1
|
Cifuente JO, Comino N, D'Angelo C, Marina A, Gil-Carton D, Albesa-Jové D, Guerin ME. The allosteric control mechanism of bacterial glycogen biosynthesis disclosed by cryoEM. Curr Res Struct Biol 2020; 2:89-103. [PMID: 34235472 PMCID: PMC8244506 DOI: 10.1016/j.crstbi.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Glycogen and starch are the major carbon and energy reserve polysaccharides in nature, providing living organisms with a survival advantage. The evolution of the enzymatic machinery responsible for the biosynthesis and degradation of such polysaccharides, led the development of mechanisms to control the assembly and disassembly rate, to store and recover glucose according to cell energy demands. The tetrameric enzyme ADP-glucose pyrophosphorylase (AGPase) catalyzes and regulates the initial step in the biosynthesis of both α-polyglucans. AGPase displays cooperativity and allosteric regulation by sensing metabolites from the cell energy flux. The understanding of the allosteric signal transduction mechanisms in AGPase arises as a long-standing challenge. In this work, we disclose the cryoEM structures of the paradigmatic homotetrameric AGPase from Escherichia coli (EcAGPase), in complex with either positive or negative physiological allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP respectively, both at 3.0 Å resolution. Strikingly, the structures reveal that FBP binds deeply into the allosteric cleft and overlaps the AMP site. As a consequence, FBP promotes a concerted conformational switch of a regulatory loop, RL2, from a "locked" to a "free" state, modulating ATP binding and activating the enzyme. This notion is strongly supported by our complementary biophysical and bioinformatics evidence, and a careful analysis of vast enzyme kinetics data on single-point mutants of EcAGPase. The cryoEM structures uncover the residue interaction networks (RIN) between the allosteric and the catalytic components of the enzyme, providing unique details on how the signaling information is transmitted across the tetramer, from which cooperativity emerges. Altogether, the conformational states visualized by cryoEM reveal the regulatory mechanism of EcAGPase, laying the foundations to understand the allosteric control of bacterial glycogen biosynthesis at the molecular level of detail.
Collapse
Key Words
- AGPase, ADP-glucose pyrophosphorylase
- AMP, adenosine 5′-monophosphate
- ATP, adenosine 5′-triphosphate
- EcAGPase, AGPase from E. coli
- Enzyme allosterism
- FBP, fructose 1,6-bisphosphate
- G1P, α-d-glucose-1-phosphate
- GBE, glycogen branching enzyme
- GDE, glycogen debranching enzyme
- GP, glycogen phosphorylase
- GS, glycogen synthase
- GTA-like, glycosyltransferase-A like domain
- Glycogen biosynthesis
- Glycogen regulation
- LβH, left-handed β-helix domain
- Nucleotide sugar biosynthesis
- PPi, pyrophosphate
- RIN, residue interaction network
- SM, sensory motif
Collapse
Affiliation(s)
- Javier O. Cifuente
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Natalia Comino
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Cecilia D'Angelo
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Alberto Marina
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - David Gil-Carton
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - David Albesa-Jové
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
| | - Marcelo E. Guerin
- Structural Biology Unit, CIC BioGUNE, Bizkaia Technology Park, 48160, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
2
|
Bhayani JA, Hill BL, Sharma A, Iglesias AA, Olsen KW, Ballicora MA. Mapping of a Regulatory Site of the Escherichia coli ADP-Glucose Pyrophosphorylase. Front Mol Biosci 2019; 6:89. [PMID: 31608288 PMCID: PMC6773804 DOI: 10.3389/fmolb.2019.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
The enzyme ADP-glucose pyrophosphorylase (ADP-Glc PPase) controls the biosynthesis of glycogen in bacteria and starch in plants. It is regulated by various activators in different organisms according to their metabolic characteristics. In Escherichia coli, the major allosteric activator is fructose 1,6-bisphosphate (FBP). Other potent activator analogs include 1,6-hexanediol bisphosphate (HBP) and pyridoxal 5'-phosphate (PLP). Recently, a crystal structure with FBP bound was reported (PDB ID: 5L6S). However, it is possible that the FBP site found is not directly responsible for the activation of the enzyme. We hypothesized FBP activates by binding one of its phosphate groups to another site ("P1") in which a sulfate molecule was observed. In the E. coli enzyme, Arg40, Arg52, and Arg386 are part of this "P1" pocket and tightly complex this sulfate, which is also present in the crystal structures of ADP-Glc PPases from Agrobacterium tumefaciens and Solanum tuberosum. To test this hypothesis, we modeled alternative binding conformations of FBP, HBP, and PLP into "P1." In addition, we performed a scanning mutagenesis of Arg residues near potential phosphate binding sites ("P1," "P2," "P3"). We found that Arg40 and Arg52 are essential for FBP and PLP binding and activation. In addition, mutation of Arg386 to Ala decreased the apparent affinity for the activators more than 35-fold. We propose that the activator binds at this "P1" pocket, as well as "P2." Arg40 and Arg52 are highly conserved residues and they may be a common feature to complex the phosphate moiety of different sugar phosphate activators in the ADP-Glc PPase family.
Collapse
Affiliation(s)
- Jaina A. Bhayani
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Benjamin L. Hill
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Anisha Sharma
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), CCT CONICET, Santa Fe, Argentina
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Cifuente JO, Comino N, Madariaga-Marcos J, López-Fernández S, García-Alija M, Agirre J, Albesa-Jové D, Guerin ME. Structural Basis of Glycogen Biosynthesis Regulation in Bacteria. Structure 2016; 24:1613-22. [PMID: 27545622 DOI: 10.1016/j.str.2016.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step of bacterial glycogen and plant starch biosynthesis, the most common carbon storage polysaccharides in nature. A major challenge is to understand how AGPase activity is regulated by metabolites in the energetic flux within the cell. Here we report crystal structures of the homotetrameric AGPase from Escherichia coli in complex with its physiological positive and negative allosteric regulators, fructose-1,6-bisphosphate (FBP) and AMP, and sucrose in the active site. FBP and AMP bind to partially overlapping sites located in a deep cleft between glycosyltransferase A-like and left-handed β helix domains of neighboring protomers, accounting for the fact that sensitivity to inhibition by AMP is modulated by the concentration of the activator FBP. We propose a model in which the energy reporters regulate EcAGPase catalytic activity by intra-protomer interactions and inter-protomer crosstalk, with a sensory motif and two regulatory loops playing a prominent role.
