1
|
Anderson S, Shepherd H, Boggavarapu K, Paudyal J. Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs. Molecules 2025; 30:423. [PMID: 39860291 PMCID: PMC11767741 DOI: 10.3390/molecules30020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA. We found that β-CD-AuNPs can catalyze the H2O2-mediated oxidation of DA. The dopamine signal-off sensor was developed by taking advantage of the peroxidase-like activity of β-CD-AuNPs towards TMB and DA, where both 3,3',5,5'-tetramethylbenzidine (TMB) and dopamine (DA) may compete for the binding sites with β-CD-AuNPs. As a result, the presence of dopamine can be detected even through the naked eye (up to the concentration of 3.75 µM) and using a spectrophotometer (up to the concentration of 1.0 µM) by monitoring the disappearance of the blue color of the oxidized form of TMB in the presence of dopamine. Furthermore, no obvious disappearance of color was observed at lower concentrations of interferences including ascorbic and uric acid. Given the versatility of cyclodextrin to host large numbers of analyte molecules, we envision that a similar principle can be applied for the detection of other analyte molecules of biological, medical, and environmental significance.
Collapse
Affiliation(s)
- Sara Anderson
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | - Hamish Shepherd
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | - Kiran Boggavarapu
- Department of Chemistry and Physics, McNeese State University, Lake Charles, LA 70605, USA
| | - Janak Paudyal
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
- Department of Chemistry and Physics, McNeese State University, Lake Charles, LA 70605, USA
| |
Collapse
|
2
|
Tadele Alula M, Hendricks-Leukes NR. Silver nanoparticles loaded carbon-magnetic nanocomposites: A nanozyme for colorimetric detection of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124830. [PMID: 39067434 DOI: 10.1016/j.saa.2024.124830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/18/2024] [Revised: 06/08/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Dopamine (DA) is catecholamine neurotransmitters that play an important role in the central nervous system. In recent years people started to intentionally add DA to animal feed to enhance muscle development and increase their profit margin. Human consumption of the residual DA from animal tissues has been reported to be associated with the development of such diseases as Parkinson's disease, epilepsy, senile dementia, and schizophrenia and pose serious human health risks. These require development of rapid, cheap, and sensitive methods for detection of DA from animal tissue. Compared to other techniques that require access to expensive instruments, skilled human power, and tiresome routine procedures, colorimetric methods provide cheap and reliable options for detection of DA. Here we report a colorimetric method based on the peroxidase-mimic activity of Fe3O4@C@AgNPs for the detection of DA. A simple wet chemical method was employed to synthesize AgNPs on hydrophilic carbon coated Fe3O4. The produced nanocomposites were characterized by transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), and surface-enhanced Raman spectroscopy (SERS). The detection of DA was done based on inhibition of the peroxidase-like activity of Fe3O4@C@AgNPs using 3, 3', 5, 5'-tetramethylbenzidine (TMB) as a substrate. In the presence of DA, however, the peroxidase-like activity started to decrease. The decrease in activity was concentration dependent showing a linear relationship in the range of 0.5-80 µM. In this linear range, the limit of detection (LOD) was computed and found to be as low as 0.12 µM. Therefore, we propose that the peroxidase-like activity of Fe3O4@C@AgNPs could be used for quantitative detection of DA from different samples.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana.
| | - Nicolette R Hendricks-Leukes
- Department of Integrative Biomedical Sciences, Division of Chemical & Systems Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
3
|
Coden KM, Nguyen DKK, Moorhead R, Stix-Brunell BE, Baker JN, Parker KJ, Garner JP. Making bloodwork work: the impact of sample collection, processing, and storage on plasma glutathione measurement, and implications for translation. Transl Psychiatry 2024; 14:385. [PMID: 39313523 PMCID: PMC11420238 DOI: 10.1038/s41398-024-03086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/06/2023] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Psychiatry has traditionally focused on the study of neurons and neurotransmitter physiology in the pathophysiology and treatment of psychiatric disorders. A growing literature highlights REDOX imbalance (a state in which demand for antioxidants surpasses their bioavailability) as a common pathophysiology for a diverse array of brain conditions (e.g., trichotillomania, schizophrenia, autism, Parkinson's disease). REDOX imbalance is typically measured via plasma glutathione, as glutathione is critical to the adaptive antioxidant response in the brain. Accordingly, glutathione, its precursors, and/or metabolites serve as biomarkers of disease risk, therapeutic targets, and measures of treatment response. However, as with any emerging field, there are currently several different methods for collection, processing, storage, and calculation of summary measures of plasma glutathione metabolism, within and between preclinical and clinical research. The lack of evidence-based best-practice methodology hampers reproducibility (preclinical or clinical), and translation (between preclinical and clinical work). To address this methodological need, here we used a repeated measures within-subject design to investigate how sample preparation (type of anticoagulant used during blood collection, deproteinization status, and storage temperature) affects plasma glutathione levels. Accordingly, we collected whole blood from mice (N = 13), and then, using a commercially available kit, quantified glutathione in plasma stored in four different ways. Presuming that these preparation conditions and post-processing calculations are unimportant, we would expect to see no difference in glutathione levels and summary measures from the same sample. However, we found each of these variables to significantly alter quantified glutathione levels. Accordingly, we propose a vital, gold-standard methodology for both sample collection, processing, and storage of plasma used for glutathione quantification and for summary calculations of glutathione that can be used preclinically and clinically, thus yielding more streamlined translation.
Collapse
Affiliation(s)
- Kendall M Coden
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Duyen K K Nguyen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Roberta Moorhead
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - Joanna N Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Karen J Parker
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Joseph P Garner
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Chauhan P, Pandey P, Khan F, Maqsood R. Insights on the Correlation between Mitochondrial Dysfunction and the Progression of Parkinson's Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1007-1014. [PMID: 37867265 DOI: 10.2174/0118715303249690231006114308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
The aetiology of a progressive neuronal Parkinson's disease has been discussed in several studies. However, due to the multiple risk factors involved in its development, such as environmental toxicity, parental inheritance, misfolding of protein, ageing, generation of reactive oxygen species, degradation of dopaminergic neurons, formation of neurotoxins, mitochondria dysfunction, and genetic mutations, its mechanism of involvement is still discernible. Therefore, this study aimed to review the processes or systems that are crucially implicated in the conversion of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) into its lethal form, which directly blockades the performance of mitochondria, leading to the formation of oxidative stress in the dopaminergic neurons of substantia nigra pars compacta (SNpc) and resulting in the progression of an incurable Parkinson's disease. This review also comprises an overview of the mutated genes that are frequently associated with mitochondrial dysfunction and the progression of Parkinson's disease. Altogether, this review would help future researchers to develop an efficient therapeutic approach for the management of Parkinson's disease via identifying potent prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Ramish Maqsood
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| |
Collapse
|
5
|
Wei H, Liu J, Wang X, Li Z, Ju L, Yao B, Zhou J, Zhao L, Zhou M, Zhang J, Yang S. Secondary metal doped cuprous-cyanoimidazole frameworks for triple-mode detection of dopamine. Anal Chim Acta 2023; 1279:341798. [PMID: 37827638 DOI: 10.1016/j.aca.2023.341798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUNDS Metal-organic framework-based nanozymes enable several opportunities for designing novel analysis methods for the detection of pesticides, heavy metal ions, and biomolecules; however, practical applications are still limited by a complicated synthesis route, lower catalytic activity, and single detection mode. Dopamine (DA) is a crucial catecholamine substance in the human body that acts as a neurotransmitter regulating a variety of physiological functions of the central nervous system. Therefore, it is highly significant to explore simple nanozymes synthesis methods for constructing a multiple analysis system to detection DA. RESULTS Herein, we elaborately selected cobalt ions as the secondary metal doping in cuprous-cyanoimidazole frameworks (CuCo-CIFs) with a mass-production strategy. CuCo-CIFs possess intrinsic peroxidase-like activity that can convert hydrogen peroxide into various reactive oxygen species (i.e., 1O2, OH·, O2·-) and thereby oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) and DA to blue oxTMB and orange polydopamine (PDA), respectively. The absorption of the detection system increases at 460 nm while decreases at 652 nm as the concentration of DA increases under near-neutral pH (6.1), resulting in a color transition from blue to orange. Consequently, an unprecedented triple-mode analysis system of DA monitored by naked eyes, ratiometric-absorption, and scanometric was constructed. The limit of detection for the ratiometric-absorption and scanometric mode can reach 20 nM and 28 nM, respectively. CuCo-CIFs were successfully used for the rapid and accurate detection of DA in practical samples. SIGNIFICANCE As a simple, low-cost, multi-mode colorimetric platform, this kind of nanozyme detection with peroxidase-like activity exhibits significant potential for the detection of DA. Our work not only expands the applications of MOFs in analytical fields but also addresses the general challenges faced by nanozyme-based colorimetric detection systems of DA. This work provides valuable insights for the rational application of nanozyme and the design of new analysis systems.
