein that is lacking 25 amino acid residues from the C-terminal end. The expression of RecA5327 protein in the cell resulted in the constitutive induction of SOS functions without damage to the DNA. Purified RecA5327 protein effectively promoted the LexA repressor cleavage reaction and ATP hydrolysis at a lower concentration of single-stranded DNA than that required for wild-type RecA protein. A DNA binding study showed that RecA5327 has about ten times higher affinity for single-stranded DNA than does the wild-type RecA protein. Moreover RecA5327 protein binds stably to double-stranded (ds) DNA in conditions where the wild-type RecA protein could not bind. The binding of RecA5327 protein to dsDNA was associated with the unwinding of dsDNA, suggesting that RecA5327 binds to dsDNA in the same manner as does the wild-type protein. The fact that RecA5327 does not bind stoichiometrically but forms short filaments on dsDNA suggests that it nucleates to dsDNA much more frequently than does the wild-type protein. The role of the 25 C-terminal residues, in the regulation of RecA binding to DNA, is discussed.
Collapse
Affiliation(s)
- S Tateishi
- Department of Biology, Faculty of Science Osaka University, Japan
| | | | | | | |
Collapse
|
28
|
Grant RA, Schmid MF, Chiu W. Analysis of symmetry and three-dimensional reconstruction of thin gp32*I crystals. J Mol Biol 1991; 217:551-62. [PMID: 1847218 DOI: 10.1016/0022-2836(91)90757-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thin, multilayered crystals of gp32*I were analyzed by negative stain electron microscopy and image processing. Images of untilted crystals exhibited different projection symmetries and structural motifs. Systematic analysis of these images categorized the projections into four types. Areas producing the type 1 projection were reconstructed in three-dimensions from four tilt series containing 111 images. The three-dimensional data has excellent p121 plane group symmetry and reveals that the gp32*I molecule contains two large domains linked together by a small domain. Computer simulations utilizing projection data suggested that the type 2 and 3 projections arise from superposition of type 1 projections related by a 21 screw axis along the projection axis. The three-dimensional reconstruction was utilized in a final simulation that explained the occurrence of the fourth type of projection. This work provides a firm foundation for future high-resolution analysis of the crystal by electron cryomicroscopy.
Collapse
Affiliation(s)
- R A Grant
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
29
|
Ruvolo PP, Keating KM, Williams KR, Chase JW. Single-stranded DNA binding proteins (SSBs) from prokaryotic transmissible plasmids. Proteins 1991; 9:120-34. [PMID: 2008432 DOI: 10.1002/prot.340090206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNA and protein sequences of single-stranded DNA binding proteins (SSBs) encoded by the plP71a, plP231a, and R64 conjugative plasmids have been determined and compared to Escherichia coli SSB and the SSB encoded by F-plasmid. Although the amino acid sequences of all of these proteins are highly conserved within the NH2-terminal two-thirds of the protein, they diverge in the COOH-terminal third region. A number of amino acid residues which have previously been implicated as being either directly or indirectly involved in DNA binding are conserved in all of these SSBs. These residues include Trp-40, Trp-54, Trp-88, His-55, and Phe-60. On the basis of these sequence comparisons and DNA binding studies, a role for Tyr-70 in DNA binding is suggested for the first time. Although the COOH-terminal third of these proteins diverges more than their NH2-terminal regions, the COOH-terminal five amino acid residues of all five of these proteins are identical. In addition, all of these proteins share the characteristic property of having a protease resistant, NH2-terminal core and an acidic COOH-terminal region. Despite the high degree of sequence homology among the plasmid SSB proteins, the F-plasmid SSB appears unique in that it was the only SSB tested that neither bound well to poly(dA) nor was able to stimulate DNA polymerase III holoenzyme elongation rates. Poly [d(A-T)] melting studies suggest that at least three of the plasmid encoded SSBs are better helix-destabilizing proteins than is the E. coli SSB protein.
