1
|
Cloning, Escherichia coli expression, purification, characterization, and enzyme assay of the ribosomal protein S4 from wheat seedlings (Triticum vulgare). Protein Expr Purif 2011; 81:55-62. [PMID: 21945701 DOI: 10.1016/j.pep.2011.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022]
Abstract
S4 is a paradigm of ribosomal proteins involved in multifarious activities both within and outside the ribosome. For a detailed biochemical and structural investigations of eukaryotic S4, the wheat S4 gene has been cloned and expressed in Escherichia coli, and the protein purified to a high degree of homogeneity. The 285-residue recombinant protein containing an N-terminal His(6) tag along with fourteen additional residues derived from the cloning vector is characterized by a molecular mass of 31981.24 Da. The actual sequence of 265 amino acids having a molecular mass of 29931 Da completely defines the primary structure of wheat S4. Homology modeling shows a bi-lobed protein topology arising from folding of the polypeptide into two domains, consistent with the fold topology of prokaryotic S4. The purified protein is stable and folded since it can be reversibly unfolded in guanidinium hydrochloride, and is capable of hydrolyzing cysteine protease-specific peptide-based fluorescence substrates, including Ac-DEVD-AFC (N-acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin).
Collapse
|
2
|
Ramakrishnan V. Unraveling the structure of the ribosome (Nobel Lecture). Angew Chem Int Ed Engl 2010; 49:4355-80. [PMID: 20535836 DOI: 10.1002/anie.201001436] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- V Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
3
|
|
4
|
Abstract
Engineered microbes are of great potential utility in biotechnology and basic research. In principle, a cell can be built from scratch by assembling small molecule sets with auto-catalytic properties. Alternatively, DNA can be isolated or directly synthesized and molded into a synthetic genome using existing genomic blueprints and molecular biology tools. Activating such a synthetic genome will yield a synthetic cell. Here we examine obstacles associated with this latter approach using a model system whereby a donor genome from H. influenzae is fragmented, and the pieces are then modified and reassembled stepwise in an E. coli host cell. There are obstacles associated with this strategy related to DNA transfer, DNA replication, cross-talk in gene regulation and compatibility of gene products between donor and host. Encouragingly, analysis of gene expression indicates widespread transcription of H. influenzae genes in E. coli, and analysis of gap locations in H. influenzae and other microbial genome assemblies reveals few genes routinely incompatible with E. coli. In conclusion, rebuilding and booting a genome remains a feasible and pragmatic approach to creating a synthetic microbial cell.
Collapse
Affiliation(s)
- Robert A Holt
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
5
|
Zhang Z, Teng CT. Methoxychlor stimulates the mouse lactoferrin gene promoter through a GC-rich element. Biochem Cell Biol 2002; 80:23-6. [PMID: 11908639 DOI: 10.1139/o01-177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lactoferrin gene in the mouse uterus is a target gene for natural estrogens and xenoestrogens. One of the xenoestrogens is methyoxychlor, an insecticide that displays both estrogenic and antiandrogenic activities. Recently, methyoxychlor was found to stimulate lactoferrin gene expression in the uterus of an estrogen receptor null mouse. The present study is designed to uncover the methoxychlor response region in the mouse lactoferrin gene promoter. A series of different lengths of the mouse lactoferrin gene 5' flanking region were linked to a chloramphenicol acetyltransferase (CAT) reporter construct and transfected into human endometrial carcinoma HEC-1B cells, an estrogen receptor null cell line, in order to examine the methoxychlor response. The transfected cells were treated with methoxychlor or the metabolite of methoxychlor, HPTE, and the CAT reporter activities were measured. Constructs that contain a mouse lactoferrin 5' region longer than 100 bp were activated more than twofold by both methoxychlor and HPTE. The activation of the CAT reporter by the chemicals was dose dependent and reached saturation. Additional deletion mutants within the 100-bp region were tested, and a GC-rich sequence (GC-II) that we have previously characterized as an epidermal growth factor (EGF) response element was identified to be the region for the methoxychlor response. GC-II binds Sp1, Sp3, and IKLF transcription factors, collaborates with the AP1/CREB binding element, and confers the EGF response. Whether the effect of methoxychlor requires the AP1/CREB binding element has yet to be established; however, the present finding provides an alternative signaling pathway for the xenoestrogens.
