1
|
Moses RM, Stenhouse C, Halloran KM, Sah N, Hoskins EC, Washburn SE, Johnson GA, Wu G, Bazer FW. Metabolic pathways for glucose and fructose: I synthesis and metabolism of fructose by ovine conceptuses†. Biol Reprod 2024; 111:148-158. [PMID: 38501845 DOI: 10.1093/biolre/ioae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Fructose, the most abundant hexose sugar in fetal fluids and the blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway, and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell-specific manner. The KHK-A protein was more abundant in the trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in the endoderm of Day 16 conceptuses and the chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the tricarboxylic cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway, and one-carbon metabolism required for conceptus development throughout pregnancy.
Collapse
Affiliation(s)
- Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Claire Stenhouse
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katherine M Halloran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nirvay Sah
- Department of Pathology, University of California-San Diego, San Diego, California, USA
| | - Emily C Hoskins
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Shannon E Washburn
- Department of Veterinary Physiology and Pathology, Texas A&M University, College Station Texas, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Hancock EJ, Ang J, Papachristodoulou A, Stan GB. The Interplay between Feedback and Buffering in Cellular Homeostasis. Cell Syst 2017; 5:498-508.e23. [PMID: 29055671 DOI: 10.1016/j.cels.2017.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/09/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology.
Collapse
Affiliation(s)
- Edward J Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| | - Jordan Ang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK
| | | | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Bailey SJ, Wilkerson DP, Fulford J, Jones AM. Influence of passive lower-body heating on muscle metabolic perturbation and high-intensity exercise tolerance in humans. Eur J Appl Physiol 2012; 112:3569-76. [PMID: 22323297 DOI: 10.1007/s00421-012-2336-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/24/2012] [Indexed: 11/30/2022]
Abstract
The purpose of this investigation was to determine the influence of heat stress on the dynamics of muscle metabolic perturbation during high-intensity exercise. Seven healthy males completed single-legged knee-extensor exercise until the limit of tolerance on two separate occasions. In a randomized order the subjects underwent 40 min of lower-body immersion in warm water at 42°C prior to exercise (HOT) or received no prior thermal manipulation (CON). Following the intervention, muscle metabolism was measured at rest and throughout exercise using (31)P-MRS. The tolerable duration of high-intensity exercise was reduced by 36% after passive heating (CON: 474 ± 146 vs. HOT: 303 ± 76 s; P = 0.005). Intramuscular pH was lower over the first 60 s of exercise (CON: 7.05 ± 0.02 vs. HOT: 7.00 ± 0.03; P = 0.019) in HOT compared to CON. The rate of muscle [PCr] degradation during exercise was greater in the HOT condition (CON: -0.17 ± 0.08 vs. HOT: -0.25 ± 0.10% s(-1); P = 0.006) and pH also tended to change more rapidly in HOT (P = 0.09). Muscle [PCr] (CON: 26 ± 14 vs. HOT: 29 ± 10%), [Pi] (CON: 504 ± 236 vs. HOT: 486 ± 186%) and pH (CON: 6.84 ± 0.13 vs. HOT: 6.80 ± 0.14; P > 0.05) were not statistically different at the limit of tolerance (P > 0.05 for all comparisons). These results suggest that the reduced time-to-exhaustion during high-intensity knee-extensor exercise following lower-body heating might be related, in part, to accelerated rates of change of intramuscular [PCr] and pH towards 'critical' values that limit muscle function.