Collapse
Affiliation(s)
- Hua Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jian Liu
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zihan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lijuan Ju
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Boxuan Yao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiarui Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shenghong Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
6
|
Wu Z, Liu W, Lu H, Zhang H, Hao Z, Zhang F, Zhang R, Li X, Zhang L. DNA-modulated single-atom nanozymes with enhanced enzyme-like activity for ultrasensitive detection of dopamine. NANOSCALE 2023; 15:13289-13296. [PMID: 37503884 DOI: 10.1039/d3nr01737k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/29/2023]
Abstract
Despite the current progress in optimizing and tailoring the performance of nanozymes through structural and synthetic adaptation, there is still a lack of dynamic modulation approaches to alter their catalytic activity. Here, we demonstrate that DNA can act as an auxiliary regulator via a straightforward incubation method with Fe-N-C single-atom nanozymes (SAzymes), causing a leap in the enzyme-like activity of Fe-N-C from moderate to a higher level. The DNA-assisted enhancement is attributed to the increased substrate affinity of Fe-N-C nanozymes through electrostatic attraction between the substrate and DNA. Based on the prepared DNA/Fe-N-C system, colorimetric sensors for dopamine (DA) detection were constructed. Surprisingly, the incorporation of DNA not only enabled the detection of DA in a low concentration range, but also greatly improved the sensitivity with a 436-fold decrease in detection limit. The quantitative determination of DA was achieved in two-segment linear ranges of 0.01-4 μM and 5-100 μM with an ultralow detection limit of 9.56 nM. The DNA/Fe-N-C system shows superior performance compared to the original Fe-N-C system, making it an ideal choice for nanozyme-based biosensors. This simple design approach has paved the way for enhancing nanozyme activity and is expected to serve as a general strategy for optimizing biosensor performance.
Collapse
Affiliation(s)
- Zhihan Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Wendong Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Haijun Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Hongyan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Fanghua Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
7
|
Exercise on Striatal Dopamine Level and Anxiety-Like Behavior in Male Rats after 2-VO Cerebral Ischemia. Behav Neurol 2022; 2022:2243717. [PMID: 36147220 PMCID: PMC9489419 DOI: 10.1155/2022/2243717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to discuss the effect of voluntary wheel running on striatal dopamine levels and anxiety-like behavior in rats with global cerebral ischemia. The male Sprague-Dawley rats were signed on in this study and randomly divided into following 4 groups: Control group (C group), Sham group (S group), ischemia group (I group), and 3 weeks physical exercise before ischemia group (3RI group). The rats in the 3RI group were placed in a voluntary running wheel for three weeks to exercise. Then, the rats in I and 3RI groups received bilateral carotid artery ligation (2-VO) operation. The C and S group did not perform voluntary running exercise and the bilateral common carotid arteries of S group were exposed without ligation. In vivo microdialysis was used in conjunction with high performance liquid chromatography (HPLC) and electrochemical detection to ascertain the level of dopamine in the striatum. Elevated plus maze (EPM) and open field (OF) were used to test anxiety status at 24 hours and 7days after 2-VO cerebral ischemia. Meanwhile, gait and motor coordination evaluations were carried out to eliminate the influence of non-specific motor problems. The results indicated that cerebral ischemia instigate the increase of striatal dopamine in I group rats during acute cerebral ischemia. A 3-week voluntary wheel running significantly enhances the striatal dopamine before ischemia and obstructs a further increase of dopamine during acute cerebral ischemia in 3RI group rats. At 24 hours after ischemia, striatal dopamine returned to pre-ischemic levels in 3RI group. Striatal dopamine in I group were less than pre-ischemic levels at 7 days. Behavioral data indicated that 3-week voluntary wheel running promoted recovery of anxiety-like behavior and gait were not affected by 2-VO cerebral ischemia at 24 hours post-ischemia rats. Therefore, it can be concluded that 3-week physical exercise significantly increased the striatal dopamine and improved anxiety-like behavior by inhibiting the increase of dopamine during acute cerebral ischemia and suppressing the decrease of dopamine after 24 hours and 7 days cerebral ischemia.
Collapse
|
8
|
Peony-like 3D-MoS2/graphene nanostructures with enhanced mimic peroxidase performance for colorimetric determination of dopamine. Talanta 2022; 247:123553. [DOI: 10.1016/j.talanta.2022.123553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Revised: 12/20/2021] [Accepted: 05/12/2022] [Indexed: 12/25/2022]
|
9
|
Davis DL, Metzger DB, Vann PH, Wong JM, Subasinghe KH, Garlotte IK, Phillips NR, Shetty RA, Forster MJ, Sumien N. Sex differences in neurobehavioral consequences of methamphetamine exposure in adult mice. Psychopharmacology (Berl) 2022; 239:2331-2349. [PMID: 35347365 PMCID: PMC9232998 DOI: 10.1007/s00213-022-06122-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Recreational and medical use of stimulants is increasing, and their use may increase susceptibility to aging and promote neurobehavioral impairments. The long-term consequences of these psychostimulants and how they interact with age have not been fully studied. OBJECTIVES Our study investigated whether chronic exposure to the prototypical psychostimulant, methamphetamine (METH), at doses designed to emulate human therapeutic dosing, would confer a pro-oxidizing redox shift promoting long-lasting neurobehavioral impairments. METHODS Groups of 4-month-old male and female C57BL/6 J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 4 weeks. Mice were randomly assigned to one experimental group: (i) short-term cognitive assessments (at 5 months), (ii) long-term cognitive assessments (at 9.5 months), and (ii) longitudinal motor assessments (at 5, 7, and 9 months). Brain regions were assessed for oxidative stress and markers of neurotoxicity after behavior testing. RESULTS Chronic METH exposure induced short-term effects on associative memory, gait speed, dopamine (DA) signaling, astrogliosis in females, and spatial learning and memory, balance, DA signaling, and excitotoxicity in males. There were no long-term effects of chronic METH on cognition; however, it decreased markers of excitotoxicity in the striatum and exacerbated age-associated motor impairments in males. CONCLUSION In conclusion, cognitive and motor functions were differentially and sex-dependently affected by METH exposure, and oxidative stress did not seem to play a role in the observed behavioral outcomes. Future studies are necessary to continue exploring the long-term neurobehavioral consequences of drug use in both sexes and the relationship between aging and drugs.