Collapse
Affiliation(s)
- Javier O Cifuente
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Natalia Comino
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Julene Madariaga-Marcos
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Sonia López-Fernández
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Mikel García-Alija
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD, UK
| | - David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Marcelo E Guerin
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain; Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
4
|
Abstract
Glycogen accumulation occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited because of the lack of a growth nutrient, e.g., a nitrogen source. This review describes the enzymatic reactions involved in glycogen synthesis and the allosteric regulation of the first enzyme, ADP-glucose pyrophosphorylase. The properties of the enzymes involved in glycogen synthesis, ADP-glucose pyrophosphorylase, glycogen synthase, and branching enzyme are also characterized. The data describing the genetic regulation of the glycogen synthesis are also presented. An alternate pathway for glycogen synthesis in mycobacteria is also described.
Collapse
|
5
|
Asención Diez MD, Aleanzi MC, Iglesias AA, Ballicora MA. A novel dual allosteric activation mechanism of Escherichia coli ADP-glucose pyrophosphorylase: the role of pyruvate. PLoS One 2014; 9:e103888. [PMID: 25102309 PMCID: PMC4125136 DOI: 10.1371/journal.pone.0103888] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022] Open
Abstract
Fructose-1,6-bisphosphate activates ADP-glucose pyrophosphorylase and the synthesis of glycogen in Escherichia coli. Here, we show that although pyruvate is a weak activator by itself, it synergically enhances the fructose-1,6-bisphosphate activation. They increase the enzyme affinity for each other, and the combination increases Vmax, substrate apparent affinity, and decreases AMP inhibition. Our results indicate that there are two distinct interacting allosteric sites for activation. Hence, pyruvate modulates E. coli glycogen metabolism by orchestrating a functional network of allosteric regulators. We postulate that this novel dual activator mechanism increases the evolvability of ADP-glucose pyrophosphorylase and its related metabolic control.
Collapse
Affiliation(s)
- Matías D. Asención Diez
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), FBCB Ciudad Universitaria, Santa Fe, Argentina
| | - Mabel C. Aleanzi
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), FBCB Ciudad Universitaria, Santa Fe, Argentina
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET), FBCB Ciudad Universitaria, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
A Chimeric UDP-glucose pyrophosphorylase produced by protein engineering exhibits sensitivity to allosteric regulators. Int J Mol Sci 2013; 14:9703-21. [PMID: 23648478 PMCID: PMC3676807 DOI: 10.3390/ijms14059703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022] Open
Abstract
In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.
Collapse
|
7
|
Understanding the allosteric trigger for the fructose-1,6-bisphosphate regulation of the ADP-glucose pyrophosphorylase from Escherichia coli. Biochimie 2011; 93:1816-23. [DOI: 10.1016/j.biochi.2011.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022]
|
8
|
Abstract
The accumulation of glycogen occurs in Escherichia coli and Salmonella enterica serovar Typhimurium as well as in many other bacteria. Glycogen will be formed when there is an excess of carbon under conditions in which growth is limited due to the lack of a growth nutrient, e.g., a nitrogen source. The structural genes of the glycogen biosynthetic enzymes of E. coli and S. serovar Typhimurium have been cloned previously, and that has provided insights in the genetic regulation of glycogen synthesis. An important aspect of the regulation of glycogen synthesis is the allosteric regulation of the ADP-Glc PPase. The current information, views, and concepts regarding the regulation of enzyme activity and the expression of the glycogen biosynthetic enzymes are presented in this review. The recent information on the amino acid residues critical for the activity of both glycogen synthase and branching enzyme (BE) is also presented. The residue involved in catalysis in the E. coli ADP-Glc PPase was determined by comparing a predicted structure of the enzyme with the known three-dimensional structures of sugar-nucleotide PPase domains. The molecular cloning of the E. coliglg K-12 structural genes greatly facilitated the subsequent study of the genetic regulation of bacterial glycogen biosynthesis. Results from studies of glycogen excess E. coli B mutants SG3 and AC70R1, which exhibit enhanced levels of the enzymes in the glycogen synthesis pathway (i.e., they are derepressed mutants), suggested that glycogen synthesis is under negative genetic regulation.
Collapse
|
9
|
Bejar CM, Ballicora MA, Iglesias AA, Preiss J. ADPglucose pyrophosphorylase's N-terminus: structural role in allosteric regulation. Biochem Biophys Res Commun 2006; 343:216-21. [PMID: 16530732 DOI: 10.1016/j.bbrc.2006.02.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 02/08/2006] [Indexed: 12/01/2022]
Abstract
We studied the functional role of the Escherichia coli ADPglucose pyrophosphorylase's N-terminus in allosteric regulation, and the particular effects caused by its length. Small truncated mutants were designed, and those lacking up to 15-residues were active and highly purified for further kinetic analyses. Ndelta3 and Ndelta7 did not change the kinetic parameters with respect to the wild-type. Ndelta11 and Ndelta15 enzymes were insensitive to allosteric regulation and highly active in the absence of the activator. Co-expression of two polypeptides corresponding to the N- and C-termini generated an enzyme with activation properties lower than those of the wild-type [C.M. Bejar, M.A. Ballicora, D.F. Gómez Casati, A.A. Iglesias, J. Preiss, The ADPglucose pyrophosphorylase from Escherichia coli comprises two tightly bound distinct domains, FEBS Lett. 573 (2004) 99-104]. Here, we characterized a Ndelta15 co-expression mutant, in which the allosteric regulation was restored to wild-type levels. Unusual allosteric effects caused by either an N-terminal truncation or co-expression of individual domains may respond to structural changes favoring an up-regulated or a down-regulated conformation rather than specific activator or inhibitor sites' disruption.
Collapse
Affiliation(s)
- C M Bejar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
10
|
Bejar CM, Ballicora MA, Gómez-Casati DF, Iglesias AA, Preiss J. The ADP-glucose pyrophosphorylase from Escherichia coli comprises two tightly bound distinct domains. FEBS Lett 2004; 573:99-104. [PMID: 15327982 DOI: 10.1016/j.febslet.2004.07.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 07/19/2004] [Accepted: 07/20/2004] [Indexed: 11/20/2022]
Abstract
Computational analysis of ADP-glucose pyrophosphorylases predicts a fold with two domains. Co-expression of two polypeptides comprising residues 1-323 and 328-431 from the Escherichia coli ADP-glucose pyrophosphorylase yielded an enzyme form as active as the wild type. The only difference from the wild type was a slightly modified affinity for allosteric effectors. The two polypeptides could not be separated by chromatographic procedures. Separate expression of these polypeptides produced inactive unstable forms. All these results indicated that the ADP-glucose pyrophosphorylase comprises two domains with a strong interaction between them. That interaction is important for allosteric properties and structural stability.