Collapse
Affiliation(s)
- Zhiping Zhang
- Gene Regulation Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
6
|
Bloemink MJ, Moore PB. Phosphorylation of ribosomal protein L18 is required for its folding and binding to 5S rRNA. Biochemistry 1999; 38:13385-90. [PMID: 10529214 DOI: 10.1021/bi9914816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomal protein L18 from Bacillus stearothermophilus (bL18) includes a previously unreported phosphoserine residue. The folded conformation of the protein is stabilized by the dianionic form of the phosphate group of that residue. In the absence of Mg2+, the pK(a) of the phosphate group is so high that the protein is not fully folded at pH 7. In the presence of Mg2+, its pK(a) drops significantly, and consequently the native conformation of bL18 becomes stable at pH 7 and the protein is able to bind to 5S rRNA. Dephosphorylated bL18 does not bind to 5S rRNA at neutral pH.
Collapse
Affiliation(s)
- M J Bloemink
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
7
|
Harada N, Maemura K, Yamasaki N, Kimura M. Identification by site-directed mutagenesis of amino acid residues in ribosomal protein L2 that are essential for binding to 23S ribosomal RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:176-86. [PMID: 9920395 DOI: 10.1016/s0167-4838(98)00230-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ribosomal protein L2 (BstL2) from Bacillus stearothermophilus is a primary 23S rRNA binding protein. We made use of site-directed mutagenesis to identify essential basic and aromatic amino acid residues for 23S rRNA binding. Four mutants, R68Q, K70Q, R86Q, and R155Q, in which Arg-68, Lys-70, Arg-86, and Arg-155, respectively, are replaced by the Gln residue. showed reduced binding affinities as compared with that of the wild type BstL2 (a binding constant K=8.93 microM(-1)): K values of these mutants range between 0.24 and 1.86 microM(-1). As for aromatic amino acids, replacements of Phe-66, Tyr-95 or Tyr-102 by alanine significantly abolished the binding affinities. CD analysis of the mutant proteins indicated that the mutations of four basic residues (Arg-68, Lys-70, Arg-86 and Arg-155) did not affect protein structure, whereas those of aromatic residues (Phe-66, Tyr-95, and Tyr-102) appeared to cause slight structural perturbations. These results, together with sequence comparison of L2 family proteins, suggest that Arg-86 and Arg-155 in BstL2 may act as positively charged recognition groups for negatively charged phosphate backbone of the 23S rRNA, and that Phe-66, Tyr-95, and Tyr-102 may be candidate residues which stabilize the BstL2-23S rRNA interaction through intramolecular interactions.
Collapse
Affiliation(s)
- N Harada
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
8
|
Ramakrishnan V, White SW. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem Sci 1998; 23:208-12. [PMID: 9644974 DOI: 10.1016/s0968-0004(98)01214-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Models of the bacterial ribosome based on recent structural analyses are beginning to provide new insights into the protein synthetic machinery. Central to evolving models are the high-resolution structures of individual ribosomal proteins, which represent detailed probes of their local RNA and protein environments. Ribosomal proteins are extremely ancient molecules; the structures therefore also provide a unique window into early protein evolution. Many of the proteins contain domains that are present in more recently evolved families of RNA- and DNA-binding proteins. Such structural homology can be used to predict mechanisms by which proteins interact with RNA in the ribosome.
Collapse
Affiliation(s)
- V Ramakrishnan
- Dept of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
9
|
Clemons WM, Davies C, White SW, Ramakrishnan V. Conformational variability of the N-terminal helix in the structure of ribosomal protein S15. Structure 1998; 6:429-38. [PMID: 9562554 DOI: 10.1016/s0969-2126(98)00045-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ribosomal protein S15 is a primary RNA-binding protein that binds to the central domain of 16S rRNA. S15 also regulates its own synthesis by binding to its own mRNA. The binding sites for S15 on both mRNA and rRNA have been narrowed down to less than a hundred nucleotides each, making the protein an attractive candidate for the study of protein-RNA interactions. RESULTS The crystal structure of S15 from Bacillus stearothermophilus has been solved to 2.1 A resolution. The structure consists of four alpha helices. Three of these helices form the core of the protein, while the N-terminal helix protrudes out from the body of the molecule to make contacts with a neighboring molecule in the crystal lattice. S15 contains a large conserved patch of basic residues which could provide a site for binding 16S rRNA. CONCLUSIONS The conformation of the N-terminal alpha helix is quite different from that reported in a recent NMR structure of S15 from Thermus thermophilus. The intermolecular contacts that this alpha helix makes with a neighboring molecule in the crystal, however, closely resemble the intramolecular contacts that occur in the NMR structure. This conformational variability of the N-terminal helix has implications for the range of possible S15-RNA interactions. A large, conserved basic patch at one end of S15 and a cluster of conserved but exposed aromatic residues at the other end provide two possible RNA-binding sites on S15.