Collapse
Affiliation(s)
- Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, Exeter, UK
| | | | | | | |
Collapse
|
4
|
Jenkins CM, Yang J, Sims HF, Gross RW. Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J Biol Chem 2011; 286:11937-50. [PMID: 21258134 DOI: 10.1074/jbc.m110.203661] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enzyme phosphofructokinase-1 (PFK-1) catalyzes the first committed step of glycolysis and is regulated by a complex array of allosteric effectors that integrate glycolytic flux with cellular bioenergetics. Here, we demonstrate the direct, potent, and reversible inhibition of purified rabbit muscle PFK-1 by low micromolar concentrations of long chain fatty acyl-CoAs (apparent Ki∼1 μM). In sharp contrast, short chain acyl-CoAs, palmitoylcarnitine, and palmitic acid in the presence of CoASH were without effect. Remarkably, MgAMP and MgADP but not MgATP protected PFK-1 against inhibition by palmitoyl-CoA indicating that acyl-CoAs regulate PFK-1 activity in concert with cellular high energy phosphate status. Furthermore, incubation of PFK-1 with [1-(14)C]palmitoyl-CoA resulted in robust acylation of the enzyme that was reversible by incubation with acyl-protein thioesterase-1 (APT1). Importantly, APT1 reversed palmitoyl-CoA-mediated inhibition of PFK-1 activity. Mass spectrometric analyses of palmitoylated PFK-1 revealed four sites of acylation, including Cys-114, Cys-170, Cys-351, and Cys-577. PFK-1 in both skeletal muscle extracts and in purified form was inhibited by S-hexadecyl-CoA, a nonhydrolyzable palmitoyl-CoA analog, demonstrating that covalent acylation of PFK-1 was not required for inhibition. Tryptic footprinting suggested that S-hexadecyl-CoA induced a conformational change in PFK-1. Both palmitoyl-CoA and S-hexadecyl-CoA increased the association of PFK-1 with Ca2+/calmodulin, which attenuated the binding of palmitoylated PFK-1 to membrane vesicles. Collectively, these results demonstrate that fatty acyl-CoA modulates phosphofructokinase activity through both covalent and noncovalent interactions to regulate glycolytic flux and enzyme membrane localization via the branch point metabolic node that mediates lipid flux through anabolic and catabolic pathways.
Collapse
Affiliation(s)
- Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
5
|
|
6
|
Sweet IR, Gilbert M, Maloney E, Hockenbery DM, Schwartz MW, Kim F. Endothelial inflammation induced by excess glucose is associated with cytosolic glucose 6-phosphate but not increased mitochondrial respiration. Diabetologia 2009; 52:921-31. [PMID: 19219423 PMCID: PMC2741088 DOI: 10.1007/s00125-009-1272-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS Exposure of endothelial cells to high glucose levels suppresses responses to insulin, including induction of endothelial nitric oxide synthase activity, through pro-inflammatory signalling via the inhibitor of nuclear factor kappaB (IkappaB)alpha-nuclear factor kappaB (NF-kappaB) pathway. In the current study, we aimed to identify metabolic responses to glucose excess that mediate endothelial cell inflammation and insulin resistance. Since endothelial cells decrease their oxygen consumption rate (OCR) in response to glucose, we hypothesised that increased mitochondrial function would not mediate these cells' response to excess substrate. METHODS The effects of glycolytic and mitochondrial fuels on metabolic intermediates and end-products of glycolytic and oxidative metabolism, including glucose 6-phosphate (G6P), lactate, CO(2), NAD(P)H and OCR, were measured in cultured human microvascular endothelial cells and correlated with IkappaBalpha phosphorylation. RESULTS In response to increases in glucose concentration from low to physiological levels (0-5 mmol/l), production of G6P, lactate, NAD(P)H and CO(2) each increased as expected, while OCR was sharply reduced. IkappaBalpha activation was detected at glucose concentrations >5 mmol/l, which was associated with parallel increases of G6P levels, whereas downstream metabolic pathways were insensitive to excess substrate. CONCLUSIONS/INTERPRETATION Phosphorylation of IkappaBalpha by excess glucose correlates with increased levels of the glycolytic intermediate G6P, but not with lactate generation or OCR, which are inhibited well below saturation levels at physiological glucose concentrations. These findings suggest that oxidative stress due to increased mitochondrial respiration is unlikely to mediate endothelial inflammation induced by excess glucose and suggests instead the involvement of G6P accumulation in the adverse effects of hyperglycaemia on endothelial cells.