Collapse
Affiliation(s)
- Delaney L Davis
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Daniel B Metzger
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Jessica M Wong
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Kumudu H Subasinghe
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Isabelle K Garlotte
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Michael J Forster
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA.
| |
Collapse
|
10
|
Bushira FA, Wang P, Jin Y. High-Entropy Oxide for Highly Efficient Luminol-Dissolved Oxygen Electrochemiluminescence and Biosensing Applications. Anal Chem 2022; 94:2958-2965. [PMID: 35099931 DOI: 10.1021/acs.analchem.1c05005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The luminol-dissolved O2 (DO) electrochemiluminescence (ECL) sensing system has recently gained growing interest; however, the drawback of the ultra-low ECL signal response greatly hinders its potential quantitative applications. In this work, for the first time, we explored the use of high entropy oxide (HEO) comprising five metal ingredients (Ni, Co, Cr, Cu, and Fe), to accelerate the reduction reaction of DO into reactive oxygen species (ROS) for boosting the ECL performance of the luminol-DO system. Benefiting from the existing abundant oxygen vacancies induced by the unique crystal structure of the HEO, DO could be efficiently converted into ROS, thus significantly boosting the performance of the corresponding ECL sensor (with an ∼240-fold signal enhancement in this study). As a proof of concept, under optimal conditions, the developed HEO-involved luminol-DO ECL sensing system was successfully applied for efficient biosensing of dopamine and alkaline phosphatase with a fine linear range from 1 pM to 10 nM and from 0.01 to 100 U/L as well as a low limit of detection of 5.2 pM and 0.008 U/L, respectively.
Collapse
Affiliation(s)
- Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Ping Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Razavi M, Barras A, Ifires M, Swaidan A, Khoshkam M, Szunerits S, Kompany-Zareh M, Boukherroub R. Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi 2Fe 4O 9) nanoparticles as an efficient peroxidase-mimic nanozyme. J Colloid Interface Sci 2022; 613:384-395. [PMID: 35042036 DOI: 10.1016/j.jcis.2022.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
This work describes the preparation of ternary bismuth ferrite oxide nanoparticles (Bi2Fe4O9 NPs) with an enzyme mimetic activity for dopamine (DA) qualitative and quantitative detection. Bi2Fe4O9 NPs were prepared using a facile, low cost, and one-pot hydrothermal treatment. The chemical composition, morphology, and optical properties of Bi2Fe4O9 nanozyme were characterized using different techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM) imaging, FESEM-energy dispersive X-ray spectroscopy (EDS), UV-vis absorption, and fluorescence emission spectroscopy. Bi2Fe4O9 NPs were utilized to catalyze the oxidation of a typical chromogenic peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), to form the blue-colored oxidized product (oxTMB), in the presence of hydrogen peroxide (H2O2). All reactions occurred in acetate buffer solution (pH 3.5) to generate hydroxyl radicals (•OH) and the kinetics were followed by UV-vis absorbance at 654 nm. The steady-state kinetic parameters were obtained from the Michaelis-Menten equation and exhibited a good catalytic efficiency of Bi2Fe4O9 NPs as enzyme mimetics. Michaelis-Menten constant (Km) values were estimated as 0.07 and 0.73 mM for TMB and H2O2, respectively. The presented method is efficient, rapid, cost-effective, and sensitive for the colorimetric detection of dopamine with a linear range (LR) from 0.15 to 50 μM and a detection limit (LOD) of 51 nM. The proposed colorimetric sensor was successfully applied for the detection of different concentrations of dopamine in spiked fetal bovine serum (FBS) and horse serum (HS) samples. It is anticipated that Bi2Fe4O9 nanozyme holds great potential in biomedical analysis and diagnostic applications of dopamine-related diseases.
Collapse
Affiliation(s)
- Mehri Razavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran; Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Madjid Ifires
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France; Research Center of Semi-conductor Technology for Energy, CRTSE - 02, Bd. Dr. Frantz FANON, B.P. 140 Algiers-7, Merveilles 16038, Algeria
| | - Abir Swaidan
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Maryam Khoshkam
- Department of Chemistry, Faculty of Science, Mohaghegh Ardabili University, 56199-11367, Ardabil, Iran
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France
| | - Mohsen Kompany-Zareh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran; Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille F-59000, France.
| |
Collapse
|
12
|
Bushira FA, Kitte SA, Xu C, Li H, Zheng L, Wang P, Jin Y. Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Anal Chem 2021; 93:9949-9957. [PMID: 34218661 DOI: 10.1021/acs.analchem.1c02232] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Single-atom catalysts (SACs) have recently been exploited for luminol-dissolved oxygen electrochemiluminescence (ECL); however, they still suffer from low sensitivity and narrow detection range for a real sample assay. In this work, we boost markedly the ECL response of the iron SAC (Fe-SAC)-based system, for the first time, by the excitation of two-dimensional plasmons derived from the Au@SiO2 nanomembrane. The plausible mechanism of plasmon enhancement in the Fe-SAC ECL system has been discussed. The constructed Fe-SAC ECL system has been applied for the ECL detection of dopamine, hemin, and mercury (Hg2+), with pretty low limits of detection of 0.1, 0.7, and 0.13 nM and wider linear ranges of 0.001-1.0, 0.001-10, and 0.01-0.5 nM, respectively, under optimal conditions.
Collapse
Affiliation(s)
- Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Sharma N, Shin EJ, Pham DT, Sharma G, Dang DK, Duong CX, Kang SW, Nah SY, Jang CG, Lei XG, Nabeshima T, Bing G, Jeong JH, Kim HC. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food Chem Toxicol 2021; 154:112313. [PMID: 34082047 DOI: 10.1016/j.fct.2021.112313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice. MA-induced dopaminergic impairments [i.e., hyperthermia; increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) DNA-binding activity; and decreased dopamine levels, TH activity, and behavioral activity] were more pronounced in GPx-1-KO mice than in WT mice. In contrast, exposure to Ad-GPx-1 significantly attenuated MA-induced dopaminergic loss in GPx-1-KO mice. The protective effect exerted by Ad-GPx-1 was comparable to that exerted by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor against MA insult. Consistently, GPx-1 overexpression significantly attenuated MA dopaminergic toxicity in mice. PDTC did not significantly impact the protective effect of GPx-1 overexpression, suggesting that interaction between NF-κB and GPx-1 is critical for dopaminergic protection. Thus, NF-κB is a potential therapeutic target for GPx-1-mediated dopaminergic protective activity. This study for the first time demonstrated that Ad-GPx-1 rescued dopaminergic toxicity in vivo following MA insult. Furthermore, GPx-1-associated therapeutic interventions may be important against dopaminergic toxicity.
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Chu Xuan Duong
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Guoying Bing
- Anatomy and Neurobiology, University of Kentucky Medical Center, Medical Center MN208 800 Rose Strees, Lexington, KY, 40536, USA
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea.