Collapse
Affiliation(s)
- Clarisa M Bejar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
11
|
Ballicora MA, Iglesias AA, Preiss J. ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 2003; 67:213-25, table of contents. [PMID: 12794190 PMCID: PMC156471 DOI: 10.1128/mmbr.67.2.213-225.2003] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accumulation of alpha-1,4-polyglucans is an important strategy to cope with transient starvation conditions in the environment. In bacteria and plants, the synthesis of glycogen and starch occurs by utilizing ADP-glucose as the glucosyl donor for elongation of the alpha-1,4-glucosidic chain. The main regulatory step takes place at the level of ADP-glucose synthesis, a reaction catalyzed by ADP-Glc pyrophosphorylase (PPase). Most of the ADP-Glc PPases are allosterically regulated by intermediates of the major carbon assimilatory pathway in the organism. Based on specificity for activator and inhibitor, classification of ADP-Glc PPases has been expanded into nine distinctive classes. According to predictions of the secondary structure of the ADP-Glc PPases, they seem to have a folding pattern common to other sugar nucleotide pyrophosphorylases. All the ADP-Glc PPases as well as other sugar nucleotide pyrophosphorylases appear to have evolved from a common ancestor, and later, ADP-Glc PPases developed specific regulatory properties, probably by addition of extra domains. Studies of different domains by construction of chimeric ADP-Glc PPases support this hypothesis. In addition to previous chemical modification experiments, the latest random and site-directed mutagenesis experiments with conserved amino acids revealed residues important for catalysis and regulation.
Collapse
Affiliation(s)
- Miguel A Ballicora
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
12
|
Frueauf JB, Ballicora MA, Preiss J. Aspartate residue 142 is important for catalysis by ADP-glucose pyrophosphorylase from Escherichia coli. J Biol Chem 2001; 276:46319-25. [PMID: 11567027 DOI: 10.1074/jbc.m107408200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural prediction of several bacterial and plant ADP-glucose pyrophosphorylases, as well as of other sugar-nucleotide pyrophosphorylases, was used for comparison with the three-dimensional structures of two crystallized pyrophosphorylases (Brown, K., Pompeo, F., Dixon, S., Mengin-Lecreulx, D., Cambillau, C., and Bourne, Y. (1999) EMBO J. 18, 4096-4107; Blankenfeldt, W., Asuncion, M., Lam, J. S., and Naismith, J. H. (2000) EMBO J. 19, 6652-6663). This comparison led to the discovery of highly conserved residues throughout the superfamily of pyrophosphorylases despite the low overall homology. One of those residues, Asp(142) in the ADP-glucose pyrophosphorylase from Escherichia coli, was predicted to be near the substrate site. To elucidate the function that Asp(142) might play in the E. coli ADP-glucose pyrophosphorylase, aspartate was replaced by alanine, asparagine, or glutamate using site-directed mutagenesis. Kinetic analysis in the direction of synthesis or pyrophosphorolysis of the purified mutants showed a decrease in specific activity of up to 4 orders of magnitude. Comparison of other kinetic parameters, i.e. the apparent affinities for substrates and allosteric effectors, showed no significant changes, excluding this residue from the specific role of ligand binding. Only the D142E mutant exhibited altered K(m) values but none as pronounced as the decrease in specific activity. These results show that residue Asp(142) is important in the catalysis of the ADP-glucose pyrophosphorylase from E. coli.
Collapse
Affiliation(s)
- J B Frueauf
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
13
|
Wu MX, Preiss J. Truncated forms of the recombinant Escherichia coli ADP-glucose pyrophosphorylase: the importance of the N-terminal region for allosteric activation and inhibition. Arch Biochem Biophys 2001; 389:159-65. [PMID: 11339804 DOI: 10.1006/abbi.2001.2327] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Truncated forms of Escherichia coli ADPglucose pyrophosphorylase were constructed using recombinant DNA techniques. A truncated form of the enzyme having the first 11 amino acid residues from the N-terminus and 2 amino acid residues from the C-terminus deleted was found to be highly active in absence of activator. A 1.6-fold activation by 1.5 mM fructose 1,6 bis-phosphate was observed for the truncated enzyme as compared to the 30-fold activation seen for the intact enzyme. Inhibition of the truncated enzyme by AMP was less than that seen with the intact enzyme. Similar properties were displayed by an enzyme truncated only at the N-terminal. Conversely, the C-terminal truncated enzyme shortened by 2 amino acid residues at the C-terminus is as sensitive as the intact enzyme to activation and inhibition. These results suggest that the N-terminal region is required for allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- M X Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
14
|
Hoffmeister D, Ichinose K, Domann S, Faust B, Trefzer A, Dräger G, Kirschning A, Fischer C, Künzel E, Bearden D, Rohr J, Bechthold A. The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. CHEMISTRY & BIOLOGY 2000; 7:821-31. [PMID: 11094336 DOI: 10.1016/s1074-5521(00)00029-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Streptomyces fradiae is the principal producer of urdamycin A. The antibiotic consists of a polyketide-derived aglycone, which is glycosylated with four sugar components, 2x D-olivose (first and last sugar of a C-glycosidically bound trisaccharide chain at the 9-position), and 2x L-rhodinose (in the middle of the trisaccharide chain and at the 12b-position). Limited information is available about both the biosynthesis of D-olivose and L-rhodinose and the influence of the concentration of both sugars on urdamycin biosynthesis. RESULTS To further investigate urdamycin biosynthesis, a 5.4 kb section of the urdamycin biosynthetic gene cluster was sequenced. Five new open reading frames (ORFs) (urdZ3, urdQ, urdR, urdS, urdT) could be identified each one showing significant homology to deoxysugar biosynthetic genes. We inactivated four of these newly allocated ORFs (urdZ3, urdQ, urdR, urdS) as well as urdZ1, a previously found putative deoxysugar biosynthetic gene. Inactivation of urdZ3, urdQ and urdZ1 prevented the mutant strains from producing L-rhodinose resulting in the accumulation of mainly urdamycinone B. Inactivation of urdR led to the formation of the novel urdamycin M, which carries a C-glycosidically attached D-rhodinose at the 9-position. The novel urdamycins N and O were detected after overexpression of urdGT1c in two different chromosomal urdGT1c deletion mutants. The mutants lacking urdS and urdQ accumulated various known diketopiperazines. CONCLUSIONS Analysis of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster revealed a widely common biosynthetic pathway leading to D-olivose and L-rhodinose. Several enzymes responsible for specific steps of this pathway could be assigned. The pathway had to be modified compared to earlier suggestions. Two glycosyltransferases normally involved in the C-glycosyltransfer of D-olivose at the 9-position (UrdGT2) and in conversion of 100-2 to urdamycin G (UrdGT1c) show relaxed substrate specificity for their activated deoxysugar co-substrate and their alcohol substrate, respectively. They can transfer activated D-rhodinose (instead of D-olivose) to the 9-position, and attach L-rhodinose to the 4A-position normally occupied by a D-olivose unit, respectively.
