1
|
Daems S, Shameer S, Ceusters N, Sweetlove L, Ceusters J. Metabolic modelling identifies mitochondrial Pi uptake and pyruvate efflux as key aspects of daytime metabolism and proton homeostasis in crassulacean acid metabolism leaves. THE NEW PHYTOLOGIST 2024; 244:159-175. [PMID: 39113419 DOI: 10.1111/nph.20032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H+ symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
| | - Sanu Shameer
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
| | - Lee Sweetlove
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, 3590, Belgium
| |
Collapse
|
2
|
Curcio R, Frattaruolo L, Marra F, Pesole G, Vozza A, Cappello AR, Fiorillo M, Lauria G, Ahmed A, Fiermonte G, Capobianco L, Dolce V. Two functionally different mitochondrial phosphate carriers support Drosophila melanogaster OXPHOS throughout distinct developmental stages. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119615. [PMID: 37898376 DOI: 10.1016/j.bbamcr.2023.119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Federica Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Angelo Vozza
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Graziantonio Lauria
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Giuseppe Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy.
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
3
|
Da Costa RT, Riggs LM, Solesio ME. Inorganic polyphosphate and the regulation of mitochondrial physiology. Biochem Soc Trans 2023; 51:2153-2161. [PMID: 37955101 PMCID: PMC10842919 DOI: 10.1042/bst20230735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Inorganic polyphosphate (polyP) is an ancient polymer that is well-conserved throughout evolution. It is formed by multiple subunits of orthophosphates linked together by phosphoanhydride bonds. The presence of these bonds, which are structurally similar to those found in ATP, and the high abundance of polyP in mammalian mitochondria, suggest that polyP could be involved in the regulation of the physiology of the organelle, especially in the energy metabolism. In fact, the scientific literature shows an unequivocal role for polyP not only in directly regulating oxidative a phosphorylation; but also in the regulation of reactive oxygen species metabolism, mitochondrial free calcium homeostasis, and the formation and opening of mitochondrial permeability transitions pore. All these processes are closely interconnected with the status of mitochondrial bioenergetics and therefore play a crucial role in maintaining mitochondrial and cell physiology. In this invited review, we discuss the main scientific literature regarding the regulatory role of polyP in mammalian mitochondrial physiology, placing a particular emphasis on its impact on energy metabolism. Although the effects of polyP on the physiology of the organelle are evident; numerous aspects, particularly within mammalian cells, remain unclear and require further investigation. These aspects encompass, for example, advancing the development of more precise analytical methods, unraveling the mechanism responsible for sensing polyP levels, and understanding the exact molecular mechanism that underlies the effects of polyP on mitochondrial physiology. By increasing our understanding of the biology of this ancient and understudied polymer, we could unravel new pharmacological targets in diseases where mitochondrial dysfunction, including energy metabolism dysregulation, has been broadly described.
Collapse
Affiliation(s)
- Renata T Da Costa
- Department of Biology; and Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, U.S.A
| | - Lindsey M Riggs
- Department of Biology; and Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, U.S.A
| | - Maria E Solesio
- Department of Biology; and Center for Computational and Integrative Biology (CCIB), Rutgers University, Camden, NJ, U.S.A
| |
Collapse
|
4
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
5
|
Gao F, Voncken F, Colasante C. The mitochondrial phosphate carrier TbMCP11 is essential for mitochondrial function in the procyclic form of Trypanosoma brucei. Mol Biochem Parasitol 2020; 237:111275. [PMID: 32353560 DOI: 10.1016/j.molbiopara.2020.111275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023]
Abstract
Conserved amongst all eukaryotes is a family of mitochondrial carrier proteins (SLC25A) responsible for the import of various solutes across the inner mitochondrial membrane. We previously reported that the human parasite Trypanosoma brucei possesses 26 SLC25A proteins (TbMCPs) amongst which two, TbMCP11 and TbMCP8, were predicted to function as phosphate importers. The transport of inorganic phosphate into the mitochondrion is a prerequisite to drive ATP synthesis by substrate level and oxidative phosphorylation and thus crucial for cell viability. In this paper we describe the functional characterization of TbMCP11. In procyclic form T. brucei, the RNAi of TbMCP11 blocked ATP synthesis on mitochondrial substrates, caused a drop of the mitochondrial oxygen consumption and drastically reduced cell viability. The functional complementation in yeast and mitochondrial swelling experiments suggested a role for TbMCP11 as inorganic phosphate carrier. Interestingly, procyclic form T. brucei cells in which TbMCP11 was depleted displayed an inability to either replicate or divide the kinetoplast DNA, which resulted in a severe cytokinesis defect.