Collapse
Affiliation(s)
- I R Sweet
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington at South Lake Union, Seattle, Washington 98195-8055, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Zancan P, Marinho-Carvalho MM, Faber-Barata J, Dellias JMM, Sola-Penna M. ATP and fructose-2,6-bisphosphate regulate skeletal muscle 6-phosphofructo-1-kinase by altering its quaternary structure. IUBMB Life 2008; 60:526-33. [PMID: 18465796 DOI: 10.1002/iub.58] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently, it has been demonstrated that fructose-2,6-bisphosphate (F2,6BP) protects skeletal muscle 6-phosphofructo-1-kinase (PFK) from thermal inactivation (50 degrees C) and against the deleterious effects of guanidinium hydrochloride (GdmCl). On the other hand, ATP, when added at its inhibitory concentrations, that is, >1 mM, enhanced either the thermal- or GdmCl-induced inactivation of PFK. Moreover, we concluded that these phenomena were probably due to the stabilization of PFK tetrameric structure by F2,6BP, and the dissociation of this structure into dimers induced by ATP. Aimed at elucidating the effects of F2,6BP and ATP on PFK at the structural and functional levels, the present work correlates the effects of these metabolites on the equilibrium between PFK dimers and tetramers to the regulation promoted on the enzyme catalytic activity. We show that ATP present a dual effect on PFK structure, favoring the formation of tetramer at stimulatory concentrations (up to 1 mM), and dissociating tetramers into dimers at inhibitory concentrations (>1 mM). Furthermore, F2,6BP counteracted this later ATP effect at either the structural or catalytic levels. Additionally, the effects of both F2,6BP or ATP on the equilibrium between PFK tetramers and dimers and on the enzyme activity presented a striking parallelism. Therefore, we concluded that modulation of PFK activity by ATP and F2,6BP is due to the effects of these ligands on PFK quaternary structure, altering the oligomeric equilibrium between PFK tetramers and dimers.
Collapse
Affiliation(s)
- Patricia Zancan
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
8
|
Zancan P, Almeida FVR, Faber-Barata J, Dellias JM, Sola-Penna M. Fructose-2,6-bisphosphate counteracts guanidinium chloride-, thermal-, and ATP-induced dissociation of skeletal muscle key glycolytic enzyme 6-phosphofructo-1-kinase: A structural mechanism for PFK allosteric regulation. Arch Biochem Biophys 2007; 467:275-82. [PMID: 17923106 DOI: 10.1016/j.abb.2007.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 11/28/2022]
Abstract
Rabbit muscle 6-phosphofructo-1-kinase (PFK) is the key glycolytic enzyme being regulated by diverse molecules and signals. This enzyme may undergo a reversible dissociation from a fully active homotetramer to a quite inactive dimer. There are evidences that some positive and negative modulators of PFK, such as ADP and citrate, may interfere with the enzyme oligomeric structure shifting the tetramer-dimer equilibrium towards opposite orientations, where the negative modulators favor the dissociation of tetramers into dimers and vice versa. PFK is allosterically inhibited by ATP at its physiological range of concentration, an effect counteracted by fructose-2,6-bisphosphate (F2,6BP). However, the structural molecular mechanism by which ATP and F2,6BP regulate PFK is hitherto demonstrated. The present paper aimed at demonstrating that either the ATP-induced inhibition of PFK and the reversion of this inhibition by F2,6BP occur through the same molecular mechanism, i.e., the displacement of the oligomeric equilibrium of the enzyme. This conclusion is arrived assessing the effects of ATP and F2,6BP on PFK inactivation through two distinct ways to dissociate the enzyme: (a) upon incubation at 50 degrees C, or (b) incubating the enzyme with guanidinium hydrochloride (GdmCl). Our results reveal that temperature- and GdmCl-induced inactivation of PFK prove remarkably more effective in the presence 5mM ATP than in the absence of additives. On the other hand, the presence of 100 nM F2,6BP attenuate the effects of both high-temperature exposition and GdmCl on PFK, even in the simultaneous presence of 5mM ATP. These data support the hypothesis that ATP shifts the oligomeric equilibrium of PFK towards the smaller conformations, while F2,6BP acts in the opposite direction. This conclusion leads to important information about the molecular mechanism by which PFK is regulated by these modulators.
Collapse
Affiliation(s)
- Patricia Zancan
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | |
Collapse
|
9
|
CUMME GA, BUBLITZ R, HORN A. Dynamic Properties of a Phosphofructokinase/Pyruvate Kinase System. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1432-1033.1981.tb06197.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Westermark PO, Lansner A. A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell. Biophys J 2003; 85:126-39. [PMID: 12829470 PMCID: PMC1303071 DOI: 10.1016/s0006-3495(03)74460-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have constructed a model of the upper part of the glycolysis in the pancreatic beta-cell. The model comprises the enzymatic reactions from glucokinase to glyceraldehyde-3-phosphate dehydrogenase (GAPD). Our results show, for a substantial part of the parameter space, an oscillatory behavior of the glycolysis for a large range of glucose concentrations. We show how the occurrence of oscillations depends on glucokinase, aldolase and/or GAPD activities, and how the oscillation period depends on the phosphofructokinase activity. We propose that the ratio of glucokinase and aldolase and/or GAPD activities are adequate as characteristics of the glucose responsiveness, rather than only the glucokinase activity. We also propose that the rapid equilibrium between different oligomeric forms of phosphofructokinase may reduce the oscillation period sensitivity to phosphofructokinase activity. Methodologically, we show that a satisfying description of phosphofructokinase kinetics can be achieved using the irreversible Hill equation with allosteric modifiers. We emphasize the use of parameter ranges rather than fixed values, and the use of operationally well-defined parameters in order for this methodology to be feasible. The theoretical results presented in this study apply to the study of insulin secretion mechanisms, since glycolytic oscillations have been proposed as a cause of oscillations in the ATP/ADP ratio which is linked to insulin secretion.