| |
Collapse
|
14
|
Swaidan A, Barras A, Addad A, Tahon JF, Toufaily J, Hamieh T, Szunerits S, Boukherroub R. Colorimetric sensing of dopamine in beef meat using copper sulfide encapsulated within bovine serum albumin functionalized with copper phosphate (CuS-BSA-Cu3(PO4)2) nanoparticles. J Colloid Interface Sci 2021; 582:732-740. [DOI: 10.1016/j.jcis.2020.08.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/16/2022]
|
15
|
Pradhan P, Majhi O, Biswas A, Joshi VK, Sinha D. Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson's model. Cell Death Dis 2020; 11:739. [PMID: 32913179 PMCID: PMC7484898 DOI: 10.1038/s41419-020-02942-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Parkinson’s disease (PD) is a neuromotor disorder, primarily manifested by motor anomalies due to progressive loss of dopaminergic neurons. Although alterations in genetic factors have been linked with its etiology, exponential accumulation of environmental entities such as reactive oxygen species (ROS) initiate a cyclic chain reaction resulting in accumulation of cellular inclusions, dysfunctional mitochondria, and overwhelming of antioxidant machinery, thus accelerating disease pathogenesis. Involvement of oxidative stress in PD is further substantiated through ROS induced Parkinsonian models and elevated oxidative markers in clinical PD samples; thereby, making modulation of neuronal oxidative load as one of the major approaches in management of PD. Here we have found a potent antioxidant moiety Scopoletin (Sp), a common derivative in most of the nootropic herbs, with robust neuroprotective ability. Sp increased cellular resistance to ROS through efficient recycling of GSH to prevent oxidative damage. The Sp treated cells showed higher loads of reduced glutathione making them resistant to perturbation of antioxidant machinery or neurotoxin MPP+. Sp could restore the redox balance, mitochondrial function, and prevented oxidative damage, leading to recovery of dopaminergic neural networks and motion abilities in Drosophila genetic model of PD. Our data also suggest that Sp, in combination increases the therapeutic potency of L-DOPA by mitigating its chronic toxicity. Together, we highlight the possible ability of Sp in preventing oxidative stress mediated loss of dopaminergic neurons and at the same time enhance the efficacy of dopamine recharging regimens.
Collapse
Affiliation(s)
- Priyadarshika Pradhan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Olivia Majhi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhijit Biswas
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar Joshi
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
16
|
Kim TY, Leem E, Lee JM, Kim SR. Control of Reactive Oxygen Species for the Prevention of Parkinson's Disease: The Possible Application of Flavonoids. Antioxidants (Basel) 2020; 9:antiox9070583. [PMID: 32635299 PMCID: PMC7402123 DOI: 10.3390/antiox9070583] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress reflects an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense systems, and it can be associated with the pathogenesis and progression of neurodegenerative diseases such as multiple sclerosis, stroke, and Parkinson's disease (PD). The application of antioxidants, which can defend against oxidative stress, is able to detoxify the reactive intermediates and prevent neurodegeneration resulting from excessive ROS production. There are many reports showing that numerous flavonoids, a large group of natural phenolic compounds, can act as antioxidants and the application of flavonoids has beneficial effects in the adult brain. For instance, it is well known that the long-term consumption of the green tea-derived flavonoids catechin and epigallocatechin gallate (EGCG) can attenuate the onset of PD. Also, flavonoids such as ampelopsin and pinocembrin can inhibit mitochondrial dysfunction and neuronal death through the regulation of gene expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Additionally, it is well established that many flavonoids exhibit anti-apoptosis and anti-inflammatory effects through cellular signaling pathways, such as those involving (ERK), glycogen synthase kinase-3β (GSK-3β), and (Akt), resulting in neuroprotection. In this review article, we have described the oxidative stress involved in PD and explained the therapeutic potential of flavonoids to protect the nigrostriatal DA system, which may be useful to prevent PD.
Collapse
Affiliation(s)
- Tae Yeon Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Eunju Leem
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; (T.Y.K.); (E.L.)
- Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7362
| |
Collapse
|
17
|
Zhan Y, Raza MU, Yuan L, Zhu MY. Critical Role of Oxidatively Damaged DNA in Selective Noradrenergic Vulnerability. Neuroscience 2019; 422:184-201. [PMID: 31698021 DOI: 10.1016/j.neuroscience.2019.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
An important pathology in Parkinson's disease (PD) is the earlier and more severe degeneration of noradrenergic neurons in the locus coeruleus (LC) than dopaminergic neurons in the substantia nigra. However, the basis of such selective vulnerability to insults remains obscure. Using noradrenergic and dopaminergic cell lines, as well as primary neuronal cultures from rat LC and ventral mesencephalon (VM), the present study compared oxidative DNA damage response markers after exposure of these cells to hydrogen peroxide (H2O2). The results showed that H2O2 treatment resulted in more severe cell death in noradrenergic cell lines SK-N-BE(2)-M17 and PC12 than dopaminergic MN9D cells. Furthermore, there were higher levels of oxidative DNA damage response markers in noradrenergic cells and primary neuronal cultures from the LC than dopaminergic cells and primary cultures from the VM. It included increased tail moments and tail lengths in Comet assay, and increased protein levels of phosphor-p53 and γ-H2AX after treatments with H2O2. Consistent with these measurements, exposure of SK-N-BE(2)-M17 cells to H2O2 resulted in higher levels of reactive oxygen species (ROS). Further experiments showed that exposure of SK-N-BE(2)-M17 cells to H2O2 caused an increased level of noradrenergic transporter, reduced protein levels of copper transporter (Ctr1) and 8-oxoGua DNA glycosylase, as well as amplified levels of Cav1.2 and Cav1.3 expression. Taken together, these experiments indicated that noradrenergic neuronal cells seem to be more vulnerable to oxidative damage than dopaminergic neurons, which may be related to the intrinsic characteristics of noradrenergic neuronal cells.
Collapse
Affiliation(s)
- Yanqiang Zhan
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Lian Yuan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
18
|
Ivanova MN, Grayfer ED, Plotnikova EE, Kibis LS, Darabdhara G, Boruah PK, Das MR, Fedorov VE. Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22102-22112. [PMID: 31124654 DOI: 10.1021/acsami.9b04144] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, nanosized metal oxides, metals, and bimetallic particles have been actively researched as enzyme mimetic nanomaterials. However, the common issues with individual nanoparticles (NPs) are stabilization, reproducibility, and blocking of active sites by surfactants. These problems promote further studies of composite materials, where NPs are spread on supports, such as graphene derivatives or dichalcogenide nanosheets. Another promising type of support for NPs is the few-layered hexagonal boron nitride (hBN). In this study, we develop surfactant-free nanocomposites containing Pt NPs dispersed on chemically modified hydrophilic hBN nanosheets (hBNNSs). Ascorbic acid was used as a reducing agent for the chemical reduction of the Pt salt in the presence of hBNNS aqueous colloid, resulting in Pt/hBNNS nanocomposites, which were thoroughly characterized with X-ray diffraction, transmission electron microscopy, dynamic light scattering, and X-ray photoelectron and infrared spectroscopies. Similar to graphene oxide binding the metal NPs more efficiently than pure graphene, hydrophilic hBNNSs well stabilize Pt NPs, with particle size down to around 8 nm. We further demonstrate for the first time that Pt/hBNNS nanocomposites exhibit peroxidase-like catalytic activity, accelerating the oxidation of the classical colorless peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) to its corresponding blue-colored oxidized product in the presence of H2O2. Kinetic and mechanism studies involving terephthalic acid and isopropanol as a fluorescent probe and an •OH radical scavenger, respectively, proved that Pt/hBNNSs assist H2O2 decomposition to active oxygen species (•OH), which are responsible for TMB oxidation. The Pt/hBNNS nanocomposite-assisted oxidation of TMB provides an effective platform for the colorimetric detection of dopamine, an important biomolecule. The presence of increased amounts of dopamine gradually inhibits the catalytic activity of Pt/hBNNSs for the oxidation of TMB by H2O2, thus enabling selective sensing of dopamine down to 0.76 μM, even in the presence of common interfering molecules and on real blood serum samples. The present investigation on Pt/hBNNSs contributes to the knowledge of hBN-based nanocomposites and discovers their new usage as nanomaterials with good enzyme-mimicking activity and dopamine-sensing properties.