Collapse
Affiliation(s)
- Fei Gao
- Department of Neuroscience, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| |
Collapse
|
6
|
Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3579-93. [PMID: 24642845 PMCID: PMC4085959 DOI: 10.1093/jxb/eru100] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with related C4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C4 photosynthesis. However, a comparison between C3 and the phosphoenolpyruvate carboxykinase (PEP-CK) subtype of C4 photosynthesis is still missing. An integrative analysis of all three C4 subtypes has also not been possible to date, since no comparison has been available for closely related C3 and PEP-CK C4 species. To generate the data, the guinea grass Megathyrsus maximus, which represents a PEP-CK species, was analysed in comparison with a closely related C3 sister species, Dichanthelium clandestinum, and with publicly available sets of RNA-Seq data from C4 species belonging to the NAD-ME and NADP-ME subgroups. The data indicate that the core C4 cycle of the PEP-CK grass M. maximus is quite similar to that of NAD-ME species with only a few exceptions, such as the subcellular location of transfer acid production and the degree and pattern of up-regulation of genes encoding C4 enzymes. One additional mitochondrial transporter protein was associated with the core cycle. The broad comparison identified sucrose and starch synthesis, as well as the prevention of leakage of C4 cycle intermediates to other metabolic pathways, as critical components of C4 metabolism. Estimation of intercellular transport fluxes indicated that flux between cells is increased by at least two orders of magnitude in C4 species compared with C3 species. In contrast to NAD-ME and NADP-ME species, the transcription of photosynthetic electron transfer proteins was unchanged in PEP-CK. In summary, the PEP-CK blueprint of M. maximus appears to be simpler than those of NAD-ME and NADP-ME plants.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Simon Schliesky
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
8
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
9
|
Haferkamp I. The diverse members of the mitochondrial carrier family in plants. FEBS Lett 2007; 581:2375-9. [PMID: 17321523 DOI: 10.1016/j.febslet.2007.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
Sequencing of plant genomes allowed the identification of various members of the mitochondrial carrier family (MCF). In plants, these structurally related proteins are involved in the transport of solutes like nucleotides, phosphate, di- and tricarboxylates across the mitochondrial membrane and therefore exhibit physiological functions similar to known isoforms from animal or yeast mitochondria. Interestingly, various studies led to the recognition of MCF proteins which mediate the transport of different substrates like folates, S-adenosylmethionine, ADPglucose or ATP, ADP and AMP in plastids.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
10
|
Ballatori N, Madejczyk MS. Transport of nonessential metals across mammalian cell membranes. TOPICS IN CURRENT GENETICS 2005. [DOI: 10.1007/4735_102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Hamel P, Saint-Georges Y, de Pinto B, Lachacinski N, Altamura N, Dujardin G. Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol Microbiol 2004; 51:307-17. [PMID: 14756774 DOI: 10.1046/j.1365-2958.2003.03810.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most cellular ATP is produced within the mitochondria from ADP and Pi which are delivered across the inner-membrane by specific nuclearly encoded polytopic carriers. In Saccharomyces cerevisiae, some of these carriers and in particular the ADP/ATP carrier, are represented by several related isoforms that are distinct in their pattern of expression. Until now, only one mitochondrial Pi carrier (mPic) form, encoded by the MIR1 gene in S. cerevisiae, has been described. Here we show that the gene product encoded by the YER053C ORF also participates in the delivery of phosphate to the mitochondria. We have called this gene PIC2 for Pi carrier isoform 2. Overexpression of PIC2 compensates for the mitochondrial defect of the double mutant Deltamir1 Deltapic2 and restores phosphate transport activity in mitochondria swelling experiments. The existence of two isoforms of mPic does not seem to be restricted to S. cerevisiae as two Arabidopsis thaliana cDNAs encoding two different mPic-like proteins are also able to complement the double mutant Deltamir1 Deltapic2. Finally, we demonstrate that Pic2p is a mitochondrial protein and that its steady state level increases at high temperature. We propose that Pic2p is a minor form of mPic which plays a role under specific stress conditions.