Collapse
Affiliation(s)
- Pål O Westermark
- PSCI/SANS, NADA, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden.
| | | |
Collapse
|
11
|
|
12
|
Affiliation(s)
- C G Hocker
- Department of Biology, University of Virginia Health Sciences Center Charlottesville 22903
| |
Collapse
|
13
|
Hazen S, Gross R. The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the coordinated regulation of phospholipolysis and glycolysis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98429-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Conricode KM, Ochs RS. Vasopressin stimulates pyruvate utilization through a Ca(2+)-dependent mechanism and lactate formation by a protein kinase C-dependent mechanism in isolated rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1095:161-8. [PMID: 1932135 DOI: 10.1016/0167-4889(91)90079-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vasopressin stimulates lactate production by hepatocytes from fed rats, an effect which has been attributed exclusively to Ca2+ activation of glycogenolysis. We provide evidence here for two further actions of vasopressin which affect lactate formation by rat hepatocytes. In the presence of 50 mM glucose, vasopressin inhibited lactate production by hepatocytes. The inhibition was relieved by the presence of alpha-cyano-4-hydroxycinnamate (alpha-CHC), which blocks mitochondrial pyruvate transport. This suggests that vasopressin stimulates pyruvate utilization in the presence of a high concentration of glucose. Epidermal growth factor (EGF), which also increases lactate formation by hepatocytes, did not similarly decrease lactate accumulation in the presence of high glucose, suggesting no stimulation of lactate and pyruvate utilization by this hormone. In cells depleted of Ca2+, vasopressin also stimulated lactate formation. Although vasopressin did not cause the apparent translocation of protein kinase C between cell spaces, phospholipase C treatment of hepatocytes did duplicate vasopressin stimulation of lactate formation, provided fatty acid oxidation was suppressed by the simultaneous presence of the inhibitor palmixorate. We conclude that three actions of vasopressin affect lactate and pyruvate formation: the calcium-linked activations of glycogenolysis and mitochondrial pyruvate utilization, and a stimulation of glycolysis likely mediated by protein kinase C.
Collapse
Affiliation(s)
- K M Conricode
- Department of Nutrition, Case Western Reserve University, Mt. Sinai Medical Center, Cleveland, OH 44106-4198
| | | |
Collapse
|
15
|
Rabinovitz M. Evidence for a role of phosphofructokinase and tRNA in the polyribosome disaggregation of amino acid deficiency. FEBS Lett 1991; 283:270-2. [PMID: 1828439 DOI: 10.1016/0014-5793(91)80605-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity of rabbit muscle phosphofructokinase was inhibited by transfer ribonucleic acid. This inhibition was reduced by inclusion of an amino-acyl-tRNA charging system. The results are discussed in terms of the loss of ATP in amino acid deprived cells and in the critical role of fructose 1,6-diphosphate in peptide chain initiation.
Collapse
Affiliation(s)
- M Rabinovitz
- Division of Cancer Treatment, National Cancer Institute, NIH, Bethesda, MD
| |
Collapse
|
16
|
Uchida Y, Koyama T, Hachimori A. Stability and conformation of porcine phosphofructokinase M and L. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 96:399-404. [PMID: 2141810 DOI: 10.1016/0305-0491(90)90395-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The inactivation of porcine liver enzyme in the presence of urea proceeded more rapidly than that of porcine heart muscle enzyme. 2. The inactivation of both enzymes by urea was protected by allosteric activators, but inhibitors had no effect. 3. The circular dichroism spectrum of liver enzyme in the near ultraviolet region was markedly affected by urea, whereas that of heart muscle enzyme was not, except for the band at 255 nm.