Collapse
Affiliation(s)
- Mariia N Ivanova
- Nikolaev Institute of Inorganic Chemistry SB RAS , Acad. Lavrentiev Prosp. 3 , Novosibirsk 630090 , Russian Federation
| | - Ekaterina D Grayfer
- Nikolaev Institute of Inorganic Chemistry SB RAS , Acad. Lavrentiev Prosp. 3 , Novosibirsk 630090 , Russian Federation
| | - Elena E Plotnikova
- Nikolaev Institute of Inorganic Chemistry SB RAS , Acad. Lavrentiev Prosp. 3 , Novosibirsk 630090 , Russian Federation
- Novosibirsk State University , Pirogova Str. 2 , Novosibirsk 630090 , Russian Federation
| | - Lidiya S Kibis
- Novosibirsk State University , Pirogova Str. 2 , Novosibirsk 630090 , Russian Federation
- Boreskov Institute of Catalysis SB RAS , Acad. Lavrentiev Prosp. 5 , Novosibirsk 630090 , Russian Federation
| | - Gitashree Darabdhara
- Advanced Materials Group, Materials Sciences and Technology Division , CSIR-North East Institute of Science and Technology , Jorhat 785006 , India
- Academy of Scientific and Innovative Research , CSIR-NEIST Campus , Jorhat 785006 , India
| | - Purna K Boruah
- Advanced Materials Group, Materials Sciences and Technology Division , CSIR-North East Institute of Science and Technology , Jorhat 785006 , India
- Academy of Scientific and Innovative Research , CSIR-NEIST Campus , Jorhat 785006 , India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division , CSIR-North East Institute of Science and Technology , Jorhat 785006 , India
- Academy of Scientific and Innovative Research , CSIR-NEIST Campus , Jorhat 785006 , India
| | - Vladimir E Fedorov
- Nikolaev Institute of Inorganic Chemistry SB RAS , Acad. Lavrentiev Prosp. 3 , Novosibirsk 630090 , Russian Federation
- Novosibirsk State University , Pirogova Str. 2 , Novosibirsk 630090 , Russian Federation
| |
Collapse
|
19
|
Role of dopamine D1 receptor in 3-fluoromethamphetamine-induced neurotoxicity in mice. Neurochem Int 2018; 113:69-84. [DOI: 10.1016/j.neuint.2017.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
|
20
|
Testosterone Upregulates the Expression of Mitochondrial ND1 and ND4 and Alleviates the Oxidative Damage to the Nigrostriatal Dopaminergic System in Orchiectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1202459. [PMID: 29138672 PMCID: PMC5613679 DOI: 10.1155/2017/1202459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
Abstract
Testosterone deficiency, as a potential risk factor for aging and aging-related neurodegenerative disorders, might induce mitochondrial dysfunction and facilitate the declines of the nigrostriatal dopaminergic system by exacerbating the mitochondrial defects and increasing the oxidative damage. Thus, how testosterone levels influence the mitochondrial function in the substantia nigra was investigated in the study. The present studies showed that testosterone deficiency impaired the mitochondrial function in the substantia nigra and induced the oxidative damage to the substantia nigra as well as the deficits in the nigrostriatal dopaminergic system. Of four mitochondrial respiratory chain complexes, castration of male rats reduced the activity of mitochondrial complex I and downregulated the expression of ND1 and ND4 of 7 mitochondrial DNA- (mtDNA-) encoded subunits of complex I in the substantia nigra. Supplements of testosterone propionate to castrated male rats ameliorated the activity of mitochondrial complex I and upregulated the expression of mitochondrial ND1 and ND4. These results suggest an important role of testosterone in maintaining the mitochondrial function in the substantia nigra and the vulnerability of mitochondrial complex I to testosterone deficiency. Mitochondrial ND1 and ND4, as potential testosterone targets, were implicated in the oxidative damage to the nigrostriatal dopaminergic system.
Collapse
|
21
|
Cruces-Sande A, Méndez-Álvarez E, Soto-Otero R. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease. J Neurochem 2017; 141:738-749. [DOI: 10.1111/jnc.14019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2016] [Revised: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Antón Cruces-Sande
- Laboratory of Neurochemistry; Department of Biochemistry and Molecular Biology; Faculty of Medicine; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Estefanía Méndez-Álvarez
- Laboratory of Neurochemistry; Department of Biochemistry and Molecular Biology; Faculty of Medicine; University of Santiago de Compostela; Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Madrid Spain
| | - Ramón Soto-Otero
- Laboratory of Neurochemistry; Department of Biochemistry and Molecular Biology; Faculty of Medicine; University of Santiago de Compostela; Santiago de Compostela Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED); Madrid Spain
| |
Collapse
|
22
|
Alleviation of Oxidative Damage and Involvement of Nrf2-ARE Pathway in Mesodopaminergic System and Hippocampus of Status Epilepticus Rats Pretreated by Intranasal Pentoxifylline. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7908072. [PMID: 28386312 PMCID: PMC5366206 DOI: 10.1155/2017/7908072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/03/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
The current studies were aimed at evaluating the efficacy of intranasal pentoxifylline (Ptx) pretreatment in protecting mesodopaminergic system and hippocampus from oxidative damage of lithium-pilocarpine induced status epilepticus (SE) and the involvement of nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidant response elements pathway. Pentoxifylline was administered to rats intranasally or intraperitoneally 30 minutes before inducing SE. Our results showed the impaired visuospatial memory, the defected mesodopaminergic system, and the oxidative damage and the transient activation of Nrf2 in SE rats. The transient activation of Nrf2 in SE rats was enhanced by Ptx pretreatment, which was followed by the upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Ptx pretreatment to SE rats significantly suppressed the epileptic seizures, decreased the levels of lipid peroxide and malondialdehyde, and elevated the ratio of reduced glutathione/oxidized glutathione. Compared with intraperitoneal injection, intranasal Ptx delivery completely restored the visuospatial memory and the activity of mesodopaminergic system in SE rats. Intranasal administration of Ptx may hopefully become a noninvasive, painless, and easily administered option for epileptic patients.
Collapse
|
23
|
Abstract
Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.