Collapse
Affiliation(s)
- P P Ruvolo
- Department of Molecular Biology and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | |
Collapse
|
30
|
Kuil ME, van der Oord CJ, Vlaanderen CA, van Haeringen B, van Grondelle R. A refined calculation of the solution dimensions of the complex between gene 32 protein and single stranded DNA based on estimates of the bending persistence length. J Biomol Struct Dyn 1990; 7:943-57. [PMID: 2310524 DOI: 10.1080/07391102.1990.10508534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rotation diffusion coefficient of a complex of GP32, the single stranded DNA binding protein of the bacteriophage T4, with a single stranded DNA fragment with about 270 bases was determined to obtain further information on the flexibility of this particle. The rotation diffusion of these molecules is used as a sensitive measure of the flexibility of different DNA protein complexes. Using the theory of Hagerman and Zimm (Biopolymers 20, 1481 (1981)) and assuming a bending persistence length of about 35 nanometer it can be shown that the axial increment for GP32 complexes with single stranded DNA is close to 0.5 nm per base. The value for the bending persistence length is in agreement with values found for much larger DNA protein complexes using light scattering experiments. This value for the persistence length also implies that the complex is thin. The radius is estimated to be around 1.7 nm, which shows a moderate degree of hydration. With this set of parameters we can describe all the hydrodynamic experiments on GP32 complexes from 76 to more than 7000 bases obtained using electric birefringence, quasi-elastic light scattering and sedimentation experiments performed in our group over the last few years.
Collapse
Affiliation(s)
- M E Kuil
- Department of Biophysics, Free University, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Kuil ME, van Mourik F, Burger W, van Grondelle R. The internal dynamics of gene 32 protein-DNA complexes studied by quasi-elastic light scattering. Biophys Chem 1988; 32:211-27. [PMID: 2978009 DOI: 10.1016/0301-4622(88)87008-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hydrodynamic properties of large homodisperse single stranded DNAs complexed with the helix destabilizing protein of phage T4, the product of gene 32 (GP32), have been measured. The results suggest a size of the binding site between 8 and 10 nucleotides/GP32 molecule, in reasonable agreement with earlier work on a complex between GP32 and single stranded 145 base DNA. From static light scattering experiments it is concluded that the persistence length of these complexes is about 30 nm, distinctly smaller than the generally accepted value for double stranded DNA. The quasi-elastic light scattering properties of the DNA-GP32 complexes were determined. The variation of the apparent translation diffusion coefficient Dapp with the scattering vector q was analyzed using the discrete ISMF and Rouse-Zimm models [S.C. Lin et al., Biopolymers 17 (1978) 425]. The model parameters that followed from the fit of Dapp versus q2 and from an extensive global analysis of the actually measured autocorrelation functions agreed with the notion that these DNA-protein complexes are indeed rather flexible. The continuous Soda model [K. Soda, Macromolecules 17 (1984) 2365] could successfully explain the variation of Dapp versus q2, assuming a persistence length of 30 nm and a base-base distance in the complex of 0.44 nm.
Collapse
Affiliation(s)
- M E Kuil
- Department of Biophysics, Free University, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Otto C, Chinsky L, Turpin PY, de Mul FF, Harmsen BJ, Greve J. Resonance Raman spectroscopy of complexes of the helix destabilizing proteins GP32 and GP5 with poly(rA) and poly(dA). J Biomol Struct Dyn 1988; 6:35-49. [PMID: 2856034 DOI: 10.1080/07391102.1988.10506481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The bacteriophage T4 helix destabilizing protein (hdp) gp32 and its complexes with poly(rA) and poly(dA) were studied with ultra-violet resonant Raman spectroscopy. The UV-resonant Raman (UV-RR) spectrum of the complex of gp5, the coat protein of bacteriophage M13, with poly(dA) was also measured and is compared with the spectrum of the gp 32/poly(dA) complex. The excitation wavelength was 245.1 nm. This is on the far UV-side of the first absorption bands of adenine and near a "window" in the protein absorption spectrum. The overlap of fluorescence due to chromophores present in the protein and resonance Raman scattering was prevented by this choice of wavelength. The spectra of the protein/polynucleotide complexes are compared with the native nucleotide spectra measured at varying temperatures. The hyperchromicity which is expected when a nucleotide changes from a stacked to an unstacked conformation was not observed for poly(rA), neither upon temperature increase nor on protein binding. In both cases poly(dA) revealed a clear hyperchromicity. This different behavior of poly(rA) and poly(dA) is probably a consequence of their different conformations. The contributions of the proteins to the spectra is weak except for two bands, at 1550 and 1610 cm-1 due to tryptophan (in case of gp32) and one band near 1610 cm-1 due to tyrosine and phenylalanine.