Collapse
Affiliation(s)
- Patrice Hamel
- Centre de Génétique Moléculaire, Avenue de la Terrasse, 91198- Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
12
|
Thompson HR, Jones GM, Narkewicz MR. Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits. Am J Physiol Gastrointest Liver Physiol 2001; 280:G873-8. [PMID: 11292595 DOI: 10.1152/ajpgi.2001.280.5.g873] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serine occupies a central position in folate-dependent, one-carbon metabolism through 5,10-methylenetetrahydrofolate (MTHF) and 5-formyltetrahydrofolate (FTHF). We characterized the ontogeny of the specific activity of key enzymes involved in serine, 5,10-MTHF, and 5-FTHF metabolism: methenyltetrahydrofolate synthetase (MTHFS), MTHF reductase (MTHFR), the glycine cleavage system (GCS), methionine synthase (MS), and serine hydroxymethyltransferase (SHMT) in rabbit liver, placenta, brain, and kidney. In liver, MTHFS activity is low in the fetus (0.36 +/- 0.07 nmol. min(-1). mg protein(-1)), peaks at 3 wk (1.48 +/- 0.50 nmol. min(-1). mg protein(-1)), and then decreases to adult levels (1.13 +/- 0.32 nmol. min(-1). mg protein(-1)). MTHFR activity is highest early in gestation (24.9 +/- 2.4 nmol. h(-1). mg protein(-1)) and declines rapidly by birth (4.7 +/- 1.3 nmol. h(-1). mg protein(-1)). MS is highest during fetal life and declines after birth. Cytosolic SHMT activity does not vary during development, but mitochondrial SHMT peaks at 23 days. GCS activity is high in the fetus and the neonate, declining after weaning. In placenta and brain, all activities are low throughout gestation. Cytosolic and mitochondrial SHMT activities are low in kidney and rise after weaning, whereas MTHFS is low throughout development. These data suggest that the liver is the primary site of activity for these enzymes. Throughout development, there are multiple potential sources for production of 5,10-MTHF, but early in gestation high MTHFR activity and low MTHFS activity could reduce 5,10-MTHF availability.
Collapse
Affiliation(s)
- H R Thompson
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, CO 80218, USA
| | | | | |
Collapse
|
13
|
Bhaduri-McIntosh S, Vaidya AB. Plasmodium falciparum: import of a phosphate carrier protein into heterologous mitochondria. Exp Parasitol 1998; 88:252-4. [PMID: 9562431 DOI: 10.1006/expr.1998.4242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- S Bhaduri-McIntosh
- Department of Microbiology and Immunology, Allegheny University of the Health Sciences, MCP-Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
14
|
Abstract
Ten mitochondrial carriers have been purified from animal mitochondria. They are small proteins with a molecular mass ranging from 28 to 34 kDa on SDS-PAGE. So far, five of these proteins have been sequenced. Their polypeptide chain consists of three tandemly related sequences of about 100 amino acids. The repeats of the different proteins are related and probably fold into two transmembrane alpha-helices linked by an extra-membrane loop. The features of this family are also present in several proteins of unknown function characterized by DNA sequencing. Isoforms of some carriers have been found. All mitochondrial carriers investigated in proteoliposomes function according to a simultaneous (sequential) mechanism of transport. The only exception is the carnitine carrier that proceeds via a ping-pong mechanism. Three mitochondrial carriers have been expressed in yeast and two overexpressed in E. coli and refolded in active form.
Collapse
Affiliation(s)
- F Palmieri
- Department of Pharmaco-Biology, University of Bari, Italy
| |
Collapse
|
15
|
Dietmeier K, Zara V, Palmisano A, Palmieri F, Voos W, Schlossmann J, Moczko M, Kispal G, Pfanner N. Targeting and translocation of the phosphate carrier/p32 to the inner membrane of yeast mitochondria. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74480-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Palmieri F, Bisaccia F, Capobianco L, Dolce V, Fiermonte G, Iacobazzi V, Zara V. Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. J Bioenerg Biomembr 1993; 25:493-501. [PMID: 8132489 DOI: 10.1007/bf01108406] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphate and oxoglutarate carriers transport phosphate and oxoglutarate across the inner membranes of mitochondria in exchange for OH- and malate, respectively. Both carriers belong to the mitochondrial carrier protein family, characterized by a tripartite structure made up of related sequences about 100 amino acids in length. The results obtained on the topology of the phosphate and oxoglutarate carriers are consistent with the six alpha-helix model proposed by Saraste and Walker. In both carriers the N- and C-terminal regions are exposed toward the cytosol. In addition, the oxoglutarate carrier has been shown to be a dimer by means of crosslinking studies. The bovine and human genes coding for the oxoglutarate carrier are split into eight and six exons, respectively, and five introns are found to the same position in both genes. The bovine and human phosphate carrier genes have the same organization with nine exons separated by eight introns at exactly the same positions. The phosphate carrier of mammalian mitochondria is synthesized with a cleavable presequence, in contrast to the oxoglutarate carrier and the other members of the mitochondrial carrier family. The precursor of the phosphate carrier is efficiently imported, proteolytically processed, and correctly assembled in isolated mitochondria. The presequence-deficient phosphate carrier is imported with an efficiency of about 50% as compared with the precursor of the phosphate carrier and is correctly assembled, demonstrating that the mature portion of the phosphate carrier contains sufficient information for import and assembly into mitochondria.