Collapse
Affiliation(s)
- W M Clemons
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
10
|
Harada N, Sano K, Kimura M, Hosaka H, Nakagawa A, Tanaka I. Crystallization and preliminary X-ray crystallographic study of the ribosomal protein S7 from Bacillus stearothermophilus. J Struct Biol 1997; 120:112-4. [PMID: 9356300 DOI: 10.1006/jsbi.1997.3907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Overproduction and crystallization of Bacillus stearothermophilus ribosomal protein S7 (BstS7), a primary 16S rRNA binding protein and also a translational repressor protein, have been performed to analyze its three-dimensional structure by X-ray crystallography. Ribosomal protein BstS7 was expressed in the cytoplasmic fraction of the E. coli cells and purified to homogeneity. This recombinant BstS7 was used to produce crystals with P2(1) symmetry that diffracted to 2.5 A resolution which are suitable for high-resolution X-ray crystallographic analysis.
Collapse
Affiliation(s)
- N Harada
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Davydova NL, Rak AV, Gryaznova OI, Liljas A, Jonsson BH, Berglund H, Härd T, Garber MB. Preliminary NMR studies of Thermus thermophilus ribosomal protein S19 overproduced in Escherichia coli. FEBS Lett 1997; 415:155-9. [PMID: 9350986 DOI: 10.1016/s0014-5793(97)01112-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The gene for the ribosomal protein S19 from Thermus thermophilus was cloned, sequenced and overexpressed in Escherichia coli. A simple procedure for isolating the recombinant protein was developed. Preliminary NMR studies revealed a high content of alpha-helical secondary structure in the protein.
Collapse
Affiliation(s)
- N L Davydova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shao X, Hensley P, Matthews CR. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein. Biochemistry 1997; 36:9941-9. [PMID: 9245428 DOI: 10.1021/bi9707786] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tryptophan repressor (TR) from Escherichia coli is a homodimer whose highly helical subunits intertwine in a complex fashion. A monomeric version of Trp repressor has been constructed by introducing a pair of polar amino acids at the hydrophobic dimer interface. Analytical ultracentrifugation was used to show that the replacement of leucine at position 39 with glutamic acid results in a monomer/dimer equilibrium whose dissociation constant is 1.11 x 10(-)4 M at 25 degrees C and pH 7.6. Tryptophan fluorescence, both near- and far-UV circular dichroism, and NMR spectroscopies demonstrated that, at the micromolar concentrations where the monomer predominates, secondary and tertiary structure are present. Hydrophobic dye-binding experiments showed that nonpolar surface is accessible in the monomeric form. The urea-induced equilibrium unfolding of monomeric L39E TR was monitored by circular dichroism, fluorescence, and absorbance spectroscopies. Coincident transitions show that the urea denaturation process follows a simple two-state model involving monomeric native and unfolded forms. The free energy at standard state in the absence of denaturant was estimated to be 2.37 +/- 0.15 kcal mol-1, and the sensitivity of the unfolding transition to denaturant, the m value, was 0.86 +/- 0.04 kcal mol-1 M(urea)-1 at pH 7.6 and 25 degrees C. The thermal denaturation transition occurred over a broad temperature range, suggesting either that the enthalpy change is small or that intermediates may exist. Kinetic studies showed that both the refolding and unfolding of the monomer were complete in the mixing dead time of stopped-flow CD and fluorescence spectroscopy, 5 ms. These structural, thermodynamic, and kinetic results are very similar to those previously reported for an early, monomeric intermediate in the folding of the wild-type TR dimer [Mann, C. J., & Matthews, C. R. (1993) Biochemistry 32, 5282-5290]. The construction of a stable, monomeric form of TR that strongly resembles a transient folding intermediate should provide useful insights into the nature of the early events in the folding of TR.