Collapse
Affiliation(s)
- Md Torequl Islam
- a Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology , Federal University of Piauí (UFPI) , Teresina , Brazil.,b Department of Pharmacy, Faculty of Science and Engineering , Southern University Bangladesh (SUB) , Chittagong , Bangladesh
| |
Collapse
|
24
|
|
25
|
Zhang G, Li S, Kang Y, Che J, Cui R, Song S, Cui H, Shi G. Enhancement of dopaminergic activity and region-specific activation of Nrf2-ARE pathway by intranasal supplements of testosterone propionate in aged male rats. Horm Behav 2016; 80:103-116. [PMID: 26893122 DOI: 10.1016/j.yhbeh.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/20/2015] [Revised: 02/13/2016] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED The potential influence of intranasal testosterone propionate (InTP) supplements on mesodopaminergic system in aged male rats was investigated by analyzing the exploratory and motor behaviors as well as dopamine neurobiochemical indices. Meanwhile, oxidative stress parameters and pathway of nuclear factor erythroid 2-related factor 2 (Nrf2)-binding antioxidant response elements (Nrf2-ARE) were examined to check whether the Nrf2-ARE pathway was involved in the InTP-induced alteration of mesodopaminergic system in aged male rats. The exploratory and motor behavioral deficits, as well as the reduced expression of dopamine, tyrosine hydroxylase, and dopamine transporter, which indicated the declined activity of mesodopaminergic system, were ameliorated in rats administered with 12-week InTP. The results indicated that chronic InTP supplements could effectively influence the brain function activity in a way opposite to the effect of aging on the mesodopaminergic system of rats. The increased levels of Nrf2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase-1 in the substantia nigra and ventral tegmental area, but not in the hippocampus of InTP-administered aged male rats, indicated that the ameliorative effect of InTP supplements on mesodopaminergic system might be related to the region-specific activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuangcheng Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Jing Che
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, PR China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuang Song
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
26
|
Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 2015; 74:101-10. [PMID: 26349970 DOI: 10.1016/j.biopha.2015.07.025] [Citation(s) in RCA: 637] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2015] [Accepted: 07/26/2015] [Indexed: 12/23/2022] Open
Abstract
Mitochondria is one of the main source of oxidative stress (ROS), as it utilizes the oxygen for the energy production. ROS and RNS are normally generated by tightly regulated enzymes. Excessive stimulation of NAD(P)H and electron transport chain leads to the overproduction of ROS, results in oxidative stress, which is a good mediator to injure the cell structures, lipids, proteins, and DNA. Various oxidative events implicated in many diseases due to oxidative stress include alteration in mitochondrial proteins, mitochondrial lipids and mitochondrial DNA, Which in turn leads to the damage to nerve cell as they are metabolically very active. ROS/RNS at moderate concentrations also play roles in normal physiology of many processes like signaling pathways, induction of mitogenic response and in defense against infectious pathogens. Oxidative stress has been considered to be the main cause in the etiology of many diseases, which includes Parkinson's and Alzheimer diseases. Several PD associated genes have been found to be involved in mitochondrial function, dynamics and morphology as well. This review includes source of free radical generation, chemistry and biochemistry of ROS/RNS and mitochondrial dysfunction and the mechanism involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Suhail Anees
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | | | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Manzoor Ahmad Sofi
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
27
|
Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav Brain Res 2015; 291:306-314. [PMID: 26048426 DOI: 10.1016/j.bbr.2015.05.052] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2015] [Revised: 05/25/2015] [Accepted: 05/30/2015] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent studies have investigated the involvement of epigenetic modifications in PD. Histone deacetylase (HDAC) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study was designed to investigate the effect of sodium butyrate, a HDAC inhibitor in 6-hydroxydopamine (6-OHDA) - induced experimental PD like symptoms in rats. To produce motor deficit, 6-OHDA was administered unilaterally in the right medial forebrain bundle. Three weeks after 6-OHDA administration, the rats were challenged with apomorphine. Following this, the animals were treated with sodium butyrate (150 and 300 mg/kg i.p.) once daily for 14 days. Movement abnormalities were assessed by battery of behavioral tests. Biochemically, oxidative stress markers, neuroinflammation and dopamine were measured in striatal brain homogenate. Further, to explore the molecular mechanism(s), we measured the level of global H3 histone acetylation and brain derived neurotrophic factor (BDNF). 6-OHDA administration results in significant motor deficit along with reduction in striatal dopamine level. 6-OHDA treated rats showed elevated oxidative stress and neuroinflammatory markers. Treatment with sodium butyrate results in significant attenuation of motor deficits and increased striatal dopamine level. Moreover, sodium butyrate treatment attenuated the oxidative stress and neuroinflammatory markers. These effects occur concurrently with increased global H3 histone acetylation and BDNF levels. Thus, the observed results of the present study are indicative for the therapeutic potential of HDAC inhibitors in PD.
Collapse
|
28
|
Jackson-Lewis V, Lester D, Kozina E, Przedborski S, Smeyne RJ. From Man to Mouse. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022] Open
|
29
|
Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 2014; 286:393-403. [PMID: 25514048 DOI: 10.1016/j.neuroscience.2014.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 12/28/2022]
Abstract
Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD.
Collapse
|
30
|
Chakraborty S, Bornhorst J, Nguyen TT, Aschner M. Oxidative stress mechanisms underlying Parkinson's disease-associated neurodegeneration in C. elegans. Int J Mol Sci 2013; 14:23103-28. [PMID: 24284401 PMCID: PMC3856108 DOI: 10.3390/ijms141123103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is thought to play a significant role in the development and progression of neurodegenerative diseases. Although it is currently considered a hallmark of such processes, the interweaving of a multitude of signaling cascades hinders complete understanding of the direct role of oxidative stress in neurodegeneration. In addition to its extensive use as an aging model, some researchers have turned to the invertebrate model Caenorhabditis elegans (C. elegans) in order to further investigate molecular mediators that either exacerbate or protect against reactive oxygen species (ROS)-mediated neurodegeneration. Due to their fully characterized genome and short life cycle, rapid generation of C. elegans genetic models can be useful to study upstream markers of oxidative stress within interconnected signaling pathways. This report will focus on the roles of C. elegans homologs for the oxidative stress-associated transcription factor Nrf2, as well as the autosomal recessive, early-onset Parkinson’s disease (PD)-associated proteins Parkin, DJ-1, and PINK1, in neurodegenerative processes.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
| | - Thuy T. Nguyen
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; E-Mail:
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-2317
| |
Collapse
|
31
|
Wang X, Smythe GA. Assessment of hydroxyl radical generation and radical scavenging activity of Chinese medicinal herbs using GC-MS. Redox Rep 2013; 8:223-8. [PMID: 14599346 DOI: 10.1179/135100003225002727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022] Open
Abstract
Aqueous extracts of ten Chinese herbs were evaluated for their radical scavenging activity by a GC-MS method based on the Fenton reaction system. Hydroxylation of salicylate and phenylalanine is widely used as an index of hydroxyl radical formation in vivo and in vitro. A problem associated with quantifying product from such reactions is the generation of complex reaction products that increase background 'noise' and reduce sensitivity for the target product. The aim of this investigation was to develop a GC-MS methodology to assess in vitro hydroxyl radical production. In this method, hydroxyl radical was trapped by p-hydroxyphenylacetic acid to form 3,4-dihydroxyphenylacetic acid (DOPAC) which was then selectively extracted from the reaction mixture using aluminium oxide and assayed by GC-MS. Selective adsorption and desorption of the catechol nucleus from aluminium oxide was shown to eliminate interference from non-catechol reaction products effectively. This system was applied to examine the hydroxyl radical scavenging activity of different herbal extracts. The results showed that the herb Dimocaepus Longan Lour exhibited the highest radical scavenging activity of all the herbs examined. With the use of a stable isotope-labelled internal standard, this system could be readily applied to in vitro methods which use 4-hydroxybenzoic acid as a substrate for the hydroxyl radical.
Collapse
Affiliation(s)
- Xiaosuo Wang
- Bioanalytical Mass Spectrometry Facility, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
32
|
Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 2013; 28:715-24. [PMID: 23589357 DOI: 10.1002/mds.25187] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2012] [Accepted: 07/27/2012] [Indexed: 12/17/2022] Open
Abstract
Although there have been significant advances, pathogenesis in Parkinson's disease (PD) is still poorly understood. Potential clues about pathogenesis that have not been systematically pursued are suggested by the restricted pattern of neuronal pathology in the disease. In addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology (LP), phenotypic dysregulation, or frank degeneration in PD patients. Drawing on this literature, there appears to be a small number of risk factors contributing to vulnerability. These include autonomous activity, broad action potentials, low intrinsic calcium buffering capacity, poorly myelinated long highly branched axons and terminal fields, and use of a catecholamine neurotransmitter, often with the catecholamine-derived neuromelanin pigment. Of these phenotypic traits, only the physiological ones appear to provide a reachable therapeutic target at present.