Collapse
Affiliation(s)
- C Otto
- University Twente, Department of Applied Physics, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Otto C, de Mul FF, Greve J. A Raman spectroscopic study of the interaction between nucleotides and the DNA binding protein gp32 of bacteriophage T4. Biopolymers 1987; 26:1667-89. [PMID: 3311188 DOI: 10.1002/bip.360261003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Murphy KC, Casey L, Yannoutsos N, Poteete AR, Hendrix RW. Localization of a DNA-binding determinant in the bacteriophage P22 Erf protein. J Mol Biol 1987; 194:105-17. [PMID: 3612797 DOI: 10.1016/0022-2836(87)90719-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Four amber fragments of the recombination-promoting P22 Erf protein were characterized. The intact Erf monomer contains 204 amino acids. The amber mutations produce fragments of 190, 149, 130 and 95 amino acid residues, all of which are inactive in vivo. The 190 residue fragment is more susceptible to proteolysis in cell extracts than is intact Erf. It breaks down to a stable remnant that is slightly larger than the 149 residue fragment. The 149 and 130 residue fragments are stable; electron microscopy of the purified fragments reveals that they have similar morphologies, retaining the ring-like oligomeric structure, but lacking the tooth-like protruding portions of intact Erf. Intact Erf and the 149 residue fragment have similar affinities for single-stranded DNA; the affinity of the 130 residue fragment is 40-fold lower in low salt at pH 6.0. The 95 residue fragment is unstable in vivo. These observations, combined with previous observations, are interpreted as suggesting that the boundary of the amino-terminal domain of the protein lies between residues 96 and 130, that certain residues between 131 and 149 form part of an interdomain DNA-binding segment of the protein, that the boundary of the carboxy-terminal domain lies to the C-terminal side of residue 149, and that the carboxy-terminal domain is not necessary for assembly of the ring oligomer, although it is essential for Erf activity in vivo.
Collapse
|
35
|
Giedroc DP, Keating KM, Martin CT, Williams KR, Coleman JE. Zinc metalloproteins involved in replication and transcription. J Inorg Biochem 1986; 28:155-69. [PMID: 3543219 DOI: 10.1016/0162-0134(86)80079-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
RNA polymerase (RPase) from E. coli contains two tightly incorporated Zn(II) ions, while the monomeric RPase from bacteriophage T7 does not contain zinc and does not require Zn(II) in the assay. One of the two Zn(II) ions can be differentially removed from E. coli RPase with p-hydroxymercuriphenylsulfonate (PMPS) combined with EDTA and thiol. The resultant Znl or ZnA RPase shows no alteration in transcription initiation and elongation rate from sigma-specific promoters. Biosynthesis of a Co2 RPase and formation of CoA RPase by similar treatment shows the tetrahedral-type Co(II) d-d absorption bands to be associated only with the Co(II) at the A site with maxima at 760 (epsilon = 800), 710 (epsilon = 900), 602 (epsilon = 1500), and 484 (epsilon = 4000) nm. Sulfur to Co(II) charge transfer bands are present at 350 (epsilon = 9600) and 370 (epsilon = 9500) nm. The absorption characteristics strongly suggest that the A site is a tetrathiolate site. While DNA polymerases do not in general appear to contain zinc, gene 32 protein (g32P) from bacteriophage T4, an accessory protein essential for DNA replication and recombination and translational control in the T4 life cycle, is a Zn(II) metalloprotein and contains 1 gram atom of tightly incorporated Zn(II). PMPS displaces the zinc by reacting with three SH groups. Apo-g32P shows markedly altered DNA binding properties. Co(II) substitution gives a protein with intense d-d transitions typical of a tetrahedral Co(II) complex with absorption maxima at 680 (epsilon = 480), 645 (epsilon = 660), 605 (epsilon = 430), 355 (epsilon = 2250), and 320 (epsilon = 3175) nm. The data support a 3 Cys, 1 His coordination site located in the middle of the DNA binding domain of g32P. Data thus far suggest that the Zn(II) binding sites in multisubunit RNA polymerases and in accessory proteins involved in polynucleotide biosynthesis are more likely to play structural or allosteric (regulatory) roles rather than directly participating in catalysis.