Collapse
Affiliation(s)
- X Shao
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|
13
|
Serganov A, Rak A, Garber M, Reinbolt J, Ehresmann B, Ehresmann C, Grunberg-Manago M, Portier C. Ribosomal protein S15 from Thermus thermophilus--cloning, sequencing, overexpression of the gene and RNA-binding properties of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:291-300. [PMID: 9208917 DOI: 10.1111/j.1432-1033.1997.00291.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 6-kb DNA fragment from an extreme thermophile, Thermus thermophilus, carrying the genes for cytochrome oxidase ba3 subunit I (cbaA) and the ribosomal protein S15 (rpsO) was cloned into Escherichia coli. The gene rpsO was sequenced. The deduced amino acid sequence exhibits 59% identity to the corresponding protein from E. coli. Expression of rpsO in E. coli requires the use of a fully repressed inducible promoter because S15 from T. thermophilus is toxic for E. coli cells. When purified without denaturation from either overproducing E. coli strain or from T. thermophilus ribosomes, the S15 protein is stable and binds a cloned T. thermophilus 16S rRNA fragment (nucleotides 559-753), with low identical dissociation constants (2.5 nM), thus demonstrating that the thermophilic protein folds correctly in a mesophilic bacterium. The rRNA fragment bound corresponds in position and structure to the 16S rRNA fragment of E. coli. A similar high affinity was also found for the binding of S15 from T. thermophilus or E. coli to the corresponding E. coli 16S rRNA fragment, whereas a slightly lower affinity was observed in binding experiments between E. coli S15 and T. thermophilus 16S rRNA fragment. These results suggest that S15 from T. thermophilus recognizes similar determinants in both rRNA fragments. Competition experiments support this conclusion.
Collapse
Affiliation(s)
- A Serganov
- Institute of Protein Research, Pushchino, Russia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Setterquist RA, Smith GK, Oakley TH, Lee YH, Fox GE. Sequence, overproduction and purification of Vibrio proteolyticus ribosomal protein L18 for in vitro and in vivo studies. Gene X 1996; 183:237-42. [PMID: 8996113 DOI: 10.1016/s0378-1119(96)00402-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A strategy suggested by comparative genomic studies was used to amplify the entire Vibrio proteolyticus (Vp) gene for ribosomal protein L18. Vp L18 and its flanking regions were sequenced and compared with the deduced amino acid (aa) sequences of other known L18 proteins. A 26-aa residue segment at the carboxy terminus contains many strongly conserved residues and may be critical for the L18 interaction with 5S rRNA. This approach should allow rapid characterization of L18 from large numbers of bacteria. Both Vp L18 and Escherichia coli (Ec) L18 were overproduced and purified using a T7 expression vector which fuses an N-terminal peptide segment (His-tag) containing 6 histidine residues to the recombinant protein. The purified fusion proteins, Vp His::L18 and Ec His::L18, were both found to bind to either the Vp 5S or Ec 5S rRNAs in vitro. Vp His::L18 protein was also shown to incorporate into Ec ribosomes in vivo. This His-tag strategy likely will have general applicability for the study of ribosomal proteins in vitro and in vivo.
Collapse
Affiliation(s)
- R A Setterquist
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5934, USA
| | | | | | | | | |
Collapse
|
15
|
Davies C, Ramakrishnan V, White SW. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 A resolution. Structure 1996; 4:1093-104. [PMID: 8805594 DOI: 10.1016/s0969-2126(96)00115-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prokaryotic ribosomal protein S8 is an important RNA-binding protein that occupies a central position within the small ribosomal subunit. It interacts extensively with 16S rRNA and is crucial for the correct folding of the central domain of the rRNA. S8 also controls the synthesis of several ribosomal proteins by binding to mRNA. It binds specifically to very similar sites in the two RNA molecules. RESULTS S8 is divided into two tightly associated domains and contains three regions that are proposed to interact with other ribosomal components: two potential RNA-binding sites, and a hydrophobic patch that may interact with a complementary hydrophobic region of S5. The N-terminal domain fold is found in several proteins including two that bind double-stranded DNA. CONCLUSIONS These multiple RNA-binding sites are consistent with the role of S8 in organizing the central domain and agree with the latest models of the 16S RNA which show that the S8 location coincides with a region of complicated nucleic-acid structure. The presence in a wide variety of proteins of a region homologous to the N-terminal domain supports the idea that ribosomal proteins must represent some of the earliest protein molecules.
Collapse
Affiliation(s)
- C Davies
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
16
|
Schmidt A, Hollmann M, Schäfer U. A newly identified Minute locus, M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:381-7. [PMID: 8676882 DOI: 10.1007/bf02172530] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A gene encoding a ubiquitously expressed mRNA in Drosophila melanogaster was isolated and identified as the gene for ribosomal protein L9 (rpL9) by its extensive sequence homology to the corresponding gene from rat. The rpL9 gene is localized in polytene region 32D where two independent P element insertions flanking the locus are available. Remobilization of either P element generated lines with a typical Minute phenotype, e.g. thin and short bristles, prolonged development, and female semisterility in heterozygotes as well as homozygous lethality. All these characteristics can be rescued when a 3.9 kb restriction fragment containing the rpL9 gene is reintroduced by P element-mediated germline transformation. This result confirms that M(2)32D codes for ribosomal protein L9.