Collapse
Affiliation(s)
- David Sulzer
- Department of Psychiatry, Columbia University, New York, New York, USA
| | | |
Collapse
|
33
|
Abstract
An under-appreciated clue about pathogenesis in Parkinson disease (PD) is the distribution of pathology in the early and middle stages of the disease. This pathological 'roadmap' shows that in addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology, phenotypic dysregulation or frank degeneration in PD patients. This spatially distributed, at-risk population of neurons shares a number of features, including autonomously generated activity, broad action potentials, low intrinsic calcium buffering capacity and long, poorly myelinated, highly branched axons. Many, and perhaps all, of these traits add to the metabolic burden in these neurons, suggesting that mitochondrial deficits could drive pathogenesis in PD-in agreement with a large segment of the literature. What is less clear is how this neuronal phenotype might shape the susceptibility to proteostatic dysfunction or to the spread of α-synuclein fibrils deposited in the extracellular space. The review explores the literature on these issues and their translational implications.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
34
|
Zhang L, Yagnik G, Jiang D, Shi S, Chang P, Zhou F. Separation of intermediates of iron-catalyzed dopamine oxidation reactions using reversed-phase ion-pairing chromatography coupled in tandem with UV-visible and ESI-MS detections. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:55-8. [PMID: 23217306 DOI: 10.1016/j.jchromb.2012.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2012] [Revised: 10/04/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
Abstract
Reversed-phase ion-pairing chromatography (RP-IPC) is coupled on-line with electrospray ionization-mass spectrometry (ESI-MS) through an interface comprising a four-way switch valve and an anion exchange column. Regeneration of the anion exchange column can be accomplished on-line by switching the four-way switch valve to interconnect the column to a regeneration solution. Positioning the anion exchange column between the RP-IPC and ESI-MS instruments allows the ion-pairing reagent (IPR) sodium octane sulfonate to be removed. The IPC-ESI-MS method enabled us to separate and detect four intermediates of the Fe(III)-catalyzed dopamine oxidation. In particular, 6-hydroxydopamine, which is short-lived and highly neurotoxic, was detected and quantified. Together with the separation of other intermediates, gaining insight into the mechanism and kinetics of the Fe(III)-catalyzed dopamine oxidation becomes possible.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK. The role of free radicals in the aging brain and Parkinson's Disease: convergence and parallelism. Int J Mol Sci 2012; 13:10478-10504. [PMID: 22949875 PMCID: PMC3431873 DOI: 10.3390/ijms130810478] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 02/08/2023] Open
Abstract
Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson's disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5-10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| | - Hyung-Woo Lim
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| | - Sandeep Vasant More
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| | - Byung-Wook Kim
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| | - Sushruta Koppula
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| | - In Su Kim
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| | - Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju 380-704, Korea; E-Mails: (H.K.); (H.-W.L.); (S.V.M.); (B.-W.K.); (S.K.); (I.S.K.)
| |
Collapse
|
36
|
Borah A, Mohanakumar KP. L-DOPA induced-endogenous 6-hydroxydopamine is the cause of aggravated dopaminergic neurodegeneration in Parkinson’s disease patients. Med Hypotheses 2012; 79:271-3. [DOI: 10.1016/j.mehy.2012.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2012] [Revised: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 12/21/2022]
|
37
|
Sulzer D, Surmeier DJ. Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 2012; 28:41-50. [PMID: 22791686 DOI: 10.1002/mds.25095] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 12/17/2022] Open
Abstract
Although there have been significant advances, pathogenesis in Parkinson's disease (PD) is still poorly understood. Potential clues about pathogenesis that have not been systematically pursued are suggested by the restricted pattern of neuronal pathology in the disease. In addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology (LP), phenotypic dysregulation, or frank degeneration in PD patients. Drawing on this literature, there appear to be a small number of risk factors contributing to vulnerability. These include autonomous activity, broad action potentials, low intrinsic calcium-buffering capacity, poorly myelinated long highly branched axons and terminal fields, and use of a monoamine neurotransmitter, often with the catecholamine-derived neuromelanin pigment. Of these phenotypic traits, only the physiological ones appear to provide a reachable therapeutic target at present.
Collapse
Affiliation(s)
- David Sulzer
- Department of Psychiatry, Columbia University, New York, New York, USA.
| | | |
Collapse
|
38
|
Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson's disease. Mediators Inflamm 2012; 2012:823902. [PMID: 22577256 PMCID: PMC3346999 DOI: 10.1155/2012/823902] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2011] [Revised: 12/23/2011] [Accepted: 01/09/2012] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROSs) are emerging as important players in the etiology of neurodegenerative disorders including Parkinson's disease (PD). Out of several ROS-generating systems, the inflammatory enzymes nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) were believed to play major roles. Mounting evidence suggests that activation of NADPH oxidase and the expression of iNOS are directly linked to the generation of highly reactive ROS which affects various cellular components and preferentially damage midbrain dopaminergic neurons in PD. Therefore, appropriate management or inhibition of ROS generated by these enzymes may represent a therapeutic target to reduce neuronal degeneration seen in PD. Here, we have summarized recently developed agents and patents claimed as inhibitors of NADPH oxidase and iNOS enzymes in experimental models of PD.
Collapse
|
39
|
Shin EJ, Duong CX, Nguyen XKT, Li Z, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav Brain Res 2012; 232:98-113. [PMID: 22512859 DOI: 10.1016/j.bbr.2012.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2011] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
Abstract
This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Chu Xuan Duong
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Xuan-Khanh Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Zhengyi Li
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Guoying Bing
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jae-Hyung Bach
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Dae Hun Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Syed F Ali
- Division of Neurotoxicology, National Center of Toxicological Research, FDA, Jefferson, Arkansas 72079, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences and Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
40
|
Ohno A, Yoshino F, Yoshida A, Hori N, Ono Y, Kimoto K, Onozuka M, Lee MCI. Soft-food diet induces oxidative stress in the rat brain. Neurosci Lett 2012; 508:42-6. [DOI: 10.1016/j.neulet.2011.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2011] [Revised: 11/30/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
41
|
Giusti S, Fiszer de Plazas S. Neuroprotection by hypoxic preconditioning involves upregulation of hypoxia-inducible factor-1 in a prenatal model of acute hypoxia. J Neurosci Res 2011; 90:468-78. [PMID: 21953610 DOI: 10.1002/jnr.22766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2011] [Revised: 06/14/2011] [Accepted: 07/19/2011] [Indexed: 12/21/2022]
Abstract
The molecular pathways underlying the neuroprotective effects of preconditioning are promising, potentially drugable targets to promote cell survival. However, these pathways are complex and are not yet fully understood. In this study we have established a paradigm of hypoxic preconditioning based on a chick embryo model of normobaric acute hypoxia previously developed by our group. With this model, we analyzed the role of hypoxia-inducible factor-1α (HIF-1α) stabilization during preconditioning in HIF-1 signaling after the hypoxic injury and in the development of a neuroprotective effect against the insult. To this end, we used a pharmacological approach, based on the in vivo administration of positive (Fe(2+), ascorbate) and negative (CoCl(2)) modulators of the activity of HIF-prolyl hydroxylases (PHDs), the main regulators of HIF-1. We have found that preconditioning has a reinforcing effect on HIF-1 accumulation during the subsequent hypoxic injury. In addition, we have also demonstrated that HIF-1 induction during hypoxic preconditioning is necessary to obtain an enhancement in HIF-1 accumulation and to develop a tolerance against a subsequent hypoxic injury. We provide in vivo evidence that administration of Fe(2+) and ascorbate modulates HIF accumulation, suggesting that PHDs might be targets for neuroprotection in the CNS.