Collapse
|
36
|
Scheerhagen MA, Bokma JT, Vlaanderen CA, Blok J, van Grondelle R. A specific model for the conformation of single-stranded polynucleotides in complex with the helix-destabilizing protein GP32 of bacteriophage T4. Biopolymers 1986; 25:1419-48. [PMID: 3017469 DOI: 10.1002/bip.360250805] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Scheerhagen MA, Vlaanderen CA, Blok J, van Grondelle R. Binding stoichiometry of the gene 32 protein of phage T4 in the complex with single stranded DNA deduced from boundary sedimentation. J Biomol Struct Dyn 1986; 3:887-98. [PMID: 3271416 DOI: 10.1080/07391102.1986.10508471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Short 145 base DNA fragments in complex with the helix destabilizing protein of bacteriophage T4, GP32, have been studied with boundary sedimentation. The sedimentation coefficient was determined as a function of concentration, protein-nucleic acid ratio, temperature and salt concentration. It can be concluded that the measured values reflect the properties of the saturated DNA-GP32 complex. A combination of the earlier obtained translational diffusion coefficient of the complex with the sedimentation coefficient yields its anhydrous molecular weight (Mw = 5.4.10(5) D), which corresponds to a size of the binding site of 10 nucleotides per protein. This procedure is not sensitive to the presence of non-binding protein molecules and to the assumed protein concentration, and therefore, it seems more reliable than a determination from titration experiments. Similar sedimentation measurements were performed with tRNA-complexes containing 76 nucleotides. The translational diffusion coefficient can be calculated from the measured rotational diffusion coefficient and assuming the same hydrodynamic diameter for this complex as obtained for the 145 b DNA complex. The molecular weight derived from the data then also leads to a binding site size of about 10 nucleotides. This suggests that also the short tRNA-complex forms an open, strongly solvated structure, as was proposed for the 145 b DNA-GP32 complex.
Collapse
Affiliation(s)
- M A Scheerhagen
- Department of Biophysics, Free University, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Hockensmith JW, Kubasek WL, Vorachek WR, von Hippel PH. Laser cross-linking of nucleic acids to proteins. Methodology and first applications to the phage T4 DNA replication system. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35677-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Coleman JE, Williams KR, King GC, Prigodich RV, Shamoo Y, Konigsberg WH. Protein chemistry-nuclear magnetic resonance approach to mapping functional domains in single-stranded DNA binding proteins. J Cell Biochem 1986; 32:305-26. [PMID: 3543031 DOI: 10.1002/jcb.240320407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Butler AP, Mardian JK, Olins DE. Nonhistone chromosomal protein HMG 1 interactions with DNA. Fluorescence and thermal denaturation studies. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)85129-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Burke RL, Munn M, Barry J, Alberts BM. Purification and properties of the bacteriophage T4 gene 61 RNA priming protein. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89652-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Scheerhagen MA, Blok J, van Grondelle R. The conformation of the complex of the helix destabilizing protein GP32 of bacteriophage T4 and single stranded DNA. J Biomol Struct Dyn 1985; 2:821-9. [PMID: 2856021 DOI: 10.1080/07391102.1985.10506326] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The conformation of single stranded polynucleotides is changed specifically upon binding of the helix destabilizing protein of bacteriophage T4 (GP32). On the basis of circular dichroism (CD) and absorption experiments it is shown that denaturing conditions and the binding of oligopeptides can not induce the altered conformation. On the contrary, according to the current CD and absorption theory, the optical properties of the complex can be explained by a specific, regular conformation, characterized by an appreciable tilt of the bases (less than or equal to -10 degrees) and either a small rotation per base or a small helix diameter. This conformation agrees nicely with the increase of the base-base distance in the complex as determined in solution by electric field induced birefringence measurements. Our calculations show that also the model proposed by Alma (Ph.D. Thesis Catholic University Nijmegen, The Netherlands (1982)) for the complex of the helix destabilizing protein of bacteriophage fd, in which the helix diameter is large and the bases are almost parallel to the helix axis, would agree with the CD- and absorption spectra of the GP32-complex. For the latter protein this model would have to be modified with regard to the axial increment of the bases which is much larger in the GP32-complexes.