Collapse
Affiliation(s)
- Y Uchida
- Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | |
Collapse
|
17
|
Phosphofructokinase from bumblebee flight muscle. Molecular and catalytic properties and role of the enzyme in regulation of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77867-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Cook PF, Rao GS, Hofer HW, Harris BG. Correlation between hysteresis and allosteric properties for phosphofructokinase from Ascaris suum. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47904-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Valaitis A, Foe L, Kemp R. Desensitization of muscle phosphofructokinase to ATP inhibition by removal of a carboxyl-terminal heptadecapeptide. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61151-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
|
21
|
Carpenter JF, Hand SC. Comparison of pH-dependent allostery and dissociation for phosphofructokinases from Artemia embryos and rabbit muscle: nature of the enzymes acylated with diethylpyrocarbonate. Arch Biochem Biophys 1986; 248:1-9. [PMID: 2942107 DOI: 10.1016/0003-9861(86)90394-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purified Artemia phosphofructokinase (PFK), unlike the rabbit skeletal muscle enzyme, displays allosteric kinetics at pH 8, a feature that is functionally significant since the intracellular pH of the developing brine shrimp embryo is greater than or equal to 7.9. Catalytic activity of the Artemia enzyme is severely suppressed by acidic pH even when assayed at the adenylate nucleotide concentrations existing in anaerobic embryos, which is consistent with the lack of a Pasteur effect in these organisms. For both PFK homologs, carbethoxylation reduces the sensitivity to ATP and citrate inhibition, the cooperativity as a function of fructose 6-phosphate concentration and the degree of activation in the presence ADP, AMP, and fructose 2,6-bisphosphate. Considering the role of histidine protonation in PFK allosteric control, the capacity for regulatory kinetics seen at pH 8 in the Artemia enzyme could be explained in part by upward shifts in pKa values of ionizable residues. pH-induced dissociation of tetrameric Artemia PFK into inactive subunits does not occur during catalytic inhibition at acidic pH (pH 6.5, 6 degrees C), as judged by 90 degree light scattering. This observation contrasts markedly with the dimerization and inactivation of rabbit PFK, but is shown not to be unique when compared to other selected PFK homologs. Neither the acute pH sensitivity of Artemia PFK nor the pH-induced hysteretic inactivation displayed by the rabbit enzyme are altered by carbethoxylation, suggesting that ionizable residues involved in these two processes are not the same ones involved in allosteric kinetics.
Collapse
|
22
|
Tornheim K. Activation of muscle phosphofructokinase by fructose 2,6-bisphosphate and fructose 1,6-bisphosphate is differently affected by other regulatory metabolites. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39551-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Yasuda Y, Tochikubo K. Germination-initiation and inhibitory activities of L- and D-alanine analogues for Bacillus subtilis spores. Modification of methyl group of L- and D-alanine. Microbiol Immunol 1985; 29:229-41. [PMID: 3925300 DOI: 10.1111/j.1348-0421.1985.tb00822.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ability of 33 compounds of L-alanine analogues over a wide range of concentrations to initiate germination of Bacillus subtilis spores was determined, and the inhibitory activity against L-alanine-initiated germination was determined for the above compounds and 22 of their D- and DL-isomers. Nineteen L-isomers were able to initiate the germination. The maximum germination rate and the apparent binding affinity of the germinant were obtained from concentration-germination response curves. Not only D-isomers but also L-isomers of many alanine analogues showed inhibitory action on L-alanine-initiated germination. The apparent binding affinity of an inhibitor was calculated by Schild's method. D-Alanine, D-serine, glycine, D-2-amino-n-butyric acid, D-cysteine, D-norvaline, and D-threonine were competitive inhibitors for the L-alanine action. Analysis of the relation between the structure of the side chain of L- and D-alanine analogues and their apparent affinity suggested that there are separate binding portions, which differ in size and electrostatic nature, for germination and for inhibition on the receptor. Certain L-alanine analogues had a dualistic property of initiating germination at low concentrations and inhibitory activity at higher concentrations, i.e., autoinhibition. The autoinhibitory phenomenon might be explained by the above postulation of the presence of separate binding portions for germination and for inhibition.