Collapse
Affiliation(s)
- Sebastián Giusti
- Institute of Cell Biology and Neuroscience Prof. E De Robertis, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
42
|
Yasuda S, Liu MY, Suiko M, Sakakibara Y, Liu MC. Hydroxylated serotonin and dopamine as substrates and inhibitors for human cytosolic SULT1A3. J Neurochem 2011; 103:2679-89. [PMID: 17908235 DOI: 10.1111/j.1471-4159.2007.04948.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Sulfation as catalyzed by the cytosolic sulfotransferases (SULTs) is known to play an important role in the regulation and homeostasis of monoamine neurotransmitters. The current study was designed to examine the occurrence of the sulfation of 7-hydroxyserotonin and 6-hydroxydopamine by human cytosolic SULTs and to investigate the inhibitory effects of these hydroxylated derivatives on the sulfation of their unhydroxylated counterparts, serotonin and dopamine. A systematic study using 11 known human cytosolic SULTs revealed SULT1A3 as the responsible enzyme for the sulfation of 7-hydroxyserotonin and 6-hydroxydopamine. The pH-dependence and kinetic constants of SULT1A3 with 7-hydroxyserotonin or 6-hydroxydopamine as substrate were determined. The inhibitory effects of 7-hydroxyserotonin and 6-hydroxydopamine on the sulfation of serotonin and dopamine were evaluated. Kinetic analyses indicated that the mechanism underlying the inhibition by these hydroxylated monoamine derivatives is of a competitive-type. Metabolic labeling experiments showed the generation and release of [(35) S]sulfated 7-hydroxyserotonin and [(35) S]sulfated 6-hydroxydopamine when SK-N-MC human neuroblastoma cells were labeled with [(35) S]sulfate in the presence of 7-hydroxyserotonin or 6-hydroxydopamine. Upon transfection of the cells with siRNAs targeted at SULT1A3, diminishment of the SULT1A3 protein and concomitantly the sulfating activity toward these hydroxylated monoamines was observed. Taken together, these results indicated clearly the involvement of sulfation in the metabolism of 7-hydroxyserotonin and 6-hydroxydopamine. By serving as substrates for SULT1A3, these hydroxylated monoamines may interfere with the homeostasis of endogenous serotonin and dopamine.
Collapse
Affiliation(s)
- Shin Yasuda
- Department of Pharmacology, College of Pharmacy, The University of Toledo, Toledo, Ohio, USA
| | | | | | | | | |
Collapse
|
43
|
Fujita K, Nakabeppu Y, Noda M. Therapeutic effects of hydrogen in animal models of Parkinson's disease. PARKINSONS DISEASE 2011; 2011:307875. [PMID: 21687749 PMCID: PMC3109337 DOI: 10.4061/2011/307875] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/15/2010] [Revised: 01/05/2011] [Accepted: 03/14/2011] [Indexed: 11/20/2022]
Abstract
Since the first description of Parkinson's disease (PD) nearly two centuries ago, a number of studies have revealed the clinical symptoms, pathology, and therapeutic approaches to overcome this intractable neurodegenerative disease. 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are neurotoxins which produce Parkinsonian pathology. From the animal studies using these neurotoxins, it has become well established that oxidative stress is a primary cause of, and essential for, cellular apoptosis in dopaminergic neurons. Here, we describe the mechanism whereby oxidative stress evokes irreversible cell death, and propose a novel therapeutic strategy for PD using molecular hydrogen. Hydrogen has an ability to reduce oxidative damage and ameliorate the loss of nigrostriatal dopaminergic neuronal pathway in two experimental animal models. Thus, it is strongly suggested that hydrogen might provide a great advantage to prevent or minimize the onset and progression of PD.
Collapse
Affiliation(s)
- Kyota Fujita
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
44
|
Langsdorf EF, Chang SL. Methamphetamine-mediated modulation of MOR expression in the SH-SY5Y neuroblastoma cell line. Synapse 2011; 65:858-65. [DOI: 10.1002/syn.20913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2010] [Accepted: 12/06/2010] [Indexed: 01/04/2023]
|
45
|
Gupta A, Kumar A, Kulkarni SK. Licofelone attenuates MPTP-induced neuronal toxicity: behavioral, biochemical and cellular evidence. Inflammopharmacology 2010; 18:223-32. [PMID: 20697819 DOI: 10.1007/s10787-010-0052-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2010] [Accepted: 07/13/2010] [Indexed: 01/14/2023]
Abstract
Neuroinflammation and oxidative stress play critical role in the pathophysiology of neurodegenerative diseases including Parkinson's disease (PD). Recent reports indicate the beneficial effect of anti-inflammatory drugs in attenuating the progression of PD. Therefore, the present study is aimed to evaluate the possible role of licofelone, a dual COX/LOX-inhibitor against MPTP-induced neurotoxicity in mice. Administration of MPTP (40 mg/kg in divided doses of four injections of 10 mg/kg, i.p. each at 1 h interval) significantly impaired locomotor activity and induced catatonia, oxidative damage (elevated levels of lipid peroxidation, superoxide anion and nitrite, and decreased levels of non-protein thiols) as compared with vehicle-treated animals. Biochemical studies revealed significant alterations in mitochondrial enzyme complex activities (decreased complex-I activity and mitochondrial viability) and increased levels of caspase-3 and NF-κB/p65 as compared to vehicle treated group. Licofelone (2.5, 5 or 10 mg/kg/day, p.o.) treatment for 7 days significantly improved locomotor activity, attenuated the severity of catatonia, oxidative damage and restored mitochondrial enzyme complex activity as compared to MPTP-treated group. Licofelone treatment also attenuated the expression of apoptotic factor (caspase-3) and transcription factor (NF-κB/p65) as compared to MPTP-treated group. The findings of the present study suggest that licofelone (dual inhibitor of COX and LOX) represents a new class of anti-inflammatory agent which may provide a novel therapeutic alternative for the treatment and management of PD.
Collapse
Affiliation(s)
- Amit Gupta
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS), Punjab University, Chandigarh, India
| | | | | |
Collapse
|
46
|
Borah A, Mohanakumar KP. Salicylic acid protects against chronic l-DOPA-induced 6-OHDA generation in experimental model of parkinsonism. Brain Res 2010; 1344:192-9. [DOI: 10.1016/j.brainres.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
47
|
Borah A, Mohanakumar KP. l-DOPA-induced 6-hydroxydopamine production in the striata of rodents is sensitive to the degree of denervation. Neurochem Int 2010; 56:357-62. [DOI: 10.1016/j.neuint.2009.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/17/2022]
|
48
|
Lau F, Joseph J, Shukitt-Hale B. Age-Related Neuronal and Behavioral Deficits are Improved by Polyphenol-Rich Blueberry Supplementation. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420026559.ch22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/16/2023]
|
49
|
Faure JJ, Hattingh SM, Stein DJ, Daniels WM. Proteomic analysis reveals differentially expressed proteins in the rat frontal cortex after methamphetamine treatment. Metab Brain Dis 2009; 24:685-700. [PMID: 19826936 DOI: 10.1007/s11011-009-9167-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/23/2009] [Accepted: 08/29/2009] [Indexed: 10/20/2022]
Abstract
Methamphetamine (MA) is an addictive psycho-stimulant and the illicit use of the drug is escalating. In the present study, we examined protein expression profiles in the rat frontal cortex exposed to a total of eight MA injections (1 mg/kg, intraperitoneal) using 2-DE based proteomics. We investigated protein changes occurring in both the cytosolic fraction and the membrane fraction. 2-DE analysis resulted in 62 cytosolic and 44 membrane protein spots that were differentially regulated in the frontal cortex of rats exposed to MA when compared to control animals. Of these spots, 47 cytosolic and 42 membrane proteins were identified respectively, using ESI-Quad-TOF, which included ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1), beta-synuclein, 78 kDa glucose-regulated protein (GRP 78), gamma-enolase, dihydropyrimidase-related protein 2 (DRP 2), complexin 2 and synapsin II. These proteins are associated with protein degradation, redox regulation, energy metabolism, cellular growth, cytoskeletal modifications and synaptic function. Proteomic research may be useful in exploring the complex underlying molecular mechanisms of MA dependence.
Collapse
Affiliation(s)
- J J Faure
- Division of Medical Physiology, University of Stellenbosch, Tygerberg, South Africa.
| | | | | | | |
Collapse
|
50
|
Fonnum F, Mariussen E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J Neurochem 2009; 111:1327-47. [DOI: 10.1111/j.1471-4159.2009.06427.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|