Collapse
Affiliation(s)
- A Schmidt
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Jaishree TN, Ramakrishnan V, White SW. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Biochemistry 1996; 35:2845-53. [PMID: 8608120 DOI: 10.1021/bi951062i] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The solution of a primary 16S rRNA-binding ribosomal protein, S17, was investigated by two- and three-dimensional homonuclear and heteronuclear magnetic resonance spectroscopy. Almost complete chemical shift assignments for the 1H, 15N, and 13C resonances have been obtained. The NMR data have been rigorously analyzed using a combination of distance geometry, back-calculation, and simulated annealing refinement techniques, and a high-resolution three-dimensional structure has been deduced. The protein consists of a single twisted antiparallel beta-pleated sheet with Greek-key topology. The five beta-strands are connected by extended loops that are flexible compared to the beta-sheet core structure and appear not to adopt one definite conformation in solution. Two of these loops contain many of the residues that have been implicated in binding ribosomal RNA. The location and distribution of these residues and other positively charged side chains on the protein surface suggest an interaction with two distinct regions of ribosomal RNA.
Collapse
Affiliation(s)
- T N Jaishree
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
18
|
Mazuruk K, Schoen TJ, Chader GJ, Iwata T, Rodriguez IR. Structural organization and chromosomal localization of the human ribosomal protein L9 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1305:151-62. [PMID: 8597601 DOI: 10.1016/0167-4781(95)00201-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intron-containing gene for the human ribosomal protein L9 has been cloned, sequenced and localized. The gene is approximately 5.5 kb in length and contains 8 exons. Splice sites follow the AG/GT consensus rule. The message for human rpL9 is 712 nt in length and is detected in all tissues examined. In the adult, expression is highest in retina and liver while brain shows highest expression among the fetal tissues tested. The transcription start site contains an oligopyrimidine tract, TTCTTTCTT, similar to those found in other ribosomal protein genes. As in other previously characterized ribosomal protein genes, a TATA box is absent from the 5' flanking region but a number of elements recognized by common transcription factors are present including Sp1 sites, CACCC boxes, inverted CCAAT boxes, and GATA elements. Another possible element of interest in the rpL9 5' flanking region is RFX1 also found in the well characterized rat rpL30 promoter. The gene was mapped by fluorescent in situ hybridization to band 13p of chromosome 4. At least 8 possible pseudogenes are present in the human genome, one of which is on Xp. As assessed by Southern 'Zoo-blot' analysis and direct cDNA sequence comparison, the human ribosomal protein L9 gene, like other ribosomal protein genes, is highly conserved among mammals.
Collapse
Affiliation(s)
- K Mazuruk
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Davies C, White SW, Ramakrishnan V. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure 1996; 4:55-66. [PMID: 8805509 DOI: 10.1016/s0969-2126(96)00009-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Detailed structural information on ribosomal proteins has increased our understanding of the structure, function and evolution of the ribosome. L14 is one of the most conserved ribosomal proteins and appears to have a central role in the ribonucleoprotein complex. Studies have indicated that L14 occupies a central location between the peptidyl transferase and GTPase regions of the large ribosomal subunit. RESULTS The crystal structure of L14 from Bacillus stearothermophilus has been solved using a combination of isomorphous replacement and multiwavelength anomalous dispersion (MAD) methods. The structure comprises a five-stranded beta-barrel, a C-terminal loop region that contains two small alpha-helices, and a beta-ribbon that projects from the beta-barrel. An analysis of the structure and the conserved amino acids reveals three surface patches that probably mediate L14-RNA and L14-protein interactions within the ribosome. CONCLUSIONS The accepted role of ribosomal proteins is to promote the folding and stabilization of ribosomal RNA. The L14 structure is consistent with this notion, and it suggests that the RNA binds in two sites. One RNA-binding site appears to recognize a distinct region of ribosomal RNA during particle assembly. The second site is smaller and may become occupied during the later compaction of the RNA. The surface hydrophobic patch is a likely site of protein-protein interaction, possibly with L19.