Collapse
|
24
|
Ozawa K. Purification and kinetic properties of phosphofructokinase from dental pulps of rat incisors. Arch Oral Biol 1985; 30:577-82. [PMID: 2933017 DOI: 10.1016/0003-9969(85)90060-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphofructokinase (EC 2.7.1.11) was partially purified 19-fold from dental pulps of rat incisors, by ammonium-sulphate fractionation and phenyl-Sepharose chromatography with a recovery of about 95 per cent. With a 0.05 M tris-HCl buffer, the pH optimum of the enzyme was determined to be 8.4. At this pH, substrate inhibition of the enzyme by either fructose-6-phosphate (F6P) or ATP was not observed, and the relationship between reaction velocity and each substrate concentration was well explained by the Michaelis-Menten equation. The Km values were determined to be 5 X 10(-5) and 1.8 X 10(-4) M for ATP and F6P, respectively. The enzyme, however, showed different catalytic properties at pH 7.6, i.e. the kinetic behaviour was sigmoidal with respect to F6P and it was inhibited by high concentrations of ATP. The Hill coefficient for F6P was determined graphically to be 1.4. At pH 7.6, the enzyme activity was inhibited by citrate and phosphoenolpyruvate (PEP), neither of which showed any inhibitory effect on the enzyme at pH 8.4.
Collapse
|
25
|
Mayr GW. Interaction of calmodulin with muscle phosphofructokinase. Interplay with metabolic effectors of the enzyme under physiological conditions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 143:521-9. [PMID: 6236976 DOI: 10.1111/j.1432-1033.1984.tb08401.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hysteretic calmodulin-induced inactivation of muscle phosphofructokinase and the calmodulin-mediated reactivation are essentially dependent on environmental conditions. The interplay of calmodulin during these reactions and at allosteric conditions with Mg . ATP, fructose 6-phosphate, adenosine 5'-[beta, gamma-imido]triphosphate and with the allosteric effectors AMP, ADP, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate and glucose 1,6-bisphosphate was studied by two techniques. (a) A two-step technique with a preincubation of enzyme, calmodulin and effectors in close to physiological concentrations before dilution into an optimal activity assay. It reveals aggregation and slowly reversible conformation changes. (b) A direct assay of dilute enzyme at allosteric conditions. Dominating in the interplay of calmodulin with metabolic effectors is the competitive-like action of calmodulin on Mg . ATP binding to the regulatory sites of the enzyme. At high enzyme concentrations in the absence of hexose phosphates, i.e. at noncatalytic conditions calmodulin counteracts the stabilization of the highly active tetrameric form caused by Mg . ATP. In the allosteric assay it counteracts the ATP-induced allosteric inhibition. In both cases calmodulin acts synergistic with AMP and ADP. To a minor degree calmodulin also counteracts the stabilization of the tetrameric form caused by fructose 6-phosphate and hexose bisphosphate, now however antagonistically to AMP and ADP. By the demonstrated interactions the enzyme can be slowly and hysteretically shifted between an active tetrameric and an inactive dimeric state under control metabolic conditions and of Ca2+ and calmodulin. Resting conditions will inactivate and high contractile activity reactivate available enzyme.
Collapse
|
26
|
Waser MR, Garfinkel L, Kohn MC, Garfinkel D. Computer modeling of muscle phosphofructokinase kinetics. J Theor Biol 1983; 103:295-312. [PMID: 6225913 DOI: 10.1016/0022-5193(83)90030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The kinetics of the phosphofructokinase reaction were studied by computer modeling. A general random order, two-state allosteric model, of which the Monod--Wyman--Changeux model is a limiting case, was found to most accurately reproduce the experimental observations of Pettigrew & Frieden (1979 a,b). A simplified model with Hill coefficients was found to fit almost as well. In these models substrates bind preferentially to and stabilize the enzyme in the R state, and ATPH3-, the inhibitory species, binds preferentially to and stabilizes the enzyme in the T state. Enzymatic activity is regulated by conversion from the R to the T state, which is effected by protonation, especially of the uncomplexed enzyme, but the experimental data are inadequate for accurate estimation of the pKa of the enzyme. Random order binding of substrates is an important cause of sigmoidal kinetics. Additional experiments that would aid in the discrimination among rival models are described.