Collapse
Affiliation(s)
- D Hoffmeister
- Christian-Albrechts-Universität zu Kiel. Pharmazeutische Biologie, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu MX, Preiss J. The N-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase. Arch Biochem Biophys 1998; 358:182-8. [PMID: 9750179 DOI: 10.1006/abbi.1998.0846] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ADPglucose pyrophosphorylase (EC 2.7.7.27) from Escherichia coli is allosterically activated by fructose 1,6-bisphosphate and inhibited by AMP. Proteolysis of the enzyme with proteinase K causes loss of activity and generates two peptides, 21 and 28 kDa, from the 49.7-kDa subunit. The presence of ADPglucose, Mg2+, and fructose 1, 6-bisphosphate during the incubation with proteinase K protected the enzyme activity and prevented cleavage at sites Met181-Ala182 and Phe192-Val193. Proteolysis of the protected enzyme removed 10 to 13 amino acids from the N-terminal and 2 amino acids from the C-terminal. The resulting enzyme was almost independent of the need for fructose 1,6-bisphosphate for maximal activity and insensitive to inhibition by AMP. The apparent affinity for the substrates was similar to that of the fully-activated wild-type enzyme. These data suggest that amino acid residues in the N-terminal portion and possibly the C-terminal portion of ADPglucose pyrophosphorylase are part of the regulatory domain of the enzyme, critical for allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- M X Wu
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, 48824, USA
| | | |
Collapse
|
16
|
Preiss J. ADPglucose pyrophosphorylase: basic science and applications in biotechnology. BIOTECHNOLOGY ANNUAL REVIEW 1998; 2:259-79. [PMID: 9704099 DOI: 10.1016/s1387-2656(08)70013-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enzymatic reactions of bacterial glycogen and plant starch synthesis are similar and some of the properties of the biosynthetic enzymes are compared. Regulation occurs at the synthesis of ADPglucose and in almost all cases, ADPglucose pyrophosphorylase, is allosterically activated about 10- to over 40-fold by glycolytic intermediates and inhibited by AMP, ADP or Pi. The activator specificity of the ADPglucose pyrophosphorylase varies with respect to the source of enzyme and can be correlated to the major assimilation pathway occurring in the organism. For example, ADPglucose pyrophosphorylases from plants and other oxygenic photosynthetic organisms are activated by 3-phosphoglycerate. Organisms using glycolysis for carbon assimilation have ADPglucose pyrophosphorylases with fructose-1,6-bis-phosphate as the major activator. Chemical modification and site-directed mutagenesis studies that have determined the activator binding sites for some enzymes are described. The structural genes of Escherichia coli ADPglucose pyrophosphorylase allosteric mutants which no longer require activator for activity have been isolated. Transformation of plant systems with an allosteric bacterial mutant gene (but not with the wild-type gene) increases their starch content. Transformed potato tubers can have 25-60% more starch than the normal tuber indicating the importance of allosteric regulation of ADPglucose synthesis. The increase of a normal plant product by transformation of the plant with a gene encoding the rate-limiting enzyme in starch synthesis is an important biotechnological advance and suggests the possibilities of changing starch composition (extent of branching and chain sizes) via transformation with the starch synthase and branching enzyme genes.
Collapse
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA.
| |
Collapse
|
17
|
Fu Y, Ballicora MA, Preiss J. Mutagenesis of the glucose-1-phosphate-binding site of potato tuber ADP-glucose pyrophosphorylase. PLANT PHYSIOLOGY 1998; 117:989-96. [PMID: 9662541 PMCID: PMC34953 DOI: 10.1104/pp.117.3.989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Accepted: 04/20/1998] [Indexed: 05/21/2023]
Abstract
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.
Collapse
Affiliation(s)
- Y Fu
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
18
|
Meyer CR, Bork JA, Nadler S, Yirsa J, Preiss J. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior. Arch Biochem Biophys 1998; 353:152-9. [PMID: 9578610 DOI: 10.1006/abbi.1998.0648] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Site-directed mutagenesis was used to probe the role of glycine residue 336 in the regulatory properties of Escherichia coli ADP-glucose pyrophosphorylase. This residue was previously found to be changed from glycine to aspartate in the gene of an Escherichia coli mutant strain. The mutant enzyme had altered kinetic properties, including higher activity in the absence of the activator fructose 1,6-bisphosphate (FBP), higher apparent affinity for FBP and substrates, and lower apparent affinity for the inhibitor AMP. The observed changes in activity were caused by this single mutation, because the aspartate mutant was prepared from the wild-type gene. The kinetic properties of the site-directed mutant are identical to those of the enzyme from the mutant strain. A series of mutants was prepared to explore the effects of charge, size, shape, and hydrophobicity of the amino acid at residue 336 on the enzyme regulatory properties. All of the mutants, except for the lysine and arginine enzymes, were expressed and purified for kinetic analysis. The glycine-336 residue is able to tolerate diverse substitutions without compromise of catalytic activity. A range of allosteric changes was observed, with the most dramatic effects seen with the highly active aspartate enzyme and the low-activity G336Q mutant, which exhibited lower apparent affinities for activator and substrates and higher apparent affinity for inhibitor. The altered allosteric properties of the G336D mutant enzyme were almost completely abolished by substitution of asparagine. Thus, the aspartate negative charge is essential for the altered binding of effectors.
Collapse
Affiliation(s)
- C R Meyer
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
19
|
Meyer CR, Yirsa J, Gott B, Preiss J. A kinetic study of site-directed mutants of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 295 in allosteric regulation. Arch Biochem Biophys 1998; 352:247-54. [PMID: 9587413 DOI: 10.1006/abbi.1998.0593] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of amino acid substitutions at residue 295 on the regulatory properties of Escherichia coli ADP-glucose pyrophosphorylase were studied. In previous studies, this residue, altered from proline to serine (P295S) in the gene of a mutant strain of E. coli, resulted in a high-activity form of enzyme [higher activity in absence of activator fructose 1,6-bisphosphate (FBP), higher apparent affinity for FBP and substrates, and lower apparent affinity for the inhibitor, AMP]. The effects of size and charge on this site were explored by replacing Pro with Gly, Asp, Asn, Gln, or Glu. All mutant enzymes were expressed and purified for kinetic analysis. All mutant enzymes, to varying extents, were in more active form than the wild-type enzyme. Enzymes with a substituted negative charge (P295D, P295E) had the highest activity in the absence of FBP, while the P295G enzyme was most similar to the wild type. The P295D and P295E enzymes had the lowest apparent affinities for AMP; this effect was partially abolished by the neutral substitutions P295N and P295Q. Another mutation, G336D, had previously been found to produce an even higher activity enzyme form. In order to examine interactions between substitutions at the 295 and 336 positions, the double mutant P295D-G336D was constructed and characterized. The double mutant enzyme was more active in the absence of FBP, with a higher affinity for FBP and a lower apparent affinity for AMP than either single mutated enzyme. The significance of residue 295 in regulation is discussed.
