1
|
Cacheux L, Ponger L, Gerbault-Seureau M, Richard FA, Escudé C. Diversity and distribution of alpha satellite DNA in the genome of an Old World monkey: Cercopithecus solatus. BMC Genomics 2016; 17:916. [PMID: 27842493 PMCID: PMC5109768 DOI: 10.1186/s12864-016-3246-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alpha satellite is the major repeated DNA element of primate centromeres. Evolution of these tandemly repeated sequences has led to the existence of numerous families of monomers exhibiting specific organizational patterns. The limited amount of information available in non-human primates is a restriction to the understanding of the evolutionary dynamics of alpha satellite DNA. Results We carried out the targeted high-throughput sequencing of alpha satellite monomers and dimers from the Cercopithecus solatus genome, an Old World monkey from the Cercopithecini tribe. Computational approaches were used to infer the existence of sequence families and to study how these families are organized with respect to each other. While previous studies had suggested that alpha satellites in Old World monkeys were poorly diversified, our analysis provides evidence for the existence of at least four distinct families of sequences within the studied species and of higher order organizational patterns. Fluorescence in situ hybridization using oligonucleotide probes that are able to target each family in a specific way showed that the different families had distinct distributions on chromosomes and were not homogeneously distributed between chromosomes. Conclusions Our new approach provides an unprecedented and comprehensive view of the diversity and organization of alpha satellites in a species outside the hominoid group. We consider these data with respect to previously known alpha satellite families and to potential mechanisms for satellite DNA evolution. Applying this approach to other species will open new perspectives regarding the integration of satellite DNA into comparative genomic and cytogenetic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3246-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauriane Cacheux
- Département Régulations, Développement et Diversité Moléculaire, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.,Département Systématique et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France
| | - Loïc Ponger
- Département Régulations, Développement et Diversité Moléculaire, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France
| | - Michèle Gerbault-Seureau
- Département Systématique et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France
| | - Florence Anne Richard
- Département Systématique et Evolution, Institut de Systématique, Evolution, Biodiversité, UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.,Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| | - Christophe Escudé
- Département Régulations, Développement et Diversité Moléculaire, Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Sorbonne Universités, Muséum national d'Histoire naturelle, Paris, France.
| |
Collapse
|
2
|
Waye JS, Willard HF. Concerted evolution of alpha satellite DNA: evidence for species specificity and a general lack of sequence conservation among alphoid sequences of higher primates. Chromosoma 1989; 98:273-9. [PMID: 2515043 DOI: 10.1007/bf00327313] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We investigated relationships among alpha satellite DNA families in the human, gorilla, chimpanzee, and orangutan genomes by filter hybridization with cloned probes which correspond to chromosome-specific alpha satellite DNAs from at least 12 different human chromosomes. These include representatives of both the dimer-based and pentamer-based subfamilies, the two major subfamilies of human alpha satellite. In addition, we evaluated several high-copy dimer-based probes isolated from gorilla genomic DNA. Under low stringency conditions, all human probes tested hybridized extensively with gorilla and chimpanzee alpha satellite sequences. However, only pentameric and other non-dimeric human alphoid probes hybridized with orangutan alpha satellite sequences; probes belonging to the dimer subfamily did not cross-hybridize detectably with orangutan DNA. Moreover, under high stringency conditions, each of the human probes hybridized extensively only with human genomic DNA; none of the probes cross-hybridized effectively with other primate DNAs. Dimer-based gorilla alpha satellite probes hybridized with human and chimpanzee, but not orangutan, sequences under low stringency hybridization conditions, yet were specific for gorilla DNA under high stringency conditions. These results indicate that the alpha satellite DNA family has evolved in a concerted manner, such that considerable sequence divergence is now evident among the alphoid sequences of closely related primate species.
Collapse
Affiliation(s)
- J S Waye
- Department of Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
3
|
Vissel B, Choo KH. Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 1989; 5:407-14. [PMID: 2613229 DOI: 10.1016/0888-7543(89)90003-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have isolated and sequenced 30 independent clones derived from MnlI digestion of purified mouse major (gamma) satellite DNA. These clones contained between 0.9 and 1.1 gamma monomeric units derived presumably from random chromosomal sources. Individual clones showed a mean deviation from the mouse consensus satellite sequence of 3.9%, with a range of 0.9-9.1%. Cleavage of total mouse LTK cell genomic DNA with three different restriction enzymes (HindIII, BglII, BamHI) that do not cut within satellite monomers, followed by Southern and pulsed-field gel electrophoretic analyses, showed that the majority of monomers were organized into largely uninterrupted arrays that varied from a minimum of 240 kb to greater than 2000 kb in length. We suggest that the high degree of conservation of the mouse gamma-satellite sequences throughout the mouse genome results from frequent recombinational exchange between nonhomologous chromosomes. Further, this same process, facilitated by the all-acrocentric constitution of the typical mouse karyotype, and the extremely long and homologous gamma-satellite arrays, may be related to the common occurrence of Robertsonian translocation in mouse.
Collapse
Affiliation(s)
- B Vissel
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
4
|
Choo KH, Brown R, Webb G, Craig IW, Filby RG. Genomic organization of human centromeric alpha satellite DNA: characterization of a chromosome 17 alpha satellite sequence. DNA (MARY ANN LIEBERT, INC.) 1987; 6:297-305. [PMID: 2820675 DOI: 10.1089/dna.1987.6.297] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We characterized a recombinant clone E7 containing a 1.6-kb Eco RI insert of human alpha satellite DNA (alpha DNA) which hybridized in situ predominantly to the centromere of chromosome 17. Three thousand copies of this sequence were detected on chromosome 17, although a lesser number of copies were also found on the centromeres of chromosomes 11, X, and the other human chromosomes, except Y. In the human genome, sequences homologous to E7 were organized principally as five major polymorphic (Pst I) forms of tandem alpha DNA repeats with molecular weights between 2.0 and 2.7 kb. We We studied the higher-order organization of these major forms using a series of 12 cosmid clones. Close linkage of the different polymorphic forms was demonstrated, with no two cosmids showing an identical linkage pattern. Six of the cosmid clones carried a considerable amount (20-25%) of nonhomologous (non-alpha) DNA, indicating that the repeat arrays are relatively frequently interrupted by other genomic DNA. In none of the cosmid inserts were the repeat arrays bound on both sides by non-alpha DNA, suggesting that short arrays are not common. However, some of the intervening non-alpha DNA sequences were relatively short, and vary in size from 6 to 24 kb. Our results suggest an irregular and complex pattern of organization of alpha DNA in the human genome.
Collapse
Affiliation(s)
- K H Choo
- Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|