Collapse
Affiliation(s)
- C Davies
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
20
|
Ramakrishnan V, Davies C, Gerchman SE, Golden BL, Hoffmann DW, Jaishree TN, Kyila JH, Porter S, White SW. Structures of prokaryotic ribosomal proteins: implications for RNA binding and evolution. Biochem Cell Biol 1995; 73:979-86. [PMID: 8722013 DOI: 10.1139/o95-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
After a long hiatus, the pace of determination of the structures of ribosomal proteins has accelerated dramatically. We discuss here the structures of five ribosomal proteins from Bacillus stearothermophilus: S5, S17, L6, L9, and L14. These structures represent several new motifs. Each of these structures has revealed new insights, and we have developed criteria for recognizing RNA-binding regions of each protein and correlating the structures with such properties as antibiotic resistance. The information here should also prove invaluable in an eventual high-resolution picture of the intact ribosome.
Collapse
Affiliation(s)
- V Ramakrishnan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Ribosomal protein S4 from Escherichia coli binds a large domain of 16 S ribosomal RNA and also a pseudoknot structure in the alpha operon mRNA, where it represses its own synthesis. No similarity between the two RNA binding sites has been detected. To find out whether separate protein regions are responsible for rRNA and mRNA recognition, proteins with N-terminal or C-terminal deletions have been overexpressed and purified. Protein-mRNA interactions were detected by (i) a nitrocellulose filter binding assay, (ii) inhibition of primer extension by reverse transcriptase, and (iii) a gel shift assay. Circular dichroism spectra were taken to determine whether the proteins adopted stable secondary structures. From these studies it is concluded that amino acids 48-104 make specific contacts with the mRNA, although residues 105-177 (out of 205) are required to observe the same toeprint pattern as full-length protein and may stabilize a specific portion of the mRNA structure. These results parallel ribosomal RNA binding properties of similar fragments (Conrad, R. C., and Craven, G. R. (1987) Nucleic Acids Res. 15, 10331-10343, and references therein). It appears that the same protein domain is responsible for both mRNA and rRNA binding activities.
Collapse
Affiliation(s)
- A M Baker
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
22
|
Abstract
Interactions between ribosomal protein L11 and a domain of large subunit rRNA have been highly conserved and are essential for efficient protein synthesis. To study the effects of L11 on rRNA folding, a homolog of the Escherichia coli L11 gene has been amplified from Bacillus stearothermophilus DNA and cloned into a phage T7 polymerase-based expression system. The expressed protein is 93% homologous to the L11 homolog from Bacillus subtilis, denatures at temperatures above 72 degrees C, and has nearly identical rRNA binding properties as the Escherichia coli L11 in terms of RNA affinity constants and their dependences on temperature, Mg2+ concentration, monovalent cation, and RNA mutations. Mg2+ and NH4+ are specifically bound by the RNA-protein complex, with apparent ion-RNA affinities of 1.6 mM-1 and 19 M-1, respectively, at 0 degree C. The effect of the thermostable L11 on the unfolding of a 60 nucleotide rRNA fragment containing its binding domain has been examined in melting experiments. The lowest temperature RNA transition, which is attributed to tertiary structure unfolding, is stabilized by approximately 25 degrees C, and the interaction has an intrinsic enthalpy of approximately 13 kcal/mol. The thermal stability of the protein-RNA complex is enhanced by increasing Mg2+ concentration and by NH4+ relative to Na+. Thus L11, NH4+, and Mg2+ all bind and stabilize the same rRNA tertiary interactions, which are conserved and presumably important for ribosome function.
Collapse
Affiliation(s)
- Y Xing
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
23
|
Hueck CJ, Hillen W, Saier MH. Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 1994; 145:503-18. [PMID: 7855437 DOI: 10.1016/0923-2508(94)90028-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One form of catabolite repression (CR) in the Gram-positive genus, Bacillus, is mediated by a cis-acting element (CRE). We use here a consensus sequence to identify such elements in sequenced genes of Gram-positive bacteria. These are analysed with respect to position and type of gene in which they occur. CRE sequences near the promoter region are mainly identified in genes encoding carbon catabolic enzymes, which are thus likely to be subject to CR by a global mechanism. Functional aspects of CREs are evaluated.