Collapse
Affiliation(s)
- C R Meyer
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
20
|
Hill MA, Preiss J. Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli. Biochem Biophys Res Commun 1998; 244:573-7. [PMID: 9514953 DOI: 10.1006/bbrc.1998.8301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two absolutely conserved histidines and a third highly conserved histidine are noted in 11 bacterial and plant ADP-glucose pyrophosphorylases. These histidines were individually mutagenized in the E. coli enzyme to glutamine in order to determine their function. Glutamine mutations at residues 143 and 156 produced functional enzymes in cell extracts with slightly lower than wild-type specific catalytic activities and with same heat stability characteristics of the wild-type enzyme. Substitution of residue 83 with glutamine however produced an enzyme having decreased thermal stability. Additional mutageneses at residue 83 with asparagine, arginine, or aspartate gave rise to enzymes having a progressively decreasing trend in thermal stability. These mutants are more susceptible to proteolysis than wild-type enzyme. Kinetic analysis of H83Q and H83N indicates that histidine 83 is not involved in the catalytic mechanism or in substrate binding but possibly in maintenance of the active catalytic structure.
Collapse
Affiliation(s)
- M A Hill
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
21
|
Ma Y, Mills JA, Belisle JT, Vissa V, Howell M, Bowlin K, Scherman MS, McNeil M. Determination of the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and expression of the Mycobacterium tuberculosis gene encoding alpha-D-glucose-1-phosphate thymidylyltransferase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):937-945. [PMID: 9084178 DOI: 10.1099/00221287-143-3-937] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mycobacterial cell wall core consists of an outer lipid layer of mycolic acids connected, via arabinogalactan polysaccharide, to an inner peptidoglycan layer. An alpha-L-rhamnopyranosyl residue has been shown to be a key component linking the mycolated arabinogalactan to the peptidoglycan and, therefore, the biosynthesis of L-rhamnose (Rha) in mycobacteria was investigated as the first step of developing inhibitors of its biosynthesis. Biochemical assays were used to show that dTDP-Rha was synthesized in Mycobacterium smegmatis from alpha-D-glucose 1-phosphate (alpha-D-Glc-1-P) and dTTP by the same four enzymic steps used by Escherichia coli and other bacteria. PCR primers based on consensus regions of known sequences of the first enzyme in this series, alpha-D-Glc-1-P thymidylytransferase (RfbA) were used to amplify rfbA DNA from M. tuberculosis. The entire rfbA gene was then cloned and sequenced. The deduced amino acid sequence revealed a 31362 Da putative protein product which showed similarity to RfbA proteins of other bacteria (59% identity to that found in E. coli). Sequencing of DNA flanking the rfbA gene did not reveal any of the other rfb genes required for dTDP-Rha biosynthesis. Therefore, the four Rha biosynthetic genes are not clustered in M. tuberculosis. The enzymic activity of the sequenced gene product was confirmed by transformation of E. coli with pBluescript KS(-) containing the rfbA gene from M. tuberculosis. Analysis of enzyme extracts prepared from this transformant revealed an 11-fold increase in alpha-D-Glc-1-P thymidylyltransferase activity.
Collapse
Affiliation(s)
- Yufang Ma
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - Jonathan A Mills
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - John T Belisle
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - Vara Vissa
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - Mark Howell
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - Kelly Bowlin
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - Michael S Scherman
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| | - Michael McNeil
- Department of Microbiology, Colorado State University,Fort Collins, Colorado 80523,,USA
| |
Collapse
|
22
|
Kirschning A, Bechthold AFW, Rohr J. Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides. Top Curr Chem (Cham) 1997. [DOI: 10.1007/bfb0119234] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
La Cognata U, Willmitzer L, Müller-Röber B. Molecular cloning and characterization of novel isoforms of potato ADP-glucose pyrophosphorylase. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:538-48. [PMID: 7700228 DOI: 10.1007/bf00298960] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is one of the major enzymes involved in starch biosynthesis in higher plants. We report here the molecular cloning of two cDNAs encoding so far uncharacterized isoforms (AGP S2 and AGP S3) of the potato enzyme. Sequence analysis shows that the two polypeptides are more homologous to previously identified large subunit polypeptides from potato and other plant species than to small subunit isoforms. This observation suggest that AGP S2 and AGP S3 represent novel large subunit polypeptides. agpS2 is expressed in several tissues of the potato plant, including leaves and tubers. Expression was stronger in sink leaves than in source leaves, indicating developmental regulation. In leaves, agpS2 expression was induced 2- to 3-fold by exogenous sucrose; therefore, agpS2 represents a new sucrose-responsive gene of starch metabolism. Expression of agpS3 was restricted to tubers: no agpS3 expression could be seen in leaves of different developmental stages, or when leaves were incubated in sucrose. Therefore, agpS3 represents the only AGPase gene so far characterized from potato, which is not expressed in leaves. Conversely, all four AGPase isoforms known from potato are expressed in tubers.
Collapse
Affiliation(s)
- U La Cognata
- Institut für Genbiologische Forschung Berlin GmbH, Germany
| | | | | |
Collapse
|
24
|
Thorson JS, Kelly TM, Liu HW. Cloning, sequencing, and overexpression in Escherichia coli of the alpha-D-glucose-1-phosphate cytidylyltransferase gene isolated from Yersinia pseudotuberculosis. J Bacteriol 1994; 176:1840-9. [PMID: 8144449 PMCID: PMC205285 DOI: 10.1128/jb.176.7.1840-1849.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A clone of Yersinia pseudotuberculosis DNA carrying the ascA gene was constructed, and the corresponding protein was successfully overexpressed in Escherichia coli. A protocol consisting of DEAE-cellulose and Sephadex G-100 column chromatography was developed and led to a nearly homogeneous purification of the ascA product. Initial characterization showed that the ascA-encoded protein is actually the alpha-D-glucose-1-phosphate cytidylyltransferase which catalyzes the first step of the biosynthesis of CDP-ascarylose (CDP-3,6-dideoxy-L-arabino-hexose), converting alpha-D-glucose-1-phosphate to CDP-D-glucose. In contrast to early studies suggesting that this enzyme was a monomeric protein of 111 kDa, the purified cytidylyltransferase from Y. pseudotuberculosis was found to consist of four identical subunits, each with a molecular mass of 29 kDa. This assignment is supported by the fact that the ascA gene, as a part of the ascarylose biosynthetic cluster, exhibits high sequence homology with other nucleotidylyltransferases, and its product shows high cytidylyltransferase activity. Subsequent amino acid comparison with other known nucleotidylyltransferases has allowed a definition of the important active-site residues within this essential catalyst. These comparisons have also afforded the inclusion of the cytidylyltransferase into the mechanistic convergence displayed by this fundamental class of enzyme.