Collapse
Affiliation(s)
- F Palmieri
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Ferreira GC, Pedersen PL. Phosphate transport in mitochondria: past accomplishments, present problems, and future challenges. J Bioenerg Biomembr 1993; 25:483-92. [PMID: 8132488 DOI: 10.1007/bf01108405] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression in Escherichia coli of a chimera protein involving Pic and ATP synthase alpha subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- G C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa 33612
| | | |
Collapse
|
18
|
Kuan J, Saier MH. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol 1993; 28:209-33. [PMID: 8325039 DOI: 10.3109/10409239309086795] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Energy transduction in mitochondria requires the transport of many specific metabolites across the inner membrane of this eukaryotic organelle. We have screened the protein sequence database for proteins homologous to the mitochondrial ATP/ADP exchange carrier, and the homologous proteins found were similarly screened to ensure that all currently sequenced members of the mitochondrial carrier family (MCF) had been identified. Thirty-seven proteins were identified, 28 of which were less than 90% identical to any other sequenced member of the MCF, and the latter proteins fell into 10 clusters or subfamilies as follows: (1) ATP/ADP exchangers of mammals, plants, algae, yeast, and fungi (11 members); (2) a bovine oxoglutarate/malate exchanger (one member); (3) mammalian uncoupling carriers (five members); (4) yeast and mammalian phosphate carriers (three members); (5) MRS proteins that suppress mitochondrial splicing defects in Saccharomyces cerevisiae (two members); (6) a putative peroxysomal carrier of Candida boidinii; (7) a putative solute carrier from the protozoan, Oxytricha fallax; (8) a putative solute carrier from S. cerevisiae; (9) a putative solute carrier from Zea mays, and (10) two putative solute carriers from the mammalian thyroid gland. The specificities of proteins in clusters 5 to 10 are not known. A multiple alignment and an evolutionary tree of the 28 selected members of the MCF were constructed, thus defining the conserved residues and the phylogenetic relationships of the proteins. Hydropathy plots of the homologous regions were determined and averaged, and the average hydropathy plots were evaluated for sequence similarity. These analyses revealed that the six transmembrane spanners exhibited varying degrees of sequence conservation and hydrophilicity. These spanners, and immediately adjacent hydrophilic loop regions, were more highly conserved than other regions of these proteins. All members of the MCF appear to consist of a tripartite structure with each of the three repeated segments being about 100 residues in length. Each repeat contains two transmembrane spanners, the first being more hydrophobic with conserved glycyl and prolyl residues, the second, preceded by a highly conserved glycyl residue, being more hydrophilic with largely conserved hydrophilic residues in certain positions. Five of the six spanners are followed by the largely conserved sequence (D/E)-Hy (K/R)[- = any residue; Hy = a hydrophobic residue]. Based on both intracluster and intercluster statistical comparisons, repeats 1, 2, and 3 are homologous, but repeats 1 are more similar to each other than they are to repeats 2 or 3 or repeats 2 or 3 are to each other.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Kuan
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
19
|
Zara V, Palmieri F, Mahlke K, Pfanner N. The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49808-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Ferreira G, Pedersen P. Overexpression of higher eukaryotic membrane proteins in bacteria. Novel insights obtained with the liver mitochondrial proton/phosphate symporter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42788-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
|
22
|
Dolce V, Fiermonte G, Messina A, Palmieri F. Nucleotide sequence of a human heart cDNA encoding the mitochondrial phosphate carrier. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 2:133-5. [PMID: 1777677 DOI: 10.3109/10425179109039683] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated and characterized a full length cDNA clone encoding the precursor of the human heart mitochondrial phosphate carrier protein. The entire clone is 1330 bp in length with 5'- and 3'-untranslated regions of 48 and 184 bp, respectively. The open reading frame encodes the mature protein consisting of 312 amino acids, preceded by a presequence of 49 amino acids. The amino acid sequence of the mature human phosphate carrier is 93.6, 94.2 and 33.6% identical to that of the phosphate carrier from beef, rat and yeast, respectively. Like other mitochondrial transport proteins, the human phosphate carrier has a tripartite structure. Each of the three repeats contains two hydrophobic regions which presumably span the membrane in the form of alpha-helices.
Collapse
Affiliation(s)
- V Dolce
- Department of Pharmaco-Biology, University of Bari, Italy
| | | | | | | |
Collapse
|