Collapse
Affiliation(s)
- C J Hueck
- Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander Universität Erlangen-Nürnberg
| | | | | |
Collapse
|
24
|
Vysotskaya V, Tischenko S, Garber M, Kern D, Mougel M, Ehresmann C, Ehresmann B. The ribosomal protein S8 from Thermus thermophilus VK1. Sequencing of the gene, overexpression of the protein in Escherichia coli and interaction with rRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:437-45. [PMID: 7519982 DOI: 10.1111/j.1432-1033.1994.tb19011.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The gene of the ribosomal protein S8 from Thermus thermophilus VK1 has been isolated from a genomic library by hybridization of an oligonucleotide coding for the N-terminal amino acid sequence of the protein, amplified by PCR and sequenced. Nucleotide sequence reveals an open reading frame coding for a protein of 138 amino acid residues (M(r) 15,839). The codon usage shows that 94% of the codons possess G or C in the third position, and agrees with the preferential usage of codons of high G+C content in the bacteria of the genus Thermus. The amino acid sequence of the protein shows 48% identity with the protein from Escherichia coli. Ribosomal protein S8 from T. thermophilus has been expressed in E. coli under the control of the T7 promoter and purified to homogeneity by heat treatment of the extract followed by cation-exchange chromatography. Conditions were defined in which T. thermophilus protein S8 binds specifically an homologous 16S rRNA fragment containing the putative S8 binding site with an apparent association constant of 5 x 10(7) M-1. The overexpressed protein binds the rRNA with the same affinity as that extracted from T. thermophilus, indicating that the thermophilic protein is correctly folded in E. coli. The specificity of this binding is dependent on the ionic strength. The protein S8 from T. thermophilus recognizes the E. coli rRNA binding sites as efficiently as the S8 protein from E. coli. This result agrees with sequence comparisons of the S8 binding site on the small subunit rRNA from E. coli and from T. thermophilus, showing strong similarities in the regions involved in the interaction. It suggests that the structural features responsible for the recognition are conserved in the mesophilic and thermophilic eubacteria, despite structural peculiarities in the thermophilic partners conferring thermostability.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Bacterial
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Hybridization
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Secondary
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/metabolism
- Recombinant Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/isolation & purification
- Ribosomal Proteins/metabolism
- Sequence Alignment
- Thermus thermophilus/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- V Vysotskaya
- Department of Structure and Function of Ribosomes, Russian Academy of Sciences, Moscow Region
| | | | | | | | | | | | | |
Collapse
|
25
|
Sedelnikova SE, Shikaeva OS, Avlijakulov NK, Muranova TA, Markova LF, Kashparov IA, Garber MB. Proteins of the Thermus thermophilus ribosome. Purification of proteins from the large ribosomal subunit. Biochimie 1994; 76:440-51. [PMID: 7849111 DOI: 10.1016/0300-9084(94)90121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Special procedures have been developed to isolate and purify 26 of the 30 individual proteins of the large ribosomal subunit from Thermus thermophilus. Sixteen of them have been purified under non-denaturing conditions to be used for crystallization and further structural studies. These proteins have been characterized by their amino acid content, molecular mass, UV-spectrum and extinction coefficient. An additional 10 proteins have been purified by reverse phase chromatography. Thirteen proteins have been identified by homological E coli proteins.
Collapse
Affiliation(s)
- S E Sedelnikova
- Institute of Protein Research, Russian Academy of Sciences, Puschchino, Moscow region
| | | | | | | | | | | | | |
Collapse
|
26
|
Hanner M, Mayer C, Köhrer C, Golderer G, Gröbner P, Piendl W. Autogenous translational regulation of the ribosomal MvaL1 operon in the archaebacterium Methanococcus vannielii. J Bacteriol 1994; 176:409-18. [PMID: 8288536 PMCID: PMC205064 DOI: 10.1128/jb.176.2.409-418.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanisms for regulation of ribosomal gene expression have been characterized in eukaryotes and eubacteria, but not yet in archaebacteria. We have studied the regulation of the synthesis of ribosomal proteins MvaL1, MvaL10, and MvaL12, encoded by the MvaL1 operon of Methanococcus vannielii, a methanogenic archaebacterium. MvaL1, the homolog of the regulatory protein L1 encoded by the L11 operon of Escherichia coli, was shown to be an autoregulator of the MvaL1 operon. As in E. coli, regulation takes place at the level of translation. The target site for repression by MvaL1 was localized by site-directed mutagenesis to a region within the coding sequence of the MvaL1 gene commencing about 30 bases downstream of the ATG initiation codon. The MvaL1 binding site on the mRNA exhibits similarity in both primary sequence and secondary structure to the L1 regulatory target site of E. coli and to the putative binding site for MvaL1 on the 23S rRNA. In contrast to other regulatory systems, the putative MvaL1 binding site is located in a sequence of the mRNA which is not in direct contact with the ribosome as part of the initiation complex. Furthermore, the untranslated leader sequence is not involved in the regulation. Therefore, we suggest that a novel mechanism of translational feedback regulation exists in M. vannielii.