Collapse
Affiliation(s)
- M A Scheerhagen
- Department of Biophysics, Free University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
|
44
|
Prigodich RV, Casas-Finet J, Williams KR, Konigsberg W, Coleman JE. 1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes. Biochemistry 1984; 23:522-9. [PMID: 6367821 DOI: 10.1021/bi00298a019] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In concentrated solutions, gene 32 single-stranded DNA binding protein from bacteriophage T4 (gene 32P) forms oligomers with long rotational correlation times, rendering 1H NMR signals from most of the protons too broad to be detected. Small flexible N- and C-terminal domains are present, however, the protons of which give rise to sharp resonances. If the C-terminal A domain (48 residues) and the N-terminal B domain (21 residues) are removed, the resultant core protein of 232 residues (gene 32P) retains high affinity for ssDNA and remains a monomer in concentrated solution, and most of the proton resonances of the core protein can now be observed. Proton NMR spectra (500 MHz) of gene 32P and its complexes with ApA, d(pA)n (n = 2, 4, 6, 8, and 10), and d(pT)8 show that the resonances of a group of aromatic protons shift upfield upon oligonucleotide binding. Proton difference spectra show that the 1H resonances of at least one Phe, one Trp, and five Tyr residues are involved in the chemical shift changes observed with nucleotide binding. The number of aromatic protons involved and the magnitude of the shifts change with the length of the oligonucleotide until the shifts are only slightly different between the complexes with d(pA)8 and d(pA)10, suggesting that the binding groove accommodates approximately eight nucleotide bases. Many of the aromatic proton NMR shifts observed on oligonucleotide complex formation are similar to those observed for oligonucleotide complex formation with gene 5P of bacteriophage fd, although more aromatic residues are involved in the case of gene 32P.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
Chase JW, L'Italien JJ, Murphy JB, Spicer EK, Williams KR. Characterization of the Escherichia coli SSB-113 mutant single-stranded DNA-binding protein. Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43529-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Cohen HA, Chiu W, Hosoda J. Structural analysis of T4 DNA helix destabilizing protein (gp32 I) crystal by electron microscopy. J Mol Biol 1983; 169:235-48. [PMID: 6312050 DOI: 10.1016/s0022-2836(83)80182-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Low dose electron diffraction and imaging techniques have been applied to the study of the crystalline structure of gp32*I, a DNA helix destabilizing protein derived from bacteriophage T4 gene 32 protein. A quantitative analysis of intensities from electron diffraction patterns from tilted, multilayered gp32*I crystal has provided the unit cell thickness of the crystal. The three-dimensional phases indicate that the space group P2(1)2(1)2. By taking into account the unit cell volume and the solvent content in the crystal, it was deduced that there is one gp32*I molecule in each asymmetric unit. A projected density map of unstained, glucose-embedded gp32*I crystal was synthesized with amplitudes from electron diffraction intensities and phases from electron images with reflections out to 7.6 A. Because of the similarity in the scattering density between glucose and protein, this projected map cannot be interpreted with certainty. A low resolution three-dimensional reconstruction shows that the protein molecule is about 90 A long and about 20 A in diameter. Because the dimer is formed around a dyad axis, the protein molecules comprising it must be arranged head-to-head. This dimeric arrangement of the proteins in the unit cell may be implicated as one of the conformational states of this protein in solution.
Collapse
|
47
|
Bedinger P, Alberts BM. The 3‘-5‘ proofreading exonuclease of bacteriophage T4 DNA polymerase is stimulated by other T4 DNA replication proteins. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44546-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Williams KR, Spicer EK, LoPresti MB, Guggenheimer RA, Chase JW. Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32867-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Abstract
The phage P22 erf (essential recombination function) gene was placed in a small plasmid under the control of a strong, inducible promoter by manipulations in vitro. Erf protein was purified from induced cells, and characterized. Erf protein (monomer molecular weight 23,000) forms oligomers in solution. The carboxyl terminus is protease-sensitive: its removal generates a discrete amino-terminal fragment (molecular weight approximately 18,000) that also oligomerizes. At temperatures below 45 degrees C, Erf forms stable, discrete complexes with single-stranded DNA and supercoiled DNA, but not with relaxed double-stranded DNA. Binding to single-stranded DNA is stoichiometric; one Erf monomer binds approximately 15 bases of DNA, over the range of protein concentrations tested (2 to 100 micrograms/ml). At high temperatures (50 to 60 degrees C). Erf binds single- and double-stranded DNA, forming aggregates instead of discrete complexes. Heating and cooling in the absence of DNA produces a form of Erf that has single-stranded binding specificity, but forms aggregates on binding.
Collapse
|
50
|
McKay DB, Williams KR. Crystallization of a tryptic core of the single-stranded DNA binding protein of bacteriophage T4. J Mol Biol 1982; 160:659-61. [PMID: 7175942 DOI: 10.1016/0022-2836(82)90321-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|