Collapse
Affiliation(s)
- J S Thorson
- Department of Chemistry, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
25
|
Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:299-329. [PMID: 8016324 DOI: 10.1016/s0079-6603(08)60255-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
26
|
Iglesias A, Barry G, Meyer C, Bloksberg L, Nakata P, Greene T, Laughlin M, Okita T, Kishore G, Preiss J. Expression of the potato tuber ADP-glucose pyrophosphorylase in Escherichia coli. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54044-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Holmes EH. Presence of an essential lysine residue in a GDP-fucose protected site of the alpha 1----3fucosyltransferase from human small cell lung carcinoma NCl-H69 cells. Arch Biochem Biophys 1992; 296:562-8. [PMID: 1321590 DOI: 10.1016/0003-9861(92)90611-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The NCI-H69 cell alpha 1----3fucosyltransferase has been purified from a 0.2% Triton X-100R solubilized enzyme fraction by GDP-hexanolamine-Sepharose affinity chromatography and Superose 12 gel filtration. Photoaffinity labeling experiments with 125I-GDP-hexanolaminyl-4-azidosalicylic acid present in concentrations equivalent to 0.5 and 1 times Ki of the inhibitor for the enzyme indicated that labeling of the 45-kDa protein band could be inhibited by addition of 400 microM GDP-fucose but was not effected by similar concentrations of either GDP-mannose or GDP-glucose. The purified enzyme was applied to studies intended to define catalytically essential amino acid residues of the protein. Incubation of the enzyme in the presence of increasing concentrations of pyridoxal 5'-phosphate was found to result in irreversible inactivation of the enzyme after NaBH4 reduction. The donor substrate, GDP-fucose, was found to protect the enzyme from inactivation. Little or no protection was found for either GDP-mannose or the acceptor substrate nLc4. Pyridoxal 5'-phosphate was shown to behave as a competitive inhibitor with respect to GDP-fucose with a Ki of 105 microM. Labeling with 3H-pyridoxal 5'-phosphate resulted in the incorporation of approximately 8 mol pyridoxal 5'-phosphate per mole subunit. Parallel experiments containing GDP-fucose indicated protection of one site per subunit correlated with GDP-fucose binding. Acid hydrolysis and chromatographic analysis of the 3H-pyridoxylated protein indicated greater than 95% of the 3H label was recovered as pyridoxyl-lysine irrespective of whether GDP-fucose was present or not during labeling. These studies indicate the presence of a catalytically essential lysine residue associated with GDP-fucose binding to this enzyme. This information will be of value in further studies of this and other alpha 1----3fucosyltransferases and may suggest a practical basis for modulation of enzyme activity in the cell.
Collapse
Affiliation(s)
- E H Holmes
- Pacific Northwest Research Foundation, Seattle, Washington 98122
| |
Collapse
|
28
|
Meyer CR, Ghosh P, Remy E, Preiss J. Cloning, expression, and nucleotide sequence of a mutant glgC gene from Escherichia coli B. J Bacteriol 1992; 174:4509-12. [PMID: 1320612 PMCID: PMC206240 DOI: 10.1128/jb.174.13.4509-4512.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A mutant glgC gene contained in a 10.9-kb PstI fragment was cloned from the Escherichia coli B strain SG5 via colony hybridization by using a wild-type glgC probe. The altered allosteric properties of the expressed ADPglucose synthetase were found to result from the conversion of proline to serine at amino acid residue 295.
Collapse
Affiliation(s)
- C R Meyer
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | |
Collapse
|
29
|
Ghosh P, Meyer C, Remy E, Peterson D, Preiss J. Cloning, expression, and nucleotide sequence of glgC gene from an allosteric mutant of Escherichia coli B. Arch Biochem Biophys 1992; 296:122-8. [PMID: 1339262 DOI: 10.1016/0003-9861(92)90553-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Escherichia coli B mutant strain CL1136 accumulates glycogen at a 3.4- to 4-fold greater rate than the parent E. coli B strain and contains an ADPglucose synthetase with altered kinetic and allosteric properties. The enzyme from CL1136 is less dependent on the allosteric activator, fructose 1,6-bisphosphate, for activity and less sensitive to inhibition by AMP than the parent strain enzyme. The structural gene, glgC, for the allosteric mutant enzyme was selected by colony hybridization and cloned into the bacterial plasmid pBR322 by insertion of the chromosomal DNA at the PstI site. One recombinant plasmid, designated pKG3, was isolated from the genomic library of CL1136 containing glgC. The cloned ADPglucose synthetase from the mutant CL1136 was expressed and characterized with respect to kinetic and allosteric properties and found to be identical to the enzyme purified from the CL1136 strain. The mutant glgC was then subcloned into pUC118/119 for dideoxy sequencing of both strands. The mutant glgC sequence was found to differ from the wild-type at the deduced amino acid residue 67 where a single point mutation resulted in a change from arginine to cysteine.
Collapse
Affiliation(s)
- P Ghosh
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
30
|
Ball KL, Preiss J. Evidence for an arginine residue at the allosteric sites of spinach leaf ADPglucose pyrophosphorylase. JOURNAL OF PROTEIN CHEMISTRY 1992; 11:231-8. [PMID: 1326986 DOI: 10.1007/bf01024861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The covalent modification of spinach leaf ADPglucose pyrophosphorylase leads to inactivation of both activator-stimulated and -unstimulated activity. Inactivation can be prevented if either the activator 3PGA or the inhibitor Pi are present during the modification. Pi proved to be more effective at protecting the enzyme from inactivation as it afforded 50% protection at 51 microM compared to 50% protection by 405 microM 3PGA. Partial modification of the enzyme using [14C]-phenylglyoxal leads to a decrease in both Vmax, A0.5 and a decrease in the ability of the 3PGA to stimulate the enzyme's activity. Modification increased the enzyme's susceptibility to inhibition by Pi and completely abolished the cooperative binding of Pi seen in the unmodified enzyme in the presence of 3PGA. Thus, phenylglyoxal appears to interfere, with the normal allosteric regulation of ADPglucose pyrophosphorylase from spinach leaf. Greater than 90% of the enzyme's activity is lost when 7.2 mol [14C]-phenylglyoxal are bound per mole of tetramer and this label is present in both the larger and small subunits. In addition, inactivation appears to involve two different arginine residues having different rates of modification.