Collapse
Affiliation(s)
- M Hanner
- Institute of Medical Microbiology, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Malakhov MP, Wada H, Los DA, Sakamoto T, Murata N. Structure of a cyanobacterial gene encoding the 50S ribosomal protein L9. PLANT MOLECULAR BIOLOGY 1993; 21:913-918. [PMID: 8467083 DOI: 10.1007/bf00027122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rplI gene encoding the ribosomal protein L9 was found 4 kbp downstream from the desA gene, but on the opposite strand, in the genome of the cyanobacterium Synechocystis PCC6803. The deduced amino acid sequence is homologous to the sequences of the L9 proteins from Escherichia coli and chloroplasts of Arabidopsis and pea. The gene is present as a single copy in the chromosome and is transcribed as a mRNA of 0.64 kb. An open reading frame of unknown function (ORF291) was found in the upstream region of the rplI gene.
Collapse
Affiliation(s)
- M P Malakhov
- Department of Regulation Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Ramakrishnan V, White SW. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 1992; 358:768-71. [PMID: 1508272 DOI: 10.1038/358768a0] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the process whereby the ribosome translates the genetic code into protein molecules will ultimately require high-resolution structural information, and we report here the first crystal structure of a protein from the small ribosomal subunit. This protein, S5, has a molecular mass of 17,500 and is highly conserved in all lifeforms. The molecule contains two distinct alpha/beta domains that have structural similarities to several other proteins that are components of ribonucleoprotein complexes. Mutations in S5 result in several phenotypes which suggest that S5 may have a role in translational fidelity and translocation. These include ribosome ambiguity or ram, reversion from streptomycin dependence and resistance to spectinomycin. Also, a cold-sensitive, spectinomycin-resistant mutant of S5 has been identified which is defective in initiation. Here we show that these mutations map to two distinct regions of the molecule which seem to be sites of interaction with ribosomal RNA. A structure/function analysis of the molecule reveals discrepancies with current models of the 30S subunit.
Collapse
Affiliation(s)
- V Ramakrishnan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | |
Collapse
|
30
|
Padas PM, Wilson KS, Vorgias CE. The DNA-binding protein HU from mesophilic and thermophilic bacilli: gene cloning, overproduction and purification. Gene X 1992; 117:39-44. [PMID: 1644313 DOI: 10.1016/0378-1119(92)90487-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The major histone-like bacterial protein (HU)-encoding genes (hup) from five different Bacilli have been cloned, sequenced and overexpressed in Escherichia coli. The five Bacilli selected are closely related, but have different optimum growth temperatures: greater than 70 degrees C for Bacillus caldolyticus and B. caldotenax; 60-65 degrees C for B. stearothermophilus (Bst); 37 degrees C for B. subtilis and 30 degrees C for B. globigii. The deduced amino acid (aa) sequences from the three thermophiles are identical. Those from the two mesophiles are also identical and differ from those of the thermophiles at eleven aa positions. The mesophilic proteins have an extra two aa at the C terminus. Cells harbouring plasmids containing the hup genes can produce HU. An efficient purification scheme using cation-exchange chromatography and fast protein liquid chromatography is presented. This gives approx. 30-40 mg of more than 95% pure Bst HU per litre of E. coli culture.
Collapse
Affiliation(s)
- P M Padas
- European Molecular Biology Laboratory, c/o DESY, Hamburg, Germany
| | | | | |
Collapse
|
31
|
Vorgias CE, Kingswell AJ, Dauter Z, Wilson KS. Cloning, overexpression, purification and crystallisation of ribosomal protein L9 from Bacillus stearothermophilus. FEBS Lett 1991; 286:204-8. [PMID: 1864369 DOI: 10.1016/0014-5793(91)80974-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cloning, sequencing and overexpression of the gene coding for Bacillus stearothermophilus ribosomal protein L9 is described. The sequence corresponds directly to that presented for the protein itself by classical methods, differing at only a few amino acid positions. The purification and crystallisation of the corresponding L9 protein is presented. The crystals are isomorphous to those described for L9 obtained by conventional methods.
Collapse
Affiliation(s)
- C E Vorgias
- European Molecular Biology Laboratory (EMBL), c/o DESY, Hamburg, Germany
| | | | | | | |
Collapse
|