Collapse
|
27
|
Hervagault JF, Thomas D. Experimental evidence and theoretical discussion for long-term oscillations of phosphofructokinase in a compartmentalized system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:183-7. [PMID: 6219874 DOI: 10.1111/j.1432-1033.1983.tb07247.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The activity of rabbit muscle phosphofructokinase (EC 2.7.1.11) has been followed as a function of time under conditions where the enzyme is separated from the bulk solution by an inert membrane. An enzymatic coupling assay allows continuous measurement of the variations in NADH concentration, which is directly related to the enzyme catalytic activity. For given concentrations of substrates (ATP and Fru6P) in the outside reservoir and a given ratio between diffusion coefficients of both substrates, the activity of phosphofructokinase exhibits an oscillatory behavior during a period of about 5 h. The phenomenon is explained in terms of coupling between diffusion of metabolites and non-linear enzyme reaction.
Collapse
|
28
|
Spatio-Temporal Organization in Immobilized Enzyme Systems. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/978-3-642-46475-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Hofer HW, Allen BL, Kaeini MR, Pette D, Harris BG. Phosphofructokinase from Ascaris suum. Regulatory kinetic studies and activity near physiological conditions. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34852-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Hesterberg LK, Lee JC. Self-association of rabbit muscle phosphofructokinase: effects of ligands. Biochemistry 1982; 21:216-22. [PMID: 6462169 DOI: 10.1021/bi00531a003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The effects of ligands on the self-association of rabbit muscle phosphofructokinase (PFK) were investigated by velocity sedimentation at pH 7.0 and 23 degrees C. The concentration dependence of the weight-average sedimentation coefficient was monitored in the presence of these ligands. The mode of association and equilibrium constants characterizing each association step were determined by theoretical fitting of the sedimentation data. The simplest mode of association for the PFK system is M in equilibrium M2 equilibrium M4 in equilibrium M16. Ligands and temperature would perturb the various equilibrium constants without altering the mode of association. The apparent equilibrium constants for the formation of tetramer, K4app, are increased in the presence of 0.1 mM ATP and 1.0 mM fructose 6-phosphate. The value of the sedimentation coefficient for the tetramer, S4 degrees, that would best fit the data is 12.4 S instead of 13.5 S determined in the absence of substrates, thus implying a structural change in the tetramer induced by substrates. Only an insignificant amount of dimer is present under the experimental conditions. The presence of activators, ADP or phosphate, enhances the formation of tetramers, and S4 degrees assumes a value of 13.5 S. Similar results are obtained with decreasing concentrations of proton. The presence of the inhibitor, citrate, however, favors the formation of dimers. The equilibrium constants determined as a function of ADP concentration were further analyzed by the linked-function theory derived by Wyman [Wyman, J. (1964) Adv. Protein Chem. 19, 224--285], leading to the conclusion that the formation of a tetramer involves the binding of two additional molecules of ADP per monomer. Similar analysis results in a conclusion that the formation of a dimer involves the binding of one additional molecule of citrate per phosphofructokinase subunit.
Collapse
|
31
|
Hand S, Somero G. Urea and methylamine effects on rabbit muscle phosphofructokinase. Catalytic stability and aggregation state as a function of pH and temperature. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68257-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Hesterberg L, Lee J, Erickson H. Structural properties of an active form of rabbit muscle phosphofructokinase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68823-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Ramasarma T, Crane FL. Does vanadium play a role in cellular regulation? CURRENT TOPICS IN CELLULAR REGULATION 1981; 20:247-301. [PMID: 6459911 DOI: 10.1016/b978-0-12-152820-1.50011-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Riquelme P, Kemp R. Limited proteolysis of native and in vitro phosphorylated muscle phosphofructokinase. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85674-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
|
36
|
Choate G, Mansour T. Studies on heart phosphofructokinase. Decavanadate as a potent allosteric inhibitor at alkaline and acidic pH. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(19)86507-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Pettigrew D, Frieden C. Binding of regulatory ligands to rabbit muscle phosphofructokinase. A model for nucleotide binding as a function of temperature and pH. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)37740-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
GOLDHAMMER ALANR, PARADIES HASKOH. Phosphofructokinase: Structure and Function* *The investigations cited in this review and in the unpublished experiments carried out in the authors' laboratory were supported by research grants from the Deutsche Forschungsgemeinschaft Pa 111 (1–6) and Umweltbundesant (West Berlin). One of us (ARG) is grateful for support from the National Institutes of Health in the form of a postdoctoral fellowship and to Professor Gordon Hammes of Cornell University for support and encouragement. CURRENT TOPICS IN CELLULAR REGULATION 1979. [DOI: 10.1016/b978-0-12-152815-7.50007-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|