Collapse
Affiliation(s)
- K L Ball
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
31
|
Smith-White BJ, Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 1992; 34:449-64. [PMID: 1318389 DOI: 10.1007/bf00162999] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The primary structures of 11 proteins of ADP-glucose pyrophosphorylase are aligned and compared for relationships among them. These comparisons indicate that many domains are retained in the proteins from both the enteric bacteria and the proteins from angiosperm plants. The proteins from angiosperm plants show two main groups, with one of the main groups demonstrating two subgroups. The two main groups of angiosperm plant proteins are based upon the two subunits of the enzyme, whereas the subgroups of the large subunit group are based upon the tissue in which the particular gene had been expressed. Additionally, the small subunit group shows a slight but distinct division into a grouping based upon whether the protein is from a monocot or dicot source. Previous structure-function studies with the Escherichia coli enzyme have identified regions of the primary structure associated with the substrate binding site, the allosteric activator binding site, and the allosteric inhibitor binding site. There is conservation of the primary structure of the polypeptides for the substrate binding site and the allosteric activator binding site. The nucleotide sequences of the coding regions of the genes of 11 of these proteins are compared for relationships among them. This analysis indicates that the protein for the small subunit has been subject to greater selective pressure to retain a particular primary structure. Also, the coding region of the precursor gene for the small subunit diverged from the coding region of the precursor gene for the large subunits slightly prior to the divergence of the two coding regions of the genes for the two tissue-specific large subunit genes.
Collapse
Affiliation(s)
- B J Smith-White
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
32
|
Iglesias AA, Kakefuda G, Preiss J. Involvement of arginine residues in the allosteric activation and inhibition of Synechocystis PCC 6803 ADPglucose pyrophosphorylase. JOURNAL OF PROTEIN CHEMISTRY 1992; 11:119-28. [PMID: 1326983 DOI: 10.1007/bf01025217] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacterium Synechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form. Vmax at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.
Collapse
Affiliation(s)
- A A Iglesias
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
33
|
Hill M, Kaufmann K, Otero J, Preiss J. Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98920-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Gardiol A, Preiss J. Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme. Arch Biochem Biophys 1990; 280:175-80. [PMID: 2162151 DOI: 10.1016/0003-9861(90)90533-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kinetic and binding studies have shown that Lys39 of Escherichia coli ADPglucose synthetase is involved in binding of the allosteric activator. In order to study structure-function relationships at the activator binding site, this lysine residue was substituted by glutamic acid (Lys39----Glu) by site-directed mutagenesis. The resultant mutant enzyme (E-39) showed activation kinetics different from those of the wild-type enzyme. The level of activation of the E-39 enzyme by the major activators of E. coli ADPglucose synthetase, 2-phosphoglycerate, pyridoxal phosphate, and fructose-1,6-phosphatase was only approximately 2-fold compared to activation of 15- to 28-fold respectively, for the wild-type enzyme. NADPH, an activator of the wild-type enzyme, was unable to activate the mutant enzyme. In addition, the concentrations of the above activators necessary to obtain 50% of the maximal stimulation of enzyme activity (A0.5) were 5-, 9-, and 23-fold higher, respectively, than those for the wild-type enzyme. The E-39 enzyme also had a lower apparent affinity (S0.5) for the substrates ATP and MgCl2 than the wild-type enzyme and the values obtained in the presence or absence of activator were similar. The concentration of inhibitor giving 50% of enzyme activity (I0.5) was also similar for the E-39 enzyme in the presence or absence of activator. These results indicate that the E-39 mutant enzyme is not effectively activated by the major activators of the E. coli ADPglucose synthetase wild-type enzyme, and that this amino acid substitution also prevents the allosteric effect that the activator has on the wild-type enzyme kinetics, either increasing its apparent affinity for the substrates or modulating the enzyme's sensitivity to inhibition.
Collapse
Affiliation(s)
- A Gardiol
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
35
|
Affiliation(s)
- J Preiss
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | |
Collapse
|
36
|
Olive MR, Ellis RJ, Schuch WW. Isolation and nucleotide sequences of cDNA clones encoding ADP-glucose pyrophosphorylase polypeptides from wheat leaf and endosperm. PLANT MOLECULAR BIOLOGY 1989; 12:525-538. [PMID: 24271069 DOI: 10.1007/bf00036967] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/1988] [Accepted: 02/02/1989] [Indexed: 06/02/2023]
Abstract
A cDNA clone (WL : AGA.1) encoding wheat leaf ADP-glucose pyrophosphorylase has been isolated from a λgt11 expression library, by immunological screening with anti-spinach leaf ADP-glucose pyrophosphorylase serum. The WL : AGA.1 cDNA is 948 bp long and contains approximately 55% of the complete wheat leaf ADP-glucose pyrophosphorylase mRNA sequence, estimated from Northern blot experiments. A wheat endosperm cDNA library was subsequently constructed in λgt11 and six clones hybridising to the cDNA insert of clone WL : AGA.1 were isolated. The longest of these wheat endosperm ADP-glucose pyrophosphorylase cDNAs, clone WE : AGA.7, is nearly full-length (1798 bp), indicated by Northern blot analysis of wheat endosperm mRNA and nucleotide sequence analysis.Southern hybridisation analysis and restriction enzyme mapping indicated that the wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs and genes are members of two distinct gene families. In addition, restriction enzyme mapping revealed polymorphism in the wheat endosperm ADP-glucose pyrophosphorylase cDNAs, indicating the existence of at least two wheat endosperm ADP-glucose pyrophosphorylase gene sub-families.Subsequent nucleotide sequence analysis indicates that there is approximately 55% identity between wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs. In contrast, members of each sub-family of endosperm cDNA, represented by clones WE : AGA.3 and WE : AGA.7, are 96% identical.
Collapse
Affiliation(s)
- M R Olive
- Plant Biotechnology Group, I.C.I. Seeds, P.O. Box 11 The Heath, WA7 4QE, Runcorn, Cheshire, United Kingdom
| | | | | |
Collapse
|
37
|
Biosynthesis of bacterial glycogen. Use of site-directed mutagenesis to probe the role of tyrosine 114 in the catalytic mechanism of ADP-glucose synthetase from Escherichia coli. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Morell M, Bloom M, Preiss J. Affinity labeling of the allosteric activator site(s) of spinach leaf ADP-glucose pyrophosphorylase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)35399-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Leung PS, Preiss J. Biosynthesis of bacterial glycogen: primary structure of Salmonella typhimurium ADPglucose synthetase as deduced from the nucleotide sequence of the glgC gene. J Bacteriol 1987; 169:4355-60. [PMID: 3040691 PMCID: PMC213752 DOI: 10.1128/jb.169.9.4355-4360.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence of a 1.4-kilobase-pair fragment containing the Salmonella typhimurium LT2 glgC gene coding for ADPglucose synthetase was determined. The glgC structural gene contains 1,293 base pairs, having a coding capacity of 431 amino acids. The amino acid sequence deduced from the nucleotide sequence shows that the molecular weight of ADPglucose synthetase is 45,580. Previous results of the total amino acid composition analysis and amino acid sequencing (M. Lehmann and J. Preiss, J. Bacteriol. 143:120-127, 1980) of the first 27 amino acids from the N terminus agree with that deduced from nucleotide sequencing data. Comparison of the Escherichia coli K-12 and S. typhimurium LT2 ADPglucose synthetase shows that there is 80% homology in their nucleotide sequence and 90% homology in their deduced amino acid sequence. Moreover, the amino acid residues of the putative allosteric sites for the physiological activator fructose bisphosphate (amino acid residue 39) and inhibitor AMP (amino acid residue 114) are identical between the two enzymes. There is also extensive homology in the putative ADPglucose binding site. In both E. coli K-12 and S. typhimurium LT2, the first base of the translational start ATG of glgA overlaps with the third base TAA stop codon of the glgC gene.
Collapse
|
40
|
Covalent modification of the inhibitor-binding site(s) of Escherichia coli ADP-glucose synthetase. Isolation and structural characterization of 8-azido-AMP-incorporated peptides. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66725-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Leung P, Lee YM, Greenberg E, Esch K, Boylan S, Preiss J. Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol 1986; 167:82-8. [PMID: 3013841 PMCID: PMC212844 DOI: 10.1128/jb.167.1.82-88.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.
Collapse
|
42
|
Lee YM, Mukherjee S, Preiss J. Covalent modification of Escherichia coli ADPglucose synthetase with 8-azido substrate analogs. Arch Biochem Biophys 1986; 244:585-95. [PMID: 3004345 DOI: 10.1016/0003-9861(86)90627-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two photoaffinity labeling agents, 8-azido-ATP and 8-azido-ADPglucose, are substrate site specific probes of the Escherichia coli ADPglucose synthetase. In the presence of light (254 nm), the analogs specifically and covalently modify the enzyme with concomitant loss of catalytic activity. The substrate ADPglucose completely protects the enzyme from covalent modification by these 8-azido analogs. ATP, another substrate, also provides nearly 100% protection from 8-azido-ATP inactivation but is less efficient in protection of inactivation by 8-azido-ADPglucose. In the absence of light, however, ADPglucose synthetase can utilize either 8-azido-ATP or 8-azido-ADPglucose as substrates.
Collapse
|
43
|
Lee YM, Preiss J. Covalent modification of substrate-binding sites of Escherichia coli ADP-glucose synthetase. Isolation and structural characterization of 8-azido-ADP-glucose-incorporated peptides. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)36052-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose synthetase as deduced from the nucleotide sequence of the glg C gene. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32541-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Yung SG, Preiss J. Biosynthesis of bacterial glycogen: purification and structural and immunological properties of Rhodopseudomonas sphaeroides ADPglucose synthetase. J Bacteriol 1982; 151:742-9. [PMID: 6178721 PMCID: PMC220320 DOI: 10.1128/jb.151.2.742-749.1982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ADPglucose synthetase from the photosynthetic bacterium Rhodopseudomonas sphaeroides was purified to greater than 95% purity. The molecular weight of the R. sphaeroides enzyme, as determined by sucrose density gradient ultracentrifugation, was approximately 204,000. The subunit molecular weight of the enzyme based on sodium dodecyl sulfate-gel electrophoresis was 46,000. Although the amino acid composition of the enzyme was similar to that found for the enzymes from Escherichia coli, Salmonella typhimurium, and Rhodospirillum tenue, no apparent homology has been observed between the N-terminal or C-terminal amino acid sequences. Antisera prepared against the ADPglucose synthetase could inhibit the activities of the enzyme from other photosynthetic bacteria. Therefore, some sequence homology may exist within the internal portion of their peptide chain.
Collapse
|
46
|
Preiss J, Huebner J, Greenberg E. Purification and structural properties ofRhodospirillum rubrum ADPglucose pyrophosphorylase. Curr Microbiol 1982. [DOI: 10.1007/bf01568809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
|
48
|
Carlson CA, Preiss J. Modification of the allosteric activator site of Escherichia coli ADP-glucose synthetase by trinitrobenzenesulfonate. Biochemistry 1981; 20:7519-28. [PMID: 6275883 DOI: 10.1021/bi00529a029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Limited modification of Escherichia coli B ADP-glucose synthetase (EC 2.7.7.27) by trinitrobenzenesulfonate (TNBS) appeared to affect primarily the allosteric properties of the enzyme. There was little loss of the catalytic activity assayed in the absence of activator. However, the abilities of fructose 1,6-bisphosphate or hexanediol 1,6-bisphosphate to activate the enzyme, or of 5'-adenylate to inhibit the enzyme, were rapidly lost upon trinitrophenylation. Modification progressively decreased the affinity for activator, decreased the Vmax at saturating concentrations of activator, and decreased the cooperativity among activator binding sites. These effects could be completely prevented by the presence of allosteric effectors during reaction with TNBS, although a low amount of trinitrophenylation still occurred. Substrates partially protected the enzyme from reaction with TNBS. The lysyl epsilon-amino side chain was modified by trinitrophenylation, but the target was not primarily the same residue which could form a Schiff base with pyridoxal phosphate, another activator of the enzyme. A large peptide containing most of the trinitrophenyl residue was isolated after cleavage of the enzyme and was identified as part of the N-terminal amino acid sequence. The migration of the enzyme on polyacrylamide gel electrophoresis or on agarose column chromatography was unchanged by modification. However, the ability of fructose-1, 6-P2 to induce the oligomerization of a mutant form of the enzyme was completely prevented by trinitrophenylation. This effect could be protected against by the presence of activator or inhibitor during reaction with TNBS.
Collapse
|
49
|
Kappel WK, Preiss J. Biosynthesis of bacterial glycogen: purification and characterization of ADPglucose pyrophosphorylase with modified regulatory properties from Escherichia coli B mutant CL1136-504. Arch Biochem Biophys 1981; 209:15-28. [PMID: 6269493 DOI: 10.1016/0003-9861(81)90252-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Lehmann M, Preiss J. Biosynthesis of bacterial glycogen: purification and properties of Salmonella typhimurium LT-2 adenosine diphosphate glucose pyrophosphorylase. J Bacteriol 1980; 143:120-7. [PMID: 6156933 PMCID: PMC294193 DOI: 10.1128/jb.143.1.120-127.1980] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adenosine diphosphate glucose pyrophosphorylase from a Salmonella typhimurium LT-2 mutant, JP102, derepressed in the glycogen biosynthetic enzymes was purified to homogeneity. The enzyme was found to be identical with the parent wild-type enzyme with respect to regulatory properties, immunological reactivity, and kinetic constants for the allosteric effectors and for the substrate, adenosine triphosphate. The JP102 enzyme was composed of four identical subunits, each with a molecular weight of about 48,000. This was supported by the findings that (i) gel electrophoresis under denaturing conditions showed only one component; (ii) digestion with carboxypeptidase B released stoichiometric amounts of arginine, and (iii) amino-terminal sequencing showed a single sequence for the first 27 residues. The properties of the purified S. typhimurium enzyme were compared with the properties of the previously purified Escherichia coli B enzyme.
